Difference between revisions of "User:Richard Pinch/sandbox-17"
m (better) |
(more) |
||
Line 8: | Line 8: | ||
$$ | $$ | ||
R(x) = \sum_{n=0}^\infty \frac{|R[n]|}{n!} x^n | R(x) = \sum_{n=0}^\infty \frac{|R[n]|}{n!} x^n | ||
+ | $$ | ||
+ | |||
+ | Some special examples. | ||
+ | $$ | ||
+ | \mathbf{0} : V \mapsto \emptyset | ||
+ | $$ | ||
+ | $$ | ||
+ | \mathbf{1} : V \mapsto \left\lbrace{ }\right. | ||
+ | $$ | ||
+ | $$ | ||
+ | \mathbf{X} : V \mapsto \left\lbrace{ \begin{array}{cl} \{v\} & \text{if } V = \{v\} \\ \emptyset & \text{otherwise} \end{array} }\right. | ||
$$ | $$ |
Revision as of 15:36, 22 July 2021
Combinatorial species
A class of finite labelled stuctures closed under relabelling. A contravariant functor from the category \mathcal B of finite sets and bijections to the category \mathcal F of finite sets and functions. A species R thus determines the following data.
- For a finite set V, a finite set R[V], thought of as the R-structures with labels in V. We write R[n] for R[\{1,\ldots,n\}].
- For a bijection f: V \rightarrow W, a map R[f] : R[V] \rightarrow R[W], with the properties that R[\mathrm{id}_V] = \mathrm{id}_{R[V]} and R[f\circ g] = R[f] \circ R[g].
The (exponential) generating function of R is the formal power series R(x) = \sum_{n=0}^\infty \frac{|R[n]|}{n!} x^n
Some special examples. \mathbf{0} : V \mapsto \emptyset \mathbf{1} : V \mapsto \left\lbrace{ \begin{array}{cl} \{\emptyset\} & \text{if } V = \emptyset \\ \emptyset & \text{otherwise} \end{array} }\right. \mathbf{X} : V \mapsto \left\lbrace{ \begin{array}{cl} \{v\} & \text{if } V = \{v\} \\ \emptyset & \text{otherwise} \end{array} }\right.
Richard Pinch/sandbox-17. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Richard_Pinch/sandbox-17&oldid=51762