Difference between revisions of "Obstacle scattering"
(Importing text file) |
m (AUTOMATIC EDIT (latexlist): Replaced 163 formulas out of 163 by TEX code with an average confidence of 2.0 and a minimal confidence of 2.0.) |
||
Line 1: | Line 1: | ||
− | + | <!--This article has been texified automatically. Since there was no Nroff source code for this article, | |
+ | the semi-automatic procedure described at https://encyclopediaofmath.org/wiki/User:Maximilian_Janisch/latexlist | ||
+ | was used. | ||
+ | If the TeX and formula formatting is correct, please remove this message and the {{TEX|semi-auto}} category. | ||
+ | |||
+ | Out of 163 formulas, 163 were replaced by TEX code.--> | ||
+ | |||
+ | {{TEX|semi-auto}}{{TEX|done}} | ||
+ | Let $D \subset \mathbf{R} ^ { 3 }$ be a bounded domain with boundary $S$. A large amount of literature, going back to the mid-1930s, deals with wave scattering by obstacles when $S$ is smooth, for example, a $C^{ 1 , \lambda }$-surface, $0 < \lambda \leq 1$. (See [[#References|[a3]]], [[#References|[a17]]], [[#References|[a2]]].) | ||
The obstacle scattering problem consists of finding the solution to the equation | The obstacle scattering problem consists of finding the solution to the equation | ||
− | + | \begin{equation} \tag{a1} ( \nabla ^ { 2 } + k ^ { 2 } ) u = 0 \text { in } D ^ { \prime } : = \mathbf{R} ^ { 3 } \backslash D , k > 0, \end{equation} | |
− | + | \begin{equation} \tag{a2} \Gamma u = 0 \text { on } S, \end{equation} | |
− | + | \begin{equation} \tag{a3} u = e ^ { i k \alpha x } + v , \operatorname { lim } _ { r \rightarrow \infty } \int _ { | s | = r } \left| \frac { \partial v } { \partial | x | } - i k v \right| ^ { 2 } d s = 0. \end{equation} | |
− | Here | + | Here $\Gamma u = u$ ( the Dirichlet condition), or $\Gamma u = u _ { N }$ (the Neumann condition) or $\Gamma u = u _ { N } + h ( s ) u$ (the Robin condition), where $N$ is the unit normal to $S$ pointing into $D ^ { \prime }$ and $h ( s )$ is a [[Continuous function|continuous function]] (cf. also [[Dirichlet boundary conditions|Dirichlet boundary conditions]]; [[Neumann boundary conditions|Neumann boundary conditions]]). Condition (a3) is the radiation condition, which selects a unique solution to problem (a1)–(a3). In (a3), $\alpha \in S ^ { 2 }$ is a given unit vector, the direction of the incident plane wave $e ^ { i k \alpha x}$, and $k > 0$ is the wave number. |
The scattering problem (a1)–(a3) has a solution and the solution is unique. This basic result was proved originally by the integral equations method [[#References|[a3]]]. | The scattering problem (a1)–(a3) has a solution and the solution is unique. This basic result was proved originally by the integral equations method [[#References|[a3]]]. | ||
Line 15: | Line 23: | ||
There are many different types of integral equations which allow one to study problem (a1)–(a3) (see [[#References|[a17]]], where most of these equations are derived). | There are many different types of integral equations which allow one to study problem (a1)–(a3) (see [[#References|[a17]]], where most of these equations are derived). | ||
− | The scattering field | + | The scattering field $v$ in (a3) has the following asymptotics: |
− | + | \begin{equation} \tag{a4} v ( x , \alpha , k ) = \frac { e ^ { i k r } } { r } A ( \alpha ^ { \prime } , \alpha , k ) + o \left( \frac { 1 } { r } \right), \end{equation} | |
− | + | \begin{equation*} r : = | x | \rightarrow \infty , \alpha ^ { \prime } : = \frac { x } { r }. \end{equation*} | |
− | The function | + | The function $A ( \alpha ^ { \prime } , \alpha , k )$ is called the scattering amplitude. This function has the following properties [[#References|[a17]]]: |
− | i) realness: | + | i) realness: $A ( \alpha ^ { \prime } , \alpha , - k ) = \overline { A ( \alpha ^ { \prime } , \alpha , - k ) }$, $k > 0$, the bar stands for complex conjugation; |
− | ii) reciprocity: | + | ii) reciprocity: $A ( \alpha ^ { \prime } , \alpha , k ) = A ( - \alpha , - \alpha ^ { \prime } , k )$; |
iii) unitarity: | iii) unitarity: | ||
− | + | \begin{equation*} \frac { A ( \alpha ^ { \prime } , \alpha , k ) - \overline { A ( \alpha , \alpha ^ { \prime } , k ) } } { 2 i } = \end{equation*} | |
− | + | \begin{equation*} = \frac { k } { 4 \pi } \int _ { S ^ { 2 } } f ( \alpha ^ { \prime } , \beta , k ) \overline { f ( \alpha , \beta , k ) } d \beta , \end{equation*} | |
and its consequence, which is called the optical theorem: | and its consequence, which is called the optical theorem: | ||
− | + | \begin{equation*} \operatorname { Im } A ( \alpha , \alpha , k ) = \frac { k } { 4 \pi } \int _ { S ^ { 2 } } | f ( \alpha , \beta , k ) | ^ { 2 } d \beta : = \frac { k \sigma ( \alpha ) } { 4 \pi }, \end{equation*} | |
− | where | + | where $\sigma ( \alpha ) : = \int _ { S ^ { 2 } } | f ( \alpha , \beta , k ) | ^ { 2 } d \beta$ is called the cross-section. |
− | The function | + | The function $A ( \alpha ^ { \prime } , \alpha , k )$ is analytic with respect to $k$ in $\mathbf{C} _ { + } : = \{ k : \operatorname { Im } k \geq 0 \}$ and meromorphic in $\mathbf{C}$; it is analytic with respect to $\alpha ^ { \prime }$ and $\alpha$ on the variety $M : = \left\{ \theta : \theta \in \mathbf{C} ^ { 3 } , \theta \cdot \theta = 1 \right\}$, where $\theta . w : = \sum ^ { 3 _{ j = 1}} \theta _ { j } w _ { j }$, see [[#References|[a17]]], [[#References|[a18]]] (cf. also [[Analytic function|Analytic function]]; [[Meromorphic function|Meromorphic function]]). |
