Difference between revisions of "Conway algebra"
(Importing text file) |
m (AUTOMATIC EDIT (latexlist): Replaced 25 formulas out of 25 by TEX code with an average confidence of 2.0 and a minimal confidence of 2.0.) |
||
Line 1: | Line 1: | ||
− | + | <!--This article has been texified automatically. Since there was no Nroff source code for this article, | |
+ | the semi-automatic procedure described at https://encyclopediaofmath.org/wiki/User:Maximilian_Janisch/latexlist | ||
+ | was used. | ||
+ | If the TeX and formula formatting is correct, please remove this message and the {{TEX|semi-auto}} category. | ||
− | The concept is related to the entropic right quasi-group (cf. also [[Quasi-group|Quasi-group]]). A Conway algebra consists of a sequence of | + | Out of 25 formulas, 25 were replaced by TEX code.--> |
+ | |||
+ | {{TEX|semi-auto}}{{TEX|done}} | ||
+ | An abstract algebra which yields an invariant of links in $\mathbf{R} ^ { 3 }$ (cf. also [[Link|Link]]). | ||
+ | |||
+ | The concept is related to the entropic right quasi-group (cf. also [[Quasi-group|Quasi-group]]). A Conway algebra consists of a sequence of $0$-argument operations (constants) $a _ { 1 } , a _ { 2 } , \dots$ and two $2$-argument operations $|$ and $*$, which satisfy the following conditions: | ||
Initial conditions: | Initial conditions: | ||
− | C1) | + | C1) $a _ { n } | a _ {n + 1} = a _ { n }$; |
− | C2) | + | C2) $a _ { n } * a _ { n + 1} = a _ { n }$. |
Transposition properties: | Transposition properties: | ||
− | C3) | + | C3) $( a | b ) | ( c | d ) = ( a | c ) | ( b | d )$; |
− | C4) | + | C4) $( a | b ) * ( c | d ) = ( a * c ) | ( b * d )$; |
− | C5) | + | C5) $( a * b ) * ( c * d ) = ( a * c ) * ( b * d )$. |
Inverse operation properties: | Inverse operation properties: | ||
− | C6) | + | C6) $( a | b ) * b = a$; |
− | C7) | + | C7) $( a * b ) | b = a$. The main link invariant yielded by a Conway algebra is the [[Jones–Conway polynomial|Jones–Conway polynomial]], [[#References|[a2]]], [[#References|[a5]]], [[#References|[a4]]]. |
A nice example of a four-element Conway algebra, which leads to the link invariant distinguishing the left-handed and right-handed trefoil knots (cf. also [[Torus knot|Torus knot]]) is described below: | A nice example of a four-element Conway algebra, which leads to the link invariant distinguishing the left-handed and right-handed trefoil knots (cf. also [[Torus knot|Torus knot]]) is described below: | ||
− | + | \begin{equation*} a _ { 1 } = 1 , a _ { 2 } = 2, \end{equation*} | |
− | + | \begin{equation*} a_3 = 4 ,\; a _ { i + 3} = a _ { i }. \end{equation*} | |
− | The operations | + | The operations $|$ and $*$ are given by the following tables:''''''<table border="0" cellpadding="0" cellspacing="0" style="background-color:black;"> <tr><td> <table border="0" cellpadding="4" cellspacing="1" style="background-color:black;"> <tr> <td colname="1" colspan="1" style="background-color:white;">$|$</td> <td colname="2" colspan="1" style="background-color:white;">1</td> <td colname="3" colspan="1" style="background-color:white;">2</td> <td colname="4" colspan="1" style="background-color:white;">3</td> <td colname="5" colspan="1" style="background-color:white;">4</td> </tr> <tr> <td colname="1" colspan="1" style="background-color:white;"></td> <td colname="5" colspan="1" style="background-color:white;"></td> <td colname="4" colspan="1" style="background-color:white;"></td> <td colname="3" colspan="1" style="background-color:white;"></td> <td colname="2" colspan="1" style="background-color:white;"></td> </tr> <tr> <td colname="1" colspan="1" style="background-color:white;">1</td> <td colname="2" colspan="1" style="background-color:white;">2</td> <td colname="3" colspan="1" style="background-color:white;">1</td> <td colname="4" colspan="1" style="background-color:white;">4</td> <td colname="5" colspan="1" style="background-color:white;">3</td> </tr> <tr> <td colname="1" colspan="1" style="background-color:white;">2</td> <td colname="2" colspan="1" style="background-color:white;">3</td> <td