Namespaces
Variants
Actions

Difference between revisions of "Pauli algebra"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (texified)
 
Line 1: Line 1:
The <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130050/p1300501.png" />-dimensional real [[Clifford algebra|Clifford algebra]] generated by the [[Pauli matrices|Pauli matrices]] [[#References|[a1]]]
+
The $2^3$-dimensional real [[Clifford algebra|Clifford algebra]] generated by the [[Pauli matrices|Pauli matrices]] [[#References|[a1]]]
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130050/p1300502.png" /></td> </tr></table>
+
\begin{equation}\sigma_x=\begin{pmatrix}0&1\\1&0\end{pmatrix},\sigma_y=\begin{pmatrix}0&-i\\i&0\end{pmatrix},\sigma_z=\begin{pmatrix}1&0\\0&-1\end{pmatrix},\end{equation}
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130050/p1300503.png" /> is the complex unit <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130050/p1300504.png" />. The matrices <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130050/p1300505.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130050/p1300506.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130050/p1300507.png" /> satisfy <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130050/p1300508.png" /> and the anti-commutative relations:
+
where $i$ is the complex unit $\sqrt{-1}$. The matrices $\sigma_x$, $\sigma_y$ and $\sigma_z$ satisfy $\sigma^2_x=\sigma^2_y=\sigma^2_z=1$ and the anti-commutative relations:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130050/p1300509.png" /></td> </tr></table>
+
\begin{equation}\sigma_i\sigma_j+\sigma_j\sigma_i=0\text{ for }i,j\in\{x,y,z\}.\end{equation}
  
These matrices are used to describe angular momentum, spin-<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130050/p13005011.png" /> fermions (which include the electron) and to describe isospin for the neutron, proton, mesons and other particles.
+
These matrices are used to describe angular momentum, spin-$1/2$ fermions (which include the electron) and to describe isospin for the neutron, proton, mesons and other particles.
  
The angular momentum algebra is generated by elements <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130050/p13005012.png" /> satisfying
+
The angular momentum algebra is generated by elements $\{J_1,J_2,J_3\}$ satisfying
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130050/p13005013.png" /></td> </tr></table>
+
\begin{equation}J_1J_2=J_2J_1=iJ_3\end{equation}
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130050/p13005014.png" /></td> </tr></table>
+
\begin{equation}J_2J_3-J_3J_2=iJ_1J_3J_1-J_1J_3=iJ_2.\end{equation}
  
 
The Pauli matrices provide a non-trivial representation of the generators of this algebra. The correspondence
 
The Pauli matrices provide a non-trivial representation of the generators of this algebra. The correspondence
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130050/p13005015.png" /></td> </tr></table>
+
\begin{equation}1\leftrightarrow\begin{pmatrix}1&0\\0&1\end{pmatrix},I\leftrightarrow i\sigma_1,J\leftrightarrow i\sigma_2,K\leftrightarrow i\sigma_3\end{equation}
  
 
leads to a realization of the quaternion division algebra (cf. also [[Quaternion|Quaternion]]) as a subring of the Pauli algebra. See [[#References|[a2]]], [[#References|[a3]]] for algebras with three anti-commuting elements.
 
leads to a realization of the quaternion division algebra (cf. also [[Quaternion|Quaternion]]) as a subring of the Pauli algebra. See [[#References|[a2]]], [[#References|[a3]]] for algebras with three anti-commuting elements.

Latest revision as of 06:50, 25 December 2020

The $2^3$-dimensional real Clifford algebra generated by the Pauli matrices [a1]

\begin{equation}\sigma_x=\begin{pmatrix}0&1\\1&0\end{pmatrix},\sigma_y=\begin{pmatrix}0&-i\\i&0\end{pmatrix},\sigma_z=\begin{pmatrix}1&0\\0&-1\end{pmatrix},\end{equation}

where $i$ is the complex unit $\sqrt{-1}$. The matrices $\sigma_x$, $\sigma_y$ and $\sigma_z$ satisfy $\sigma^2_x=\sigma^2_y=\sigma^2_z=1$ and the anti-commutative relations:

\begin{equation}\sigma_i\sigma_j+\sigma_j\sigma_i=0\text{ for }i,j\in\{x,y,z\}.\end{equation}

These matrices are used to describe angular momentum, spin-$1/2$ fermions (which include the electron) and to describe isospin for the neutron, proton, mesons and other particles.

The angular momentum algebra is generated by elements $\{J_1,J_2,J_3\}$ satisfying

\begin{equation}J_1J_2=J_2J_1=iJ_3\end{equation}

\begin{equation}J_2J_3-J_3J_2=iJ_1J_3J_1-J_1J_3=iJ_2.\end{equation}

The Pauli matrices provide a non-trivial representation of the generators of this algebra. The correspondence

\begin{equation}1\leftrightarrow\begin{pmatrix}1&0\\0&1\end{pmatrix},I\leftrightarrow i\sigma_1,J\leftrightarrow i\sigma_2,K\leftrightarrow i\sigma_3\end{equation}

leads to a realization of the quaternion division algebra (cf. also Quaternion) as a subring of the Pauli algebra. See [a2], [a3] for algebras with three anti-commuting elements.

References

[a1] W. Pauli, "Zur Quantenmechanik des magnetischen Elektrons" Z. f. Phys. , 43 (1927) pp. 601–623
[a2] Y. Ilamed, N. Salingaros, "Algebras with three anticommuting emements I: spinors and quaternions" J. Math. Phys. , 22 (1981) pp. 2091–2095
[a3] N. Salingaros, "Algebras with three anticommuting elements II" J. Math. Phys. , 22 (1881) pp. 2096–2100
How to Cite This Entry:
Pauli algebra. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Pauli_algebra&oldid=51078
This article was adapted from an original article by G.P. Wene (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article