− | Necessary and sufficient conditions for a scatterer to be spherically symmetric is: | + | Necessary and sufficient conditions for a scatterer to be spherically symmetric is: $A ( \alpha ^ { \prime } , \alpha , k ) = A ( \alpha ^ { \prime } . \alpha , k )$, where $\alpha ^ { \prime } . \alpha$ is the dot product [[#References|[a18]]], [[#References|[a8]]]. |
− | The solution | + | The solution $u ( x , \alpha , k )$ to (a1)–(a3) is called the scattering solution. Any $f ( x ) \in L ^ { 2 } ( D ^ { \prime } )$ can be expanded with respect to scattering solutions: |
− | + | \begin{equation*} f ( x ) = \frac { 1 } { ( 2 \pi ) ^ { 3 / 2 } } \int _ { {\bf R} ^ { 3 } } \hat { f } ( \xi ) u ( x , \xi ) d \xi , \xi : = k\alpha, \end{equation*} | |
− | + | \begin{equation*} \widehat { f } ( \xi ) = \frac { 1 } { ( 2 \pi ) ^ { 3 / 2 } } \int _ { D ^ { \prime } } f ( x ) \overline { u ( x , \xi ) } d x : = \mathcal{F} f. \end{equation*} | |
− | The operator | + | The operator $\mathcal{F} : L ^ { 2 } ( D ^ { \prime } ) \rightarrow L ^ { 2 } ( \mathbf{R} ^ { 3 } )$ is unitary: $\| \mathcal{F} f \| _ { L } 2 (\mathbf{R} ^ { 3 )} = \| f \| _ { L ^ { 2 } ( D ^ { \prime } ) }$, $\mathcal{F} ^ { * } = \mathcal{F} ^ { - 1 }$, see [[#References|[a17]]] (cf. also [[Unitary operator|Unitary operator]]). |
− | The above results hold in | + | The above results hold in ${\bf R} ^ { n }$ with odd $n$. In ${\bf R} ^ { n }$ with even $n$ the scattering amplitude $A ( \alpha ^ { \prime } , \alpha , k )$ as a function of complex $k$ has a [[Logarithmic branch point|logarithmic branch point]] at $k = 0$. |
− | The scattering problem with minimal assumptions on the smoothness of the boundary | + | The scattering problem with minimal assumptions on the smoothness of the boundary $S$ is studied in [[#References|[a13]]]. If $\Gamma u = u$, then existence and uniqueness of the scattering solution have been proved without any assumption on the smoothness of the boundary $S$ of a bounded domain $D$. In this case a weak formulation of problem (a1)–(a3) is considered and the [[Limit-absorption principle|limit-absorption principle]] has been proved. |
− | If | + | If $\Gamma u = u _ { N }$, then again a weak formulation of (a1)–(a3) is considered and the only assumption on the smoothness of the boundary $S$ is compactness of the embedding $H ^ { 1 } ( D _ { R } ^ { \prime } )$ into $L ^ { 2 } ( D _ { R } ^ { \prime } )$, where $D _ { R } ^ { \prime } : = D ^ { \prime } \cap B _ { R }$ and $B _ { R } = \{ x : | x | \leq R \}$ is a ball which contains $D$. Existence and uniqueness of the scattering solution have been proved and the limiting-absorption principle has been established. Finally, if $\Gamma u = u _ { N } + h u$, then the same results are obtained under the assumptions of compactness of the embeddings $i _ { 1 } : H ^ { 1 } ( D ^ { \prime R} ) \rightarrow L ^ { 2 } ( D _ { R } ^ { \prime } )$ and $i _ { 2 } : H ^ { 1 } ( D _ { R } ^ { \prime } ) \rightarrow L ^ { 2 } ( S )$, where $S$ is equipped with the $( n - 1 )$-dimensional [[Hausdorff measure|Hausdorff measure]] and $H ^ { 1 } ( D _ { R } ^ { \prime } )$ is the Sobolev space. |
− | For example, the embedding | + | For example, the embedding $i_1$ is compact for C-domains, that is, domains whose boundary can be covered by finitely many sets open in $\mathbf{R} ^ { 3 }$ and on each of these sets the equation of $S$ in a local coordinate system can be written as $x _ { 3 } = f ( x ^ { \prime } ) , x ^ { \prime } = ( x _ { 1 } , x _ { 2 } )$, where $f ( x ^ { \prime } )$ is a [[Continuous function|continuous function]]. |
− | The scattering problem for one obstacle, small in comparison with the wavelength ( | + | The scattering problem for one obstacle, small in comparison with the wavelength ($k a \ll 1$, where $a$ is the diameter of the small obstacle), for many such bodies (the number $J$ of bodies of order $20$), and in a medium consisting of many such bodies randomly distributed in the space, has been studied in [[#References|[a7]]] and later in [[#References|[a16]]]. Formulas for the scattering amplitude for acoustic and electromagnetic wave scattering by small bodies of arbitrary shapes are derived in [[#References|[a16]]]. |
These formulas for acoustic wave scattering on a single small body, containing the origin, are | These formulas for acoustic wave scattering on a single small body, containing the origin, are | ||
− | + | \begin{equation*} A ( \alpha ^ { \prime } , \alpha , k ) \equiv - \frac { C } { 4 \pi } , \text { if } \Gamma u = u , k a \ll 1, \end{equation*} | |
− | where | + | where $C$ is the electrical capacitance of the body $D$; |
− | + | \begin{equation*} A ( \alpha ^ { \prime } , \alpha , k ) \approx - \frac { k ^ { 2 } V } { 4 \pi } ( 1 + \beta _ { p q } \alpha _ { q } \alpha _ { p } ^ { \prime } ) \text { if } \Gamma u = u _ { N } , k a \ll 1, \end{equation*} | |
− | where over the repeated indices one sums up from | + | where over the repeated indices one sums up from $1$ to $3$, $v$ is the volume of $D$ and $\beta _ { p q } = \beta _ { q p }$ is the magnetic polarizability tensor; |
