Difference between revisions of "Berger inequality"
(Importing text file) |
m (AUTOMATIC EDIT (latexlist): Replaced 18 formulas out of 18 by TEX code with an average confidence of 2.0 and a minimal confidence of 2.0.) |
||
Line 1: | Line 1: | ||
− | + | <!--This article has been texified automatically. Since there was no Nroff source code for this article, | |
+ | the semi-automatic procedure described at https://encyclopediaofmath.org/wiki/User:Maximilian_Janisch/latexlist | ||
+ | was used. | ||
+ | If the TeX and formula formatting is correct, please remove this message and the {{TEX|semi-auto}} category. | ||
− | + | Out of 18 formulas, 18 were replaced by TEX code.--> | |
− | + | {{TEX|semi-auto}}{{TEX|done}} | |
+ | For a compact [[Riemannian manifold|Riemannian manifold]] $M = M ^ { n }$, let | ||
− | + | \begin{equation*} \operatorname {inj} M = \operatorname { inf } _ { p \in M } \operatorname { sup } \{ r : \operatorname { exp } _ { p } \text { injective on } B _ { r } ( 0 ) \subset T _ { p } M \}, \end{equation*} | |
− | + | where $B _ { r } ( 0 )$ is the ball around $0$ with radius $r$, be the injectivity radius, and set $\alpha ( n ) = \text { Vol } ( S ^ { n } )$. Then the inequality | |
− | This inequality relies on the [[Kazdan inequality|Kazdan inequality]] applied to the Jacobi equation | + | \begin{equation*} \operatorname {Vol} ( M ) \geq \alpha ( n ) \left( \frac { \operatorname { inj } M } { \pi } \right) ^ { n } \end{equation*} |
+ | |||
+ | holds, with equality if and only if $M$ is isometric to the standard sphere with diameter $\operatorname { inj} M$. | ||
+ | |||
+ | This inequality relies on the [[Kazdan inequality|Kazdan inequality]] applied to the Jacobi equation $X ^ { \prime \prime } ( t ) + {\cal {R}} ( t ) \circ X ( t ) = 0$ for operators $X ( t )$ on $v ^ { \perp }$ for a unit vector $v \in T _ { p } M$. Here, $R ( t ) = R ( \gamma ^ { \prime } ( t ) , . ) \gamma ^ { \prime } ( t )$ is the [[Curvature|curvature]] operator, $\tau _ { t , v } : T _ { p } M \rightarrow T _ { \gamma ( t ) } M$ is the parallel transport along the geodesic ray $\gamma ( t ) = \operatorname { exp } _ { p } ( t v )$, and $\mathcal{R} ( t ) = \tau ^ { - 1 _ { t , v } } \circ R ( t ) \circ \tau _ { t , v }$ is the parallel translated curvature operator on $v ^ { \perp } \subset T _ { p } M$. | ||
====References==== | ====References==== | ||
− | <table>< | + | <table><tr><td valign="top">[a1]</td> <td valign="top"> M. Berger, "Une borne inférieure pour le volume d'une variété riemannienes en fonction du rayon d'injectivité" ''Ann. Inst. Fourier (Grenoble)'' , '''30''' (1980) pp. 259–265</td></tr><tr><td valign="top">[a2]</td> <td valign="top"> I. Chavel, "Riemannian geometry: A modern introduction" , Cambridge Univ. Press (1995)</td></tr></table> |
Latest revision as of 16:57, 1 July 2020
For a compact Riemannian manifold $M = M ^ { n }$, let
\begin{equation*} \operatorname {inj} M = \operatorname { inf } _ { p \in M } \operatorname { sup } \{ r : \operatorname { exp } _ { p } \text { injective on } B _ { r } ( 0 ) \subset T _ { p } M \}, \end{equation*}
where $B _ { r } ( 0 )$ is the ball around $0$ with radius $r$, be the injectivity radius, and set $\alpha ( n ) = \text { Vol } ( S ^ { n } )$. Then the inequality
\begin{equation*} \operatorname {Vol} ( M ) \geq \alpha ( n ) \left( \frac { \operatorname { inj } M } { \pi } \right) ^ { n } \end{equation*}
holds, with equality if and only if $M$ is isometric to the standard sphere with diameter $\operatorname { inj} M$.
This inequality relies on the Kazdan inequality applied to the Jacobi equation $X ^ { \prime \prime } ( t ) + {\cal {R}} ( t ) \circ X ( t ) = 0$ for operators $X ( t )$ on $v ^ { \perp }$ for a unit vector $v \in T _ { p } M$. Here, $R ( t ) = R ( \gamma ^ { \prime } ( t ) , . ) \gamma ^ { \prime } ( t )$ is the curvature operator, $\tau _ { t , v } : T _ { p } M \rightarrow T _ { \gamma ( t ) } M$ is the parallel transport along the geodesic ray $\gamma ( t ) = \operatorname { exp } _ { p } ( t v )$, and $\mathcal{R} ( t ) = \tau ^ { - 1 _ { t , v } } \circ R ( t ) \circ \tau _ { t , v }$ is the parallel translated curvature operator on $v ^ { \perp } \subset T _ { p } M$.
References
[a1] | M. Berger, "Une borne inférieure pour le volume d'une variété riemannienes en fonction du rayon d'injectivité" Ann. Inst. Fourier (Grenoble) , 30 (1980) pp. 259–265 |
[a2] | I. Chavel, "Riemannian geometry: A modern introduction" , Cambridge Univ. Press (1995) |
Berger inequality. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Berger_inequality&oldid=50215