colname="3" colspan="1" style="background-color:white;">4</td> <td colname="4" colspan="1" style="background-color:white;">1</td> <td colname="5" colspan="1" style="background-color:white;">2</td> </tr> <tr> <td colname="1" colspan="1" style="background-color:white;">3</td> <td colname="2" colspan="1" style="background-color:white;">1</td> <td colname="3" colspan="1" style="background-color:white;">2</td> <td colname="4" colspan="1" style="background-color:white;">3</td> <td colname="5" colspan="1" style="background-color:white;">4</td> </tr> <tr> <td colname="1" colspan="1" style="background-color:white;">4</td> <td colname="2" colspan="1" style="background-color:white;">4</td> <td colname="3" colspan="1" style="background-color:white;">3</td> <td colname="4" colspan="1" style="background-color:white;">2</td> <td colname="5" colspan="1" style="background-color:white;">1</td> </tr> </table> |
</td></tr> </table> | </td></tr> </table> | ||
− | ''''''<table border="0" cellpadding="0" cellspacing="0" style="background-color:black;"> <tr><td> <table border="0" | + | ''''''<table border="0" cellpadding="0" cellspacing="0" style="background-color:black;"> <tr><td> <table border="0" cellpadding="4" cellspacing="1" style="background-color:black;"> <tr> <td colname="1" colspan="1" style="background-color:white;">$*$</td> <td colname="2" colspan="1" style="background-color:white;">1</td> <td colname="3" colspan="1" style="background-color:white;">2</td> <td colname="4" colspan="1" style="background-color:white;">3</td> <td colname="5" colspan="1" style="background-color:white;">4</td> </tr> <tr> <td colname="1" colspan="1" style="background-color:white;"></td> <td colname="5" colspan="1" style="background-color:white;"></td> <td colname="4" colspan="1" style="background-color:white;"></td> <td colname="3" colspan="1" style="background-color:white;"></td> <td colname="2" colspan="1" style="background-color:white;"></td> </tr> <tr> <td colname="1" colspan="1" style="background-color:white;">1</td> <td colname="2" colspan="1" style="background-color:white;">3</td> <td colname="3" colspan="1" style="background-color:white;">1</td> <td colname="4" colspan="1" style="background-color:white;">2</td> <td colname="5" colspan="1" style="background-color:white;">4</td> </tr> <tr> <td colname="1" colspan="1" style="background-color:white;">2</td> <td colname="2" colspan="1" style="background-color:white;">1</td> <td colname="3" colspan="1" style="background-color:white;">3</td> <td colname="4" colspan="1" style="background-color:white;">4</td> <td colname="5" colspan="1" style="background-color:white;">2</td> </tr> <tr> <td colname="1" colspan="1" style="background-color:white;">3</td> <td colname="2" colspan="1" style="background-color:white;">2</td> <td colname="3" colspan="1" style="background-color:white;">4</td> <td colname="4" colspan="1" style="background-color:white;">3</td> <td colname="5" colspan="1" style="background-color:white;">1</td> </tr> <tr> <td colname="1" colspan="1" style="background-color:white;">4</td> <td colname="2" colspan="1" style="background-color:white;">4</td> <td colname="3" colspan="1" style="background-color:white;">2</td> <td colname="4" colspan="1" style="background-color:white;">1</td> <td colname="5" colspan="1" style="background-color:white;">3</td> </tr> </table> |
</td></tr> </table> | </td></tr> </table> | ||
Line 39: | Line 47: | ||
If one allows partial Conway algebras, one also gets the Murasugi signature and Tristram–Levine signature of links [[#References|[a3]]]. The skein calculus (cf. also [[Skein module|Skein module]]), developed by J.H. Conway, leads to the universal partial Conway algebra. | If one allows partial Conway algebras, one also gets the Murasugi signature and Tristram–Levine signature of links [[#References|[a3]]]. The skein calculus (cf. also [[Skein module|Skein module]]), developed by J.H. Conway, leads to the universal partial Conway algebra. | ||