− | + | \begin{equation*} A ( \alpha ^ { \prime } , \alpha , k ) \approx - \frac { h | S | } { 4 \pi ( 1 + h | S | C ^ { - 1 } ) } \end{equation*} | |
− | + | \begin{equation*} \text{if} \ \Gamma u = u _ { N } + h u , k a \ll 1 , h =\text{const}, \end{equation*} | |
− | where | + | where $|S|$ is the area of the boundary $S$. |
− | The | + | The $S$-matrix for electromagnetic wave scattering by a small homogeneous body of arbitrary shape is: |
− | + | \begin{equation*} S = \frac { k ^ { 2 } V } { 4 \pi } \cdot \left( \begin{array} { c } { A B } \\ { C D } \end{array} \right), \end{equation*} | |
− | + | \begin{equation*} A = \mu _ { 0 } \beta _ { 11 } + \alpha _ { 22 } \operatorname { cos } \theta - \alpha _ { 32 } \operatorname { sin } \theta , B = \alpha _ { 21 } \operatorname { cos } \theta - \alpha _ { 31 } \operatorname { sin } \theta - \mu _ { 0 } \beta _ { 12 }, \end{equation*} | |
− | + | \begin{equation*} C = \alpha _ { 12 } - \mu _ { 0 } \beta _ { 21 } \operatorname { cos } \theta + \mu _ { 0 } \beta _ { 31 } \operatorname { sin } \theta , D = \alpha _ { 11 } + \mu _ { 0 } \beta _ { 22 } \operatorname { cos } \theta - \mu _ { 0 } \beta _ { 32 } \operatorname { sin } \theta, \end{equation*} | |
− | where | + | where $\beta _ { i j }$ and $\alpha _ { i j }$ are tensors of magnetic and electric polarizability and $\theta$ is the angle between the direction $e_3$ of the incident field and the direction of the scattered field; $\mu_0$ is the magnetic permeability of the medium in which the small body is embedded (cf. also [[Scattering matrix|Scattering matrix]]). |
− | Formulas for the tensors | + | Formulas for the tensors $\alpha _ { i j }$ and $\beta _ { i j }$ are derived in [[#References|[a7]]] and [[#References|[a16]]]. |
One can derive an equation for the average field in the medium which consists of many small obstacles (particles) randomly distributed in a region. This done in [[#References|[a16]]] and [[#References|[a6]]]. | One can derive an equation for the average field in the medium which consists of many small obstacles (particles) randomly distributed in a region. This done in [[#References|[a16]]] and [[#References|[a6]]]. | ||
Line 96: | Line 104: | ||
Three inverse obstacle scattering problems are of interest: | Three inverse obstacle scattering problems are of interest: | ||
− | ISP1) Given | + | ISP1) Given $A ( \alpha ^ { \prime } , \alpha_0 , k )$ for all $\alpha ^ { \prime } \in S ^ { 2 }$ and all $k > 0$, $\alpha _ { 0 } \in S ^ { 2 }$ being fixed, find $S$ and the boundary condition on $S$. |
− | ISP2) Given | + | ISP2) Given $A ( \alpha ^ { \prime } , \alpha , k _ { 0 } )$ for all $\alpha ^ { \prime } , \alpha \in S ^ { 2 } , k _ { 0 } > 0$ being fixed, find $S$ and the boundary condition on $S$. |
− | ISP3) Given | + | ISP3) Given $A ( \alpha ^ { \prime } , \alpha _ { 0 } , k _ { 0 } )$ for all $\alpha ^ { \prime } \in S ^ { 2 } , \alpha _ { 0 } \in S ^ { 2 }$ and $k _ { 0 } > 0$ being fixed, find $S$. |
− | Uniqueness of the solution to ISP1) (for | + | Uniqueness of the solution to ISP1) (for $\Gamma u = 0$) was first proved by M. Schiffer (1964), whose argument is given in [[#References|[a17]]]. |
Uniqueness of the solution to ISP2) was first proved by A.G. Ramm (1985) and his proof is given in [[#References|[a17]]]. | Uniqueness of the solution to ISP2) was first proved by A.G. Ramm (1985) and his proof is given in [[#References|[a17]]]. | ||
Line 110: | Line 118: | ||
One can consider inverse obstacle scattering for penetrable obstacles [[#References|[a14]]]. | One can consider inverse obstacle scattering for penetrable obstacles [[#References|[a14]]]. | ||
− | Schiffer's proof of the uniqueness theorem is based on a result saying that the spectrum of the Dirichlet Laplacian in any bounded domain is discrete. This result follows from the compactness of the embedding | + | Schiffer's proof of the uniqueness theorem is based on a result saying that the spectrum of the Dirichlet Laplacian in any bounded domain is discrete. This result follows from the compactness of the embedding $i : \overline { H } ^ { 1 } ( D ) \rightarrow L ^ { 2 } ( D )$ for any bounded domain (without any assumptions on the smoothness of its boundary $S$), $\overline { H } ^ { 1 } ( D )$ is the [[Sobolev space|Sobolev space]] which is the closure in $H ^ { 1 } ( D )$ of $C ^ { \infty_0 }(D)$. It is known [[#References|[a5]]] that $i : H ^ { 1 } ( D ) \rightarrow L ^ { 2 } ( D )$ is not compact for rough domains (it is compact for Lipschitz domains, for domains satisfying the cone condition, for C-domains, and for E-domains, i.e. domains for which a bounded extension operator from $H ^ { 1 } ( D )$ into $H ^ { 1 } ( \mathbf{R} ^ { 3 } )$ exists, see [[#References|[a5]]]). |
− | Therefore the spectrum of a Neumann Laplacian in such a rough domain for which the imbedding | + | Therefore the spectrum of a Neumann Laplacian in such a rough domain for which the imbedding $i : H ^ { 1 } ( D ) \rightarrow L ^ { 2 } ( D )$ is not compact is not discrete. One way out is given in [[#References|[a12]]] and another one in [[#References|[a11]]]. |
− | Suppose that | + | Suppose that $A _ { 1 } ( \alpha ^ { \prime } , \alpha , k _ { 0 } )$ and $A _ { 2 } ( \alpha ^ { \prime } , \alpha , k _ { 0 } )$ are scattering amplitudes at a fixed $k = k _ { 0 } > 0$ for two obstacles and let $\operatorname { sup } _ { \alpha ^ { \prime } , \alpha \in S ^ { 2 } } | A _ { 1 } - A _ { 2 } | < \delta$. |
