Namespaces
Variants
Actions

Difference between revisions of "User:Richard Pinch/sandbox-17"

From Encyclopedia of Mathematics
Jump to: navigation, search
m (better)
(more)
Line 8: Line 8:
 
$$
 
$$
 
R(x) = \sum_{n=0}^\infty \frac{|R[n]|}{n!} x^n
 
R(x) = \sum_{n=0}^\infty \frac{|R[n]|}{n!} x^n
 +
$$
 +
 +
Some special examples.
 +
$$
 +
\mathbf{0} : V \mapsto \emptyset
 +
$$
 +
$$
 +
\mathbf{1} : V \mapsto \left\lbrace{ }\right.
 +
$$
 +
$$
 +
\mathbf{X} : V \mapsto \left\lbrace{ \begin{array}{cl} \{v\} & \text{if } V = \{v\} \\ \emptyset & \text{otherwise} \end{array} }\right.
 
$$
 
$$

Revision as of 15:36, 22 July 2021

Combinatorial species

A class of finite labelled stuctures closed under relabelling. A contravariant functor from the category \mathcal B of finite sets and bijections to the category \mathcal F of finite sets and functions. A species R thus determines the following data.

  • For a finite set V, a finite set R[V], thought of as the R-structures with labels in V. We write R[n] for R[\{1,\ldots,n\}].
  • For a bijection f: V \rightarrow W, a map R[f] : R[V] \rightarrow R[W], with the properties that R[\mathrm{id}_V] = \mathrm{id}_{R[V]} and R[f\circ g] = R[f] \circ R[g].

The (exponential) generating function of R is the formal power series R(x) = \sum_{n=0}^\infty \frac{|R[n]|}{n!} x^n

Some special examples. \mathbf{0} : V \mapsto \emptyset \mathbf{1} : V \mapsto \left\lbrace{ \begin{array}{cl} \{\emptyset\} & \text{if } V = \emptyset \\ \emptyset & \text{otherwise} \end{array} }\right. \mathbf{X} : V \mapsto \left\lbrace{ \begin{array}{cl} \{v\} & \text{if } V = \{v\} \\ \emptyset & \text{otherwise} \end{array} }\right.

How to Cite This Entry:
Richard Pinch/sandbox-17. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Richard_Pinch/sandbox-17&oldid=51762