Namespaces
Variants
Actions

Difference between revisions of "Tomita-Takesaki theory"

From Encyclopedia of Mathematics
Jump to: navigation, search
m (AUTOMATIC EDIT (latexlist): Replaced 76 formulas out of 76 by TEX code with an average confidence of 2.0 and a minimal confidence of 2.0.)
 
Line 1: Line 1:
M. Tomita [[#References|[a4]]] defined the notion of a left Hilbert algebra as follows: An involutive algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120150/t1201501.png" /> over the field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120150/t1201502.png" /> of complex numbers, with involution <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120150/t1201503.png" />, that admits an inner product <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120150/t1201504.png" /> satisfying the following conditions:
+
<!--This article has been texified automatically. Since there was no Nroff source code for this article,
 +
the semi-automatic procedure described at https://encyclopediaofmath.org/wiki/User:Maximilian_Janisch/latexlist
 +
was used.
 +
If the TeX and formula formatting is correct, please remove this message and the {{TEX|semi-auto}} category.
  
i) the mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120150/t1201505.png" /> is continuous for every <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120150/t1201506.png" />;
+
Out of 76 formulas, 76 were replaced by TEX code.-->
  
ii) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120150/t1201507.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120150/t1201508.png" />;
+
{{TEX|semi-auto}}{{TEX|done}}
 +
M. Tomita [[#References|[a4]]] defined the notion of a left Hilbert algebra as follows: An involutive algebra $\mathcal{A}$ over the field $\mathbf{C}$ of complex numbers, with involution $\xi \in \mathcal{A} \mapsto \xi ^ { \# } \in \mathcal{A}$, that admits an inner product $( \xi | \eta )$ satisfying the following conditions:
  
iii) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120150/t1201509.png" /> is total in the Hilbert space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120150/t12015010.png" /> obtained by completion of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120150/t12015011.png" />.
+
i) the mapping $\eta \in \mathcal{A} \mapsto \xi \eta \in \mathcal{A}$ is continuous for every $\xi \in \mathcal{A}$;
  
iv) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120150/t12015012.png" /> is a closeable conjugate-linear operator in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120150/t12015013.png" />. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120150/t12015014.png" /> be a left Hilbert algebra in a [[Hilbert space|Hilbert space]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120150/t12015015.png" />. For any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120150/t12015016.png" />, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120150/t12015017.png" /> denote the unique continuous linear operator on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120150/t12015018.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120150/t12015019.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120150/t12015020.png" />. The [[Von Neumann algebra|von Neumann algebra]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120150/t12015021.png" /> generated by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120150/t12015022.png" /> is called the left von Neumann algebra of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120150/t12015023.png" />. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120150/t12015024.png" /> be the closure of the mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120150/t12015025.png" /> and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120150/t12015026.png" /> be the polar decomposition of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120150/t12015027.png" />. Then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120150/t12015028.png" /> is an isometric involution and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120150/t12015029.png" /> is a non-singular positive [[Self-adjoint operator|self-adjoint operator]] in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120150/t12015030.png" /> satisfying <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120150/t12015031.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120150/t12015032.png" />; <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120150/t12015033.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120150/t12015034.png" /> are called the modular operator and the modular conjugation operator of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120150/t12015035.png" />, respectively. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120150/t12015036.png" /> denote the set of vectors <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120150/t12015037.png" /> such that the mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120150/t12015038.png" /> is continuous. For any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120150/t12015039.png" />, denote by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120150/t12015040.png" /> the unique continuous extension of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120150/t12015041.png" /> to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120150/t12015042.png" />. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120150/t12015043.png" /> be the set of vectors <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120150/t12015044.png" /> such that the mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120150/t12015045.png" /> is continuous. For any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120150/t12015046.png" />, denote by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120150/t12015047.png" /> the unique continuous extension of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120150/t12015048.png" /> to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120150/t12015049.png" />. Then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120150/t12015050.png" /> is a left Hilbert algebra in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120150/t12015051.png" />, equipped with the multiplication <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120150/t12015052.png" /> and the involution <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120150/t12015053.png" />, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120150/t12015054.png" /> is equivalently contained in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120150/t12015055.png" />, that is, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120150/t12015056.png" /> and they have the same modular (conjugation) operators. The set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120150/t12015057.png" /> is a left Hilbert algebra which is equivalently contained in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120150/t12015058.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120150/t12015059.png" /> is a complex one-parameter group of automorphisms of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120150/t12015060.png" />, called the modular automorphism group. It satisfies the conditions:
+
ii) $( \xi \eta _ { 1 } | \eta _ { 2 } ) = ( \eta _ { 1 } | \xi ^ { \# } \eta _ { 2 } )$ for all $\xi , \eta _ { 1 } , \eta _ { 2 } \in \mathcal{A}$;
  
a) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120150/t12015061.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120150/t12015062.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120150/t12015063.png" />;
+
iii) $\mathcal{A} ^ { 2 } \equiv \{ \xi \eta : \xi , \eta \in \mathcal{A} \}$ is total in the Hilbert space $\mathcal{H}$ obtained by completion of $\mathcal{A}$.
  
b) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120150/t12015064.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120150/t12015065.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120150/t12015066.png" />;
+
iv) $\xi \in \mathcal{A} \mapsto \xi ^ { \# } \in \mathcal{A}$ is a closeable conjugate-linear operator in $\mathcal{H}$. Let $\mathcal{A}$ be a left Hilbert algebra in a [[Hilbert space|Hilbert space]] $\mathcal{H}$. For any $\xi \in \mathcal{A}$, let $\pi ( \xi )$ denote the unique continuous linear operator on $\mathcal{H}$ such that $\pi ( \xi ) \eta = \xi \eta$, $\eta \in \mathcal{A}$. The [[Von Neumann algebra|von Neumann algebra]] ${\cal L} ( A )$ generated by $\pi ( \mathcal{A} )$ is called the left von Neumann algebra of $\mathcal{A}$. Let $S$ be the closure of the mapping $\xi \in \mathcal{A} \rightarrow \xi ^ { \# } \in \mathcal{A}$ and let $S = J \Delta ^ { 1 / 2 }$ be the polar decomposition of $S$. Then $J$ is an isometric involution and $\Delta$ is a non-singular positive [[Self-adjoint operator|self-adjoint operator]] in $\mathcal{H}$ satisfying $S = J \Delta ^ { 1 / 2 } = \Delta ^ { - 1 / 2 } J$ and $S ^ { * } = J \Delta ^ { - 1 / 2 } = \Delta ^ { 1 / 2 } J$; $\Delta$ and $J$ are called the modular operator and the modular conjugation operator of $\mathcal{A}$, respectively. Let $\mathcal{A} ^ { \prime }$ denote the set of vectors $\eta \in \mathcal{D} ( S ^ { * } )$ such that the mapping $\xi \in \mathcal{A} \rightarrow \pi ( \xi ) \eta$ is continuous. For any $\eta \in \mathcal{A} ^ { \prime }$, denote by $\pi ^ { \prime } ( \eta )$ the unique continuous extension of $\xi \rightarrow \pi ( \xi ) \eta$ to $\mathcal{H}$. Let $\mathcal{A} ^ { \prime \prime }$ be the set of vectors $\xi \in \mathcal{D} ( S )$ such that the mapping $\eta \in \mathcal{A} ^ { \prime } \rightarrow \pi ^ { \prime } ( \eta ) \xi$ is continuous. For any $\xi \in \mathcal{A} ^ { \prime \prime }$, denote by $\pi ( \xi )$ the unique continuous extension of $\eta \rightarrow \pi ^ { \prime } ( \eta ) \xi$ to $\mathcal{H}$. Then $\mathcal{A} ^ { \prime \prime }$ is a left Hilbert algebra in $\mathcal{H}$, equipped with the multiplication $\xi _ { 1 } \xi _ { 2 } \equiv \pi ( \xi _ { 1 } ) \xi _ { 2 }$ and the involution $\xi \rightarrow \xi