− | Assume that the boundaries of the two obstacles are | + | Assume that the boundaries of the two obstacles are $C^{ 2 , \lambda }$, $0 < \lambda \leq 1$, that is, in local coordinates these boundaries $S _ { m }$, $m = 1,2$, have equations $x _ { 3 } = f _ { m } ( x _ { 1 } , x _ { 2 } )$, where $f \in C ^ { 2 , \lambda }$, $m = 1,2$, $\|\, f _ { m } \| _ { C ^{ 2 , \lambda}} \leq c _ { 0 } = \text{const } > 0$. |
− | Let | + | Let $\rho$ denote the Hausdorff distance between $S _ { 1 }$ and $S _ { 2 }$: $\rho = \operatorname { sup } _ { x \in S _ { 1 } } \text { inf }_{ y \in S _ { 2 } } | x - y |$. |
The basic stability result [[#References|[a10]]] is: | The basic stability result [[#References|[a10]]] is: | ||
− | + | \begin{equation*} \rho \leq c _ { 1 } \left( \frac { \operatorname { ln } | \operatorname { ln } \delta | } { | \operatorname { ln } \delta | } \right) ^ { c _ { 2 } }, \end{equation*} | |
− | where | + | where $c_1$ and $c_2$ are positive constants. |
− | In [[#References|[a10]]] a yet open problem (as of 2000) is formulated: Derive an inversion formula for finding | + | In [[#References|[a10]]] a yet open problem (as of 2000) is formulated: Derive an inversion formula for finding $S$, given the data $A ( \alpha ^ { \prime } , \alpha ) : = A ( \alpha ^ { \prime } , \alpha , k _ { 0 } )$, $\forall \alpha ^ { \prime } , \alpha \in S ^ { 2 }$. |
− | The existence of such a formula is proved in [[#References|[a10]]]: if | + | The existence of such a formula is proved in [[#References|[a10]]]: if $\chi ( x ) : = \chi _ { D } ( x )$ is the characteristic function of $D$ and $\tilde { \chi } ( \xi )$ is its [[Fourier transform|Fourier transform]], then there exists a function $v _ { \varepsilon } ( \alpha , \theta ) \in L ^ { 2 } ( S ^ { 2 } )$ such that |
− | + | \begin{equation*} \tilde { \chi } ( \xi ) = \frac { 8 \pi } { \xi ^ { 2 } } \operatorname { lim } _ { \varepsilon \downarrow 0 } \int _ { S ^ { 2 } } A ( \theta ^ { \prime } , \alpha ) v _ { \varepsilon } ( \alpha , \theta ) d \alpha, \end{equation*} | |
− | where | + | where $\theta , \theta ^ { \prime } \in M$, $\theta ^ { \prime } - \theta = \xi$, $\xi \in \mathbf{R} ^ { 3 }$ is an arbitrary vector. A formula for calculating $A ( \theta ^ { \prime } , \alpha )$, $\theta ^ { \prime } \in M$, given $A ( \alpha ^ { \prime } , \alpha )$, $\forall \alpha ^ { \prime } , \alpha \in S ^ { 2 }$, is derived in [[#References|[a10]]]. The problem is to construct $v _ { \varepsilon } ( \alpha , \theta )$ from the data $A ( \alpha ^ { \prime } , \alpha )$ algorithmically. For inverse potential scattering this is done in [[#References|[a15]]]. |
====References==== | ====References==== | ||
− | <table>< | + | <table><tr><td valign="top">[a1]</td> <td valign="top"> F. Bass, I. Fuks, "Wave scattering from statistically rough surfaces" , Pergamon (1979)</td></tr><tr><td valign="top">[a2]</td> <td valign="top"> D. Colton, R. Kress, "Integral equations methods in scattering theory" , Wiley (1983)</td></tr><tr><td valign="top">[a3]</td> <td valign="top"> V. Kupradze, "Randwertaufgaben der Schwingungstheorie und Integralgleichungen" , DVW (1956)</td></tr><tr><td valign="top">[a4]</td> <td valign="top"> R. Leis, "Initial boundary value problems in mathematical physics" , New York (1986)</td></tr><tr><td valign="top">[a5]</td> <td valign="top"> V. Maz'ja, "Sobolev spaces" , Springer (1985)</td></tr><tr><td valign="top">[a6]</td> <td valign="top"> V. Marchenko, E. Khruslov, "Boundary value problems in domains with granulated boundary" , Nauk. Dumka, Kiev (1974) (In Russian)</td></tr><tr><td valign="top">[a7]</td> <td valign="top"> A.G. Ramm, "Theory and applications of some new classes of integral equations" , Springer (1980)</td></tr><tr><td valign="top">[a8]</td> <td valign="top"> A.G. Ramm, "Necessary and sufficient condition for a scattering amplitude to correspond to a spherically symmetric scatterer" ''Appl. Math. Lett.'' , '''2''' (1989) pp. 263–265</td></tr><tr><td valign="top">[a9]</td> <td valign="top"> A.G. Ramm, "Stability estimates for obstacle scattering" ''J. Math. Anal. Appl.'' , '''188''' : 3 (1994) pp. 743–751</td></tr><tr><td valign="top">[a10]</td> <td valign="top"> A.G. Ramm, "Stability of the solution to inverse obstacle scattering problem" ''J. Inverse Ill-Posed Probl.'' , '''2''' : 3 (1994) pp. 269–275</td></tr><tr><td valign="top">[a11]</td> <td valign="top"> A.G. Ramm, "New method for proving uniqueness theorems for obstacle inverse scattering problems" ''Appl. Math. Lett.'' , '''6''' : 6 (1993) pp. 19–22</td></tr><tr><td valign="top">[a12]</td> <td valign="top"> A.G. Ramm, "Uniqueness theorems for inverse obstacle scattering problems in Lipschitz domains" ''Applic. Anal.'' , '''59''' (1995) pp. 377–383</td></tr><tr><td valign="top">[a13]</td> <td valign="top"> A.G. Ramm, M. Sammartino, "Existence and uniqueness of the scattering solutions in the exterior of rough domains" A.G. Ramm (ed.) P.N. Shivakumar (ed.) A.V. Strauss (ed.) , ''Operator Theory and Its Applications'' , ''Fields Inst. Commun.'' , '''25''' , Amer. Math. Soc. (2000) pp. 457–472</td></tr><tr><td valign="top">[a14]</td> <td valign="top"> A.G. Ramm, P. Pang, G. Yan, "A uniqueness result for the inverse transmission