− | Invariants of links, | + | Invariants of links, $w _ { L }$, yielded by (partial) Conway algebras have the properties that for the [[Conway skein triple|Conway skein triple]] $L _ { + }$, $L_{-}$ and $L_0$: |
− | + | \begin{equation*} w _ { L _ { + } } = w _ { L - } | w _ { L _ { 0 } }, \end{equation*} | |
− | + | \begin{equation*} w _ { L _ { - } } = w _ { L _ { + } } * w _ { L _ { 0 } } \end{equation*} | |
====References==== | ====References==== | ||
− | <table>< | + | <table><tr><td valign="top">[a1]</td> <td valign="top"> J.H. Conway, "An enumeration of knots and links" J. Leech (ed.) , ''Computational Problems in Abstract Algebra'' , Pergamon (1969) pp. 329–358</td></tr><tr><td valign="top">[a2]</td> <td valign="top"> J.H. Przytycki, P. Traczyk, "Invariants of links of Conway type" ''Kobe J. Math.'' , '''4''' (1987) pp. 115–139</td></tr><tr><td valign="top">[a3]</td> <td valign="top"> J.H. Przytycki, P. Traczyk, "Conway algebras and skein equivalence of links" ''Proc. Amer. Math. Soc.'' , '''100''' : 4 (1987) pp. 744–748</td></tr><tr><td valign="top">[a4]</td> <td valign="top"> A.S. Sikora, "On Conway algebras and the Homflypt polynomial" ''J. Knot Th. Ramifications'' , '''6''' : 6 (1997) pp. 879–893</td></tr><tr><td valign="top">[a5]</td> <td valign="top"> J.D. Smith, "Skein polynomials and entropic right quasigroups Universal algebra, quasigroups and related systems (Jadwisin 1989)" ''Demonstratio Math.'' , '''24''' : 1–2 (1991) pp. 241–246</td></tr></table> |
Revision as of 16:57, 1 July 2020
An abstract algebra which yields an invariant of links in $\mathbf{R} ^ { 3 }$ (cf. also Link).
The concept is related to the entropic right quasi-group (cf. also Quasi-group). A Conway algebra consists of a sequence of $0$-argument operations (constants) $a _ { 1 } , a _ { 2 } , \dots$ and two $2$-argument operations $|$ and $*$, which satisfy the following conditions:
Initial conditions:
C1) $a _ { n } | a _ {n + 1} = a _ { n }$;
C2) $a _ { n } * a _ { n + 1} = a _ { n }$.
Transposition properties:
C3) $( a | b ) | ( c | d ) = ( a | c ) | ( b | d )$;
C4) $( a | b ) * ( c | d ) = ( a * c ) | ( b * d )$;
C5) $( a * b ) * ( c * d ) = ( a * c ) * ( b * d )$.
Inverse operation properties:
C6) $( a | b ) * b = a$;
C7) $( a * b ) | b = a$. The main link invariant yielded by a Conway algebra is the Jones–Conway polynomial, [a2], [a5], [a4].
A nice example of a four-element Conway algebra, which leads to the link invariant distinguishing the left-handed and right-handed trefoil knots (cf. also Torus knot) is described below:
\begin{equation*} a _ { 1 } = 1 , a _ { 2 } = 2, \end{equation*}
\begin{equation*} a_3 = 4 ,\; a _ { i + 3} = a _ { i }. \end{equation*}
The operations $|$ and $*$ are given by the following tables:'
|
'
|
If one allows partial Conway algebras, one also gets the Murasugi signature and Tristram–Levine signature of links [a3]. The skein calculus (cf. also Skein module), developed by J.H. Conway, leads to the universal partial Conway algebra.
Invariants of links, $w _ { L }$, yielded by (partial) Conway algebras have the properties that for the Conway skein triple $L _ { + }$, $L_{-}$ and $L_0$:
\begin{equation*} w _ { L _ { + } } = w _ { L - } | w _ { L _ { 0 } }, \end{equation*}
\begin{equation*} w _ { L _ { - } } = w _ { L _ { + } } * w _ { L _ { 0 } } \end{equation*}
References
[a1] | J.H. Conway, "An enumeration of knots and links" J. Leech (ed.) , Computational Problems in Abstract Algebra , Pergamon (1969) pp. 329–358 |
[a2] | J.H. Przytycki, P. Traczyk, "Invariants of links of Conway type" Kobe J. Math. , 4 (1987) pp. 115–139 |
[a3] | J.H. Przytycki, P. Traczyk, "Conway algebras and skein equivalence of links" Proc. Amer. Math. Soc. , 100 : 4 (1987) pp. 744–748 |
[a4] | A.S. Sikora, "On Conway algebras and the Homflypt polynomial" J. Knot Th. Ramifications , 6 : 6 (1997) pp. 879–893 |
[a5] | J.D. Smith, "Skein polynomials and entropic right quasigroups Universal algebra, quasigroups and related systems (Jadwisin 1989)" Demonstratio Math. , 24 : 1–2 (1991) pp. 241–246 |
Conway algebra. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Conway_algebra&oldid=50193