Namespaces
Variants
Actions

Difference between revisions of "Magnetic field"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (AUTOMATIC EDIT (latexlist): Replaced 13 formulas out of 13 by TEX code with an average confidence of 2.0 and a minimal confidence of 2.0.)
 
Line 1: Line 1:
A vector-valued function of [[Space-time|space-time]] variables describing a force acting on a moving electrical charge and proportional to the charge velocity in the following sense. The total force <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120040/m1200401.png" /> which acts on a charge <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120040/m1200402.png" /> moving with velocity <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120040/m1200403.png" /> is given by the Lorentz force law
+
<!--This article has been texified automatically. Since there was no Nroff source code for this article,
 +
the semi-automatic procedure described at https://encyclopediaofmath.org/wiki/User:Maximilian_Janisch/latexlist
 +
was used.
 +
If the TeX and formula formatting is correct, please remove this message and the {{TEX|semi-auto}} category.
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120040/m1200404.png" /></td> </tr></table>
+
Out of 13 formulas, 13 were replaced by TEX code.-->
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120040/m1200405.png" /> is the electric intensity field. The vector <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120040/m1200406.png" /> is called the magnetic field (see, e.g., [[#References|[a1]]], Sect. 1). However, quite often <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120040/m1200407.png" /> is considered as a vector of magnetic induction (see, e.g., [[#References|[a2]]], Sect. 29), while the vector <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120040/m1200408.png" /> related to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120040/m1200409.png" /> by the material equation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120040/m12004010.png" /> is named magnetic intensity field or simply magnetic field. Here, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120040/m12004011.png" /> denotes the material permeability. Together with the electric intensity field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120040/m12004012.png" />, the vector <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120040/m12004013.png" /> satisfies the [[Maxwell equations|Maxwell equations]].
+
{{TEX|semi-auto}}{{TEX|done}}
 +
A vector-valued function of [[Space-time|space-time]] variables describing a force acting on a moving electrical charge and proportional to the charge velocity in the following sense. The total force $\overset{\rightharpoonup} { F }$ which acts on a charge $q$ moving with velocity $\overset{\rightharpoonup }{ v }$ is given by the Lorentz force law
 +
 
 +
\begin{equation*} \vec { F } = q ( \vec { E } + \vec { v } \times \vec { B } ), \end{equation*}
 +
 
 +
where $\overset{\rightharpoonup }{ E }$ is the electric intensity field. The vector $\overset{\rightharpoonup} { B }$ is called the magnetic field (see, e.g., [[#References|[a1]]], Sect. 1). However, quite often $\overset{\rightharpoonup} { B }$ is considered as a vector of magnetic induction (see, e.g., [[#References|[a2]]], Sect. 29), while the vector $\overset{\rightharpoonup }{ H }$ related to $\overset{\rightharpoonup} { B }$ by the material equation $\overset{\rightharpoonup} { B } = \mu \overset{\rightharpoonup}{ H }$ is named magnetic intensity field or simply magnetic field. Here, $\mu$ denotes the material permeability. Together with the electric intensity field $\overset{\rightharpoonup }{ E }$, the vector $\overset{\rightharpoonup} { B }$ satisfies the [[Maxwell equations|Maxwell equations]].
  
 
====References====
 
====References====
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  R. Feynman,  R. Leighton,  M. Sands,  "The Feynman lectures on physics" , '''2''' , Addison-Wesley  (1964)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  L.D. Landau,  Ye.M. Lifshits,  "Course of theoretical physics: Electrodynamics of continuous media" , '''VIII''' , Nauka  (1992)  (In Russian)  (English transl.: Pergamon)</TD></TR></table>
+
<table><tr><td valign="top">[a1]</td> <td valign="top">  R. Feynman,  R. Leighton,  M. Sands,  "The Feynman lectures on physics" , '''2''' , Addison-Wesley  (1964)</td></tr><tr><td valign="top">[a2]</td> <td valign="top">  L.D. Landau,  Ye.M. Lifshits,  "Course of theoretical physics: Electrodynamics of continuous media" , '''VIII''' , Nauka  (1992)  (In Russian)  (English transl.: Pergamon)</td></tr></table>

Latest revision as of 17:01, 1 July 2020

A vector-valued function of space-time variables describing a force acting on a moving electrical charge and proportional to the charge velocity in the following sense. The total force $\overset{\rightharpoonup} { F }$ which acts on a charge $q$ moving with velocity $\overset{\rightharpoonup }{ v }$ is given by the Lorentz force law

\begin{equation*} \vec { F } = q ( \vec { E } + \vec { v } \times \vec { B } ), \end{equation*}

where $\overset{\rightharpoonup }{ E }$ is the electric intensity field. The vector $\overset{\rightharpoonup} { B }$ is called the magnetic field (see, e.g., [a1], Sect. 1). However, quite often $\overset{\rightharpoonup} { B }$ is considered as a vector of magnetic induction (see, e.g., [a2], Sect. 29), while the vector $\overset{\rightharpoonup }{ H }$ related to $\overset{\rightharpoonup} { B }$ by the material equation $\overset{\rightharpoonup} { B } = \mu \overset{\rightharpoonup}{ H }$ is named magnetic intensity field or simply magnetic field. Here, $\mu$ denotes the material permeability. Together with the electric intensity field $\overset{\rightharpoonup }{ E }$, the vector $\overset{\rightharpoonup} { B }$ satisfies the Maxwell equations.

References

[a1] R. Feynman, R. Leighton, M. Sands, "The Feynman lectures on physics" , 2 , Addison-Wesley (1964)
[a2] L.D. Landau, Ye.M. Lifshits, "Course of theoretical physics: Electrodynamics of continuous media" , VIII , Nauka (1992) (In Russian) (English transl.: Pergamon)
How to Cite This Entry:
Magnetic field. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Magnetic_field&oldid=50424
This article was adapted from an original article by V.V. Kravchenko (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article