problem" ''Internat. J. Appl. Math.'' , '''2''' : 5 (2000) pp. 625–634</td></tr><tr><td valign="top">[a15]</td> <td valign="top"> A.G. Ramm, "Stability estimates in inverse scattering" ''Acta Applic. Math.'' , '''28''' : 1 (1992) pp. 1–42</td></tr><tr><td valign="top">[a16]</td> <td valign="top"> A.G. Ramm, "Iterative methods for calculating the static fields and wave scattering by small bodies" , Springer (1982)</td></tr><tr><td valign="top">[a17]</td> <td valign="top"> A.G. Ramm, "Scattering by obstacles" , Reidel (1986)</td></tr><tr><td valign="top">[a18]</td> <td valign="top"> A.G. Ramm, "Multidimensional inverse scattering problems" , Longman/Wiley (1992)</td></tr><tr><td valign="top">[a19]</td> <td valign="top"> A.G. Ramm, "Spectral properties of the Schroedinger operator in some domains with infinite boundaries" ''Soviet Math. Dokl.'' , '''152''' (1963) pp. 282–285</td></tr><tr><td valign="top">[a20]</td> <td valign="top"> A.G. Ramm, "Reconstruction of the domain shape from the scattering amplitude" ''Radiotech. i Electron.'' , '''11''' (1965) pp. 2068–2070</td></tr><tr><td valign="top">[a21]</td> <td valign="top"> A.G. Ramm, "Approximate formulas for tensor polarizability and capacitance of bodies of arbitrary shape and its applications" ''Soviet Phys. Dokl.'' , '''195''' (1970) pp. 1303–1306</td></tr><tr><td valign="top">[a22]</td> <td valign="top"> A.G. Ramm, "Electromagnetic wave scattering by small bodies of an arbitrary shape" V. Varadan (ed.) , ''Acoustic, Electromagnetic and Elastic Scattering: Focus on T-Matrix Approach'' , Pergamon (1980) pp. 537–546</td></tr><tr><td valign="top">[a23]</td> <td valign="top"> A.G. Ramm, "On inverse diffraction problem" ''J. Math. Anal. Appl.'' , '''103''' (1984) pp. 139–147</td></tr><tr><td valign="top">[a24]</td> <td valign="top"> F. Ursell, "On the exterior problems of acoustics" ''Proc. Cambridge Philos. Soc.'' , '''74''' (1973) pp. 117–125 (See also: 84 (1978), 545-548)</td></tr><tr><td valign="top">[a25]</td> <td valign="top"> I. Vekua, "Metaharmonic functions" ''Trudy Tbil. Math. Inst.'' , '''12''' (1943) pp. 105–174 (In Russian)</td></tr></table> |
Latest revision as of 16:46, 1 July 2020
Let $D \subset \mathbf{R} ^ { 3 }$ be a bounded domain with boundary $S$. A large amount of literature, going back to the mid-1930s, deals with wave scattering by obstacles when $S$ is smooth, for example, a $C^{ 1 , \lambda }$-surface, $0 < \lambda \leq 1$. (See [a3], [a17], [a2].)
The obstacle scattering problem consists of finding the solution to the equation
\begin{equation} \tag{a1} ( \nabla ^ { 2 } + k ^ { 2 } ) u = 0 \text { in } D ^ { \prime } : = \mathbf{R} ^ { 3 } \backslash D , k > 0, \end{equation}
\begin{equation} \tag{a2} \Gamma u = 0 \text { on } S, \end{equation}
\begin{equation} \tag{a3} u = e ^ { i k \alpha x } + v , \operatorname { lim } _ { r \rightarrow \infty } \int _ { | s | = r } \left| \frac { \partial v } { \partial | x | } - i k v \right| ^ { 2 } d s = 0. \end{equation}
Here $\Gamma u = u$ ( the Dirichlet condition), or $\Gamma u = u _ { N }$ (the Neumann condition) or $\Gamma u = u _ { N } + h ( s ) u$ (the Robin condition), where $N$ is the unit normal to $S$ pointing into $D ^ { \prime }$ and $h ( s )$ is a continuous function (cf. also Dirichlet boundary conditions; Neumann boundary conditions). Condition (a3) is the radiation condition, which selects a unique solution to problem (a1)–(a3). In (a3), $\alpha \in S ^ { 2 }$ is a given unit vector, the direction of the incident plane wave $e ^ { i k \alpha x}$, and $k > 0$ is the wave number.
The scattering problem (a1)–(a3) has a solution and the solution is unique. This basic result was proved originally by the integral equations method [a3].
There are many different types of integral equations which allow one to study problem (a1)–(a3) (see [a17], where most of these equations are derived).
The scattering field $v$ in (a3) has the following asymptotics:
\begin{equation} \tag{a4} v ( x , \alpha , k ) = \frac { e ^ { i k r } } { r } A ( \alpha ^ { \prime } , \alpha , k ) + o \left( \frac { 1 } { r } \right), \end{equation}
\begin{equation*} r : = | x | \rightarrow \infty , \alpha ^ { \prime } : = \frac { x } { r }. \end{equation*}
The function $A ( \alpha ^ { \prime } , \alpha , k )$ is called the scattering amplitude. This function has the following properties [a17]:
i) realness: $A ( \alpha ^ { \prime } , \alpha , - k ) = \overline { A ( \alpha ^ { \prime } , \alpha , - k ) }$, $k > 0$, the bar stands for complex conjugation;
ii) reciprocity: $A ( \alpha ^ { \prime } , \alpha , k ) = A ( - \alpha , - \alpha ^ { \prime } , k )$;
iii) unitarity:
\begin{equation*} \frac { A ( \alpha ^ { \prime } , \alpha , k ) - \overline { A ( \alpha , \alpha ^ { \prime } , k ) } } { 2 i } = \end{equation*}
\begin{equation*} = \frac { k } { 4 \pi } \int _ { S ^ { 2 } } f ( \alpha ^ { \prime } , \beta , k ) \overline { f ( \alpha , \beta , k ) } d \beta , \end{equation*}
and its consequence, which is called the optical theorem:
\begin{equation*} \operatorname { Im } A ( \alpha , \alpha , k ) = \frac { k } { 4 \pi } \int _ { S ^ { 2 } } | f ( \alpha , \beta , k ) | ^ { 2 } d \beta : = \frac { k \sigma ( \alpha ) } { 4 \pi }, \end{equation*}
where $\sigma ( \alpha ) : = \int _ { S ^ { 2 } } | f ( \alpha , \beta , k ) | ^ { 2 } d \beta$ is called the cross-section.
