Namespaces
Variants
Actions

Difference between revisions of "User:Richard Pinch/sandbox-17"

From Encyclopedia of Mathematics
Jump to: navigation, search
m (better)
(more)
Line 8: Line 8:
 
$$
 
$$
 
R(x) = \sum_{n=0}^\infty \frac{|R[n]|}{n!} x^n
 
R(x) = \sum_{n=0}^\infty \frac{|R[n]|}{n!} x^n
 +
$$
 +
 +
Some special examples.
 +
$$
 +
\mathbf{0} : V \mapsto \emptyset
 +
$$
 +
$$
 +
\mathbf{1} : V \mapsto \left\lbrace{ \begin{array}{cl} \{\emptyset\} & \text{if } V = \emptyset \\ \emptyset & \text{otherwise} \end{array} }\right.
 +
$$
 +
$$
 +
\mathbf{X} : V \mapsto \left\lbrace{ \begin{array}{cl} \{v\} & \text{if } V = \{v\} \\ \emptyset & \text{otherwise} \end{array} }\right.
 
$$
 
$$

Revision as of 15:36, 22 July 2021

Combinatorial species

A class of finite labelled stuctures closed under relabelling. A contravariant functor from the category $\mathcal B$ of finite sets and bijections to the category $\mathcal F$ of finite sets and functions. A species $R$ thus determines the following data.

  • For a finite set $V$, a finite set $R[V]$, thought of as the $R$-structures with labels in $V$. We write $R[n]$ for $R[\{1,\ldots,n\}]$.
  • For a bijection $f: V \rightarrow W$, a map $R[f] : R[V] \rightarrow R[W]$, with the properties that $R[\mathrm{id}_V] = \mathrm{id}_{R[V]}$ and $R[f\circ g] = R[f] \circ R[g]$.

The (exponential) generating function of $R$ is the formal power series $$ R(x) = \sum_{n=0}^\infty \frac{|R[n]|}{n!} x^n $$

Some special examples. $$ \mathbf{0} : V \mapsto \emptyset $$ $$ \mathbf{1} : V \mapsto \left\lbrace{ \begin{array}{cl} \{\emptyset\} & \text{if } V = \emptyset \\ \emptyset & \text{otherwise} \end{array} }\right. $$ $$ \mathbf{X} : V \mapsto \left\lbrace{ \begin{array}{cl} \{v\} & \text{if } V = \{v\} \\ \emptyset & \text{otherwise} \end{array} }\right. $$

How to Cite This Entry:
Richard Pinch/sandbox-17. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Richard_Pinch/sandbox-17&oldid=51762