Namespaces
Variants
Actions

Difference between revisions of "Wittenbauer theorem"

From Encyclopedia of Mathematics
Jump to: navigation, search
m (→‎References: isbn link)
m
 
Line 8: Line 8:
  
 
====References====
 
====References====
<table>
+
* {{Ref|a1}} H.S.M. Coxeter, "Introduction to geometry" (2nd ed.), Wiley (1969) pp. 216 {{ZBL|0181.48101}}; (repr.1989) {{ISBN|0-471-50458-0}}
<TR><TD valign="top">[a1]</TD> <TD valign="top">  H.S.M. Coxeter,   "Introduction to geometry" (2nd ed.), Wiley (1969) pp. 216 {{ZBL|0181.48101}}; (repr.1989) {{ISBN|0-471-50458-0}}</TD></TR>
+
* {{Ref|a2}} W. Blaschke, "Projektive Geometrie", Birkhäuser (1954) pp. 13 {{ZBL|0057.12706}}
<TR><TD valign="top">[a2]</TD> <TD valign="top">  W. Blaschke,   "Projektive Geometrie" , Birkhäuser (1954) pp. 13</TD></TR>
 
</table>
 
  
 
{{OldImage}}
 
{{OldImage}}

Latest revision as of 07:23, 31 July 2025

Take an arbitrary quadrangle and divide each of the four sides into three equal parts. Draw the lines through adjacent dividing points. The result is a parallelogram. This theorem is due to F. Wittenbauer (around 1900).

Figure: w130150a

The centre of the parallelogram is the centroid (centre of mass) of the lamina (plate of uniform density) defined by the original quadrangle.

References

  • [a1] H.S.M. Coxeter, "Introduction to geometry" (2nd ed.), Wiley (1969) pp. 216 Zbl 0181.48101; (repr.1989) ISBN 0-471-50458-0
  • [a2] W. Blaschke, "Projektive Geometrie", Birkhäuser (1954) pp. 13 Zbl 0057.12706


🛠️ This page contains images that should be replaced by better images in the SVG file format. 🛠️
How to Cite This Entry:
Wittenbauer theorem. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Wittenbauer_theorem&oldid=56166
This article was adapted from an original article by M. Hazewinkel (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article