The function $A ( \alpha ^ { \prime } , \alpha , k )$ is analytic with respect to $k$ in $\mathbf{C} _ { + } : = \{ k : \operatorname { Im } k \geq 0 \}$ and meromorphic in $\mathbf{C}$; it is analytic with respect to $\alpha ^ { \prime }$ and $\alpha$ on the variety $M : = \left\{ \theta : \theta \in \mathbf{C} ^ { 3 } , \theta \cdot \theta = 1 \right\}$, where $\theta . w : = \sum ^ { 3 _{ j = 1}} \theta _ { j } w _ { j }$, see [a17], [a18] (cf. also Analytic function; Meromorphic function).
Necessary and sufficient conditions for a scatterer to be spherically symmetric is: $A ( \alpha ^ { \prime } , \alpha , k ) = A ( \alpha ^ { \prime } . \alpha , k )$, where $\alpha ^ { \prime } . \alpha$ is the dot product [a18], [a8].
The solution $u ( x , \alpha , k )$ to (a1)–(a3) is called the scattering solution. Any $f ( x ) \in L ^ { 2 } ( D ^ { \prime } )$ can be expanded with respect to scattering solutions:
\begin{equation*} f ( x ) = \frac { 1 } { ( 2 \pi ) ^ { 3 / 2 } } \int _ { {\bf R} ^ { 3 } } \hat { f } ( \xi ) u ( x , \xi ) d \xi , \xi : = k\alpha, \end{equation*}
\begin{equation*} \widehat { f } ( \xi ) = \frac { 1 } { ( 2 \pi ) ^ { 3 / 2 } } \int _ { D ^ { \prime } } f ( x ) \overline { u ( x , \xi ) } d x : = \mathcal{F} f. \end{equation*}
The operator $\mathcal{F} : L ^ { 2 } ( D ^ { \prime } ) \rightarrow L ^ { 2 } ( \mathbf{R} ^ { 3 } )$ is unitary: $\| \mathcal{F} f \| _ { L } 2 (\mathbf{R} ^ { 3 )} = \| f \| _ { L ^ { 2 } ( D ^ { \prime } ) }$, $\mathcal{F} ^ { * } = \mathcal{F} ^ { - 1 }$, see [a17] (cf. also Unitary operator).
The above results hold in ${\bf R} ^ { n }$ with odd $n$. In ${\bf R} ^ { n }$ with even $n$ the scattering amplitude $A ( \alpha ^ { \prime } , \alpha , k )$ as a function of complex $k$ has a logarithmic branch point at $k = 0$.
The scattering problem with minimal assumptions on the smoothness of the boundary $S$ is studied in [a13]. If $\Gamma u = u$, then existence and uniqueness of the scattering solution have been proved without any assumption on the smoothness of the boundary $S$ of a bounded domain $D$. In this case a weak formulation of problem (a1)–(a3) is considered and the limit-absorption principle has been proved.
If $\Gamma u = u _ { N }$, then again a weak formulation of (a1)–(a3) is considered and the only assumption on the smoothness of the boundary $S$ is compactness of the embedding $H ^ { 1 } ( D _ { R } ^ { \prime } )$ into $L ^ { 2 } ( D _ { R } ^ { \prime } )$, where $D _ { R } ^ { \prime } : = D ^ { \prime } \cap B _ { R }$ and $B _ { R } = \{ x : | x | \leq R \}$ is a ball which contains $D$. Existence and uniqueness of the scattering solution have been proved and the limiting-absorption principle has been established. Finally, if $\Gamma u = u _ { N } + h u$, then the same results are obtained under the assumptions of compactness of the embeddings $i _ { 1 } : H ^ { 1 } ( D ^ { \prime R} ) \rightarrow L ^ { 2 } ( D _ { R } ^ { \prime } )$ and $i _ { 2 } : H ^ { 1 } ( D _ { R } ^ { \prime } ) \rightarrow L ^ { 2 } ( S )$, where $S$ is equipped with the $( n - 1 )$-dimensional Hausdorff measure and $H ^ { 1 } ( D _ { R } ^ { \prime } )$ is the Sobolev space.
For example, the embedding $i_1$ is compact for C-domains, that is, domains whose boundary can be covered by finitely many sets open in $\mathbf{R} ^ { 3 }$ and on each of these sets the equation of $S$ in a local coordinate system can be written as $x _ { 3 } = f ( x ^ { \prime } ) , x ^ { \prime } = ( x _ { 1 } , x _ { 2 } )$, where $f ( x ^ { \prime } )$ is a continuous function.
The scattering problem for one obstacle, small in comparison with the wavelength ($k a \ll 1$, where $a$ is the diameter of the small obstacle), for many such bodies (the number $J$ of bodies of order $20$), and in a medium consisting of many such bodies randomly distributed in the space, has been studied in [a7] and later in [a16]. Formulas for the scattering amplitude for acoustic and electromagnetic wave scattering by small bodies of arbitrary shapes are derived in [a16].
These formulas for acoustic wave scattering on a single small body, containing the origin, are
\begin{equation*} A ( \alpha ^ { \prime } , \alpha , k ) \equiv - \frac { C } { 4 \pi } , \text { if } \Gamma u = u , k a \ll 1, \end{equation*}
where $C$ is the electrical capacitance of the body $D$;
\begin{equation*} A ( \alpha ^ { \prime } , \alpha , k ) \approx - \frac { k ^ { 2 } V } { 4 \pi } ( 1 + \beta _ { p q } \alpha _ { q } \alpha _ { p } ^ { \prime } ) \text { if } \Gamma u = u _ { N } , k a \ll 1, \end{equation*}
where over the repeated indices one sums up from $1$ to $3$, $v$ is the volume of $D$ and $\beta _ { p q } = \beta _ { q p }$ is the magnetic polarizability tensor;
\begin{equation*} A ( \alpha ^ { \prime } , \alpha , k ) \approx - \frac { h | S | } { 4 \pi ( 1 + h | S | C ^ { - 1 } ) } \end{equation*}
\begin{equation*} \text{if} \ \Gamma u = u _ { N } + h u , k a \ll 1 , h =\text{const}, \end{equation*}
where $|S|$ is the area of the boundary $S$.
The $S$-matrix for electromagnetic wave scattering by a small homogeneous body of arbitrary shape is:
\begin{equation*} S = \frac { k ^ { 2 } V } { 4 \pi } \cdot \left( \begin{array} { c } { A B } \\ { C D } \end{array} \right), \end{equation*}
\begin{equation*} A = \mu _ { 0 } \beta _ { 11 } + \alpha _ { 22 } \operatorname { cos } \theta - \alpha _ { 32 } \operatorname { sin } \theta , B = \alpha _ { 21 } \operatorname { cos } \theta - \alpha _ { 31 } \operatorname { sin } \theta - \mu _ { 0 } \beta _ { 12 }, \end{equation*}
\begin{equation*} C = \alpha _ { 12 } - \mu _ { 0 } \beta _ { 21 } \operatorname { cos } \theta + \mu _ { 0 } \beta _ { 31 } \operatorname { sin } \theta , D = \alpha _ { 11 } + \mu _ { 0 } \beta _ { 22 } \operatorname { cos } \theta - \mu _ { 0 } \beta _ { 32 } \operatorname { sin } \theta, \end{equation*}
where $\beta _ { i j }$ and $\alpha _ { i j }$ are tensors of magnetic and electric polarizability and $\theta$ is the angle between the direction $e_3$ of the incident field and the direction of the scattered field; $\mu_0$ is the magnetic permeability of the medium in which the small body is embedded (cf. also Scattering matrix).
Formulas for the tensors $\alpha _ { i j }$ and $\beta _ { i j }$ are derived in [a7] and [a16].
One can derive an equation for the average field in the medium which consists of many small obstacles (particles) randomly distributed in a region. This done in [a16] and [a6].
Scattering by random surfaces is studied in [a1].
Inverse obstacle scattering.
Three inverse obstacle scattering problems are of interest:
ISP1) Given $A ( \alpha ^ { \prime } , \alpha_0 , k )$ for all $\alpha ^ { \prime } \in S ^ { 2 }$ and all $k > 0$, $\alpha _ { 0 } \in S ^ { 2 }$ being fixed, find $S$ and the boundary condition on $S$.
ISP2) Given $A ( \alpha ^ { \prime } , \alpha , k _ { 0 } )$ for all $\alpha ^ { \prime } , \alpha \in S ^ { 2 } , k _ { 0 } > 0$ being fixed, find $S$ and the boundary condition on $S$.
ISP3) Given $A ( \alpha ^ { \prime } , \alpha _ { 0 } , k _ { 0 } )$ for all $\alpha ^ { \prime } \in S ^ { 2 } , \alpha _ { 0 } \in S ^ { 2 }$ and $k _ { 0 } > 0$ being fixed, find $S$.
Uniqueness of the solution to ISP1) (for $\Gamma u = 0$) was first proved by M. Schiffer (1964), whose argument is given in [a17].
Uniqueness of the solution to ISP2) was first proved by A.G. Ramm (1985) and his proof is given in [a17].
A uniqueness theorem for ISP3) has not yet (2000) been proved: it is an open problem to prove (or disprove the existence of) such a theorem.
One can consider inverse obstacle scattering for penetrable obstacles [a14].
Schiffer's proof of the uniqueness theorem is based on a result saying that the spectrum of the Dirichlet Laplacian in any bounded domain is discrete. This result follows from the compactness of the embedding $i : \overline { H } ^ { 1 } ( D ) \rightarrow L ^ { 2 } ( D )$ for any bounded domain (without any assumptions on the smoothness of its boundary $S$), $\overline { H } ^ { 1 } ( D )$ is the Sobolev space which is the closure in $H ^ { 1 } ( D )$ of $C ^ { \infty_0 }(D)$. It is known [a5] that $i : H ^ { 1 } ( D ) \rightarrow L ^ { 2 } ( D )$ is not compact for rough domains (it is compact for Lipschitz domains, for domains satisfying the cone condition, for C-domains, and for E-domains, i.e. domains for which a bounded extension operator from $H ^ { 1 } ( D )$ into $H ^ { 1 } ( \mathbf{R} ^ { 3 } )$ exists, see [a5]).
Therefore the spectrum of a Neumann Laplacian in such a rough domain for which the imbedding $i : H ^ { 1 } ( D ) \rightarrow L ^ { 2 } ( D )$ is not compact is not discrete. One way out is given in [a12] and another one in [a11].
Suppose that $A _ { 1 } ( \alpha ^ { \prime } , \alpha , k _ { 0 } )$ and $A _ { 2 } ( \alpha ^ { \prime } , \alpha , k _ { 0 } )$ are scattering amplitudes at a fixed $k = k _ { 0 } > 0$ for two obstacles and let $\operatorname { sup } _ { \alpha ^ { \prime } , \alpha \in S ^ { 2 } } | A _ { 1 } - A _ { 2 } | < \delta$.
Assume that the boundaries of the two obstacles are $C^{ 2 , \lambda }$, $0 < \lambda \leq 1$, that is, in local coordinates these boundaries $S _ { m }$, $m = 1,2$, have equations $x _ { 3 } = f _ { m } ( x _ { 1 } , x _ { 2 } )$, where $f \in C ^ { 2 , \lambda }$, $m = 1,2$, $\|\, f _ { m } \| _ { C ^{ 2 , \lambda}} \leq c _ { 0 } = \text{const } > 0$.
Let $\rho$ denote the Hausdorff distance between $S _ { 1 }$ and $S _ { 2 }$: $\rho = \operatorname { sup } _ { x \in S _ { 1 } } \text { inf }_{ y \in S _ { 2 } } | x - y |$.
The basic stability result [a10] is:
\begin{equation*} \rho \leq c _ { 1 } \left( \frac { \operatorname { ln } | \operatorname { ln } \delta | } { | \operatorname { ln } \delta | } \right) ^ { c _ { 2 } }, \end{equation*}
where $c_1$ and $c_2$ are positive constants.
In [a10] a yet open problem (as of 2000) is formulated: Derive an inversion formula for finding $S$, given the data $A ( \alpha ^ { \prime } , \alpha ) : = A ( \alpha ^ { \prime } , \alpha , k _ { 0 } )$, $\forall \alpha ^ { \prime } , \alpha \in S ^ { 2 }$.
The existence of such a formula is proved in [a10]: if $\chi ( x ) : = \chi _ { D } ( x )$ is the characteristic function of $D$ and $\tilde { \chi } ( \xi )$ is its Fourier transform, then there exists a function $v _ { \varepsilon } ( \alpha , \theta ) \in L ^ { 2 } ( S ^ { 2 } )$ such that
\begin{equation*} \tilde { \chi } ( \xi ) = \frac { 8 \pi } { \xi ^ { 2 } } \operatorname { lim } _ { \varepsilon \downarrow 0 } \int _ { S ^ { 2 } } A ( \theta ^ { \prime } , \alpha ) v _ { \varepsilon } ( \alpha , \theta ) d \alpha, \end{equation*}
where $\theta , \theta ^ { \prime } \in M$, $\theta ^ { \prime } - \theta = \xi$, $\xi \in \mathbf{R} ^ { 3 }$ is an arbitrary vector. A formula for calculating $A ( \theta ^ { \prime } , \alpha )$, $\theta ^ { \prime } \in M$, given $A ( \alpha ^ { \prime } , \alpha )$, $\forall \alpha ^ { \prime } , \alpha \in S ^ { 2 }$, is derived in [a10]. The problem is to construct $v _ { \varepsilon } ( \alpha , \theta )$ from the data $A ( \alpha ^ { \prime } , \alpha )$ algorithmically. For inverse potential scattering this is done in [a15].
References
[a1] | F. Bass, I. Fuks, "Wave scattering from statistically rough surfaces" , Pergamon (1979) |
[a2] | D. Colton, R. Kress, "Integral equations methods in scattering theory" , Wiley (1983) |
[a3] | V. Kupradze, "Randwertaufgaben der Schwingungstheorie und Integralgleichungen" , DVW (1956) |
[a4] | R. Leis, "Initial boundary value problems in mathematical physics" , New York (1986) |
[a5] | V. Maz'ja, "Sobolev spaces" , Springer (1985) |
[a6] | V. Marchenko, E. Khruslov, "Boundary value problems in domains with granulated boundary" , Nauk. Dumka, Kiev (1974) (In Russian) |
[a7] | A.G. Ramm, "Theory and applications of some new classes of integral equations" , Springer (1980) |
[a8] | A.G. Ramm, "Necessary and sufficient condition for a scattering amplitude to correspond to a spherically symmetric scatterer" Appl. Math. Lett. , 2 (1989) pp. 263–265 |
[a9] | A.G. Ramm, "Stability estimates for obstacle scattering" J. Math. Anal. Appl. , 188 : 3 (1994) pp. 743–751 |
[a10] | A.G. Ramm, "Stability of the solution to inverse obstacle scattering problem" J. Inverse Ill-Posed Probl. , 2 : 3 (1994) pp. 269–275 |
[a11] | A.G. Ramm, "New method for proving uniqueness theorems for obstacle inverse scattering problems" Appl. Math. Lett. , 6 : 6 (1993) pp. 19–22 |
[a12] | A.G. Ramm, "Uniqueness theorems for inverse obstacle scattering problems in Lipschitz domains" Applic. Anal. , 59 (1995) pp. 377–383 |
[a13] | A.G. Ramm, M. Sammartino, "Existence and uniqueness of the scattering solutions in the exterior of rough domains" A.G. Ramm (ed.) P.N. Shivakumar (ed.) A.V. Strauss (ed.) , Operator Theory and Its Applications , Fields Inst. Commun. , 25 , Amer. Math. Soc. (2000) pp. 457–472 |
[a14] | A.G. Ramm, P. Pang, G. Yan, "A uniqueness result for the inverse transmission problem" Internat. J. Appl. Math. , 2 : 5 (2000) pp. 625–634 |
[a15] | A.G. Ramm, "Stability estimates in inverse scattering" Acta Applic. Math. , 28 : 1 (1992) pp. 1–42 |
[a16] | A.G. Ramm, "Iterative methods for calculating the static fields and wave scattering by small bodies" , Springer (1982) |
[a17] | A.G. Ramm, "Scattering by obstacles" , Reidel (1986) |
[a18] | A.G. Ramm, "Multidimensional inverse scattering problems" , Longman/Wiley (1992) |
[a19] | A.G. Ramm, "Spectral properties of the Schroedinger operator in some domains with infinite boundaries" Soviet Math. Dokl. , 152 (1963) pp. 282–285 |
[a20] | A.G. Ramm, "Reconstruction of the domain shape from the scattering amplitude" Radiotech. i Electron. , 11 (1965) pp. 2068–2070 |
[a21] | A.G. Ramm, "Approximate formulas for tensor polarizability and capacitance of bodies of arbitrary shape and its applications" Soviet Phys. Dokl. , 195 (1970) pp. 1303–1306 |
[a22] | A.G. Ramm, "Electromagnetic wave scattering by small bodies of an arbitrary shape" V. Varadan (ed.) , Acoustic, Electromagnetic and Elastic Scattering: Focus on T-Matrix Approach , Pergamon (1980) pp. 537–546 |
[a23] | A.G. Ramm, "On inverse diffraction problem" J. Math. Anal. Appl. , 103 (1984) pp. 139–147 |
[a24] | F. Ursell, "On the exterior problems of acoustics" Proc. Cambridge Philos. Soc. , 74 (1973) pp. 117–125 (See also: 84 (1978), 545-548) |
[a25] | I. Vekua, "Metaharmonic functions" Trudy Tbil. Math. Inst. , 12 (1943) pp. 105–174 (In Russian) |
Obstacle scattering. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Obstacle_scattering&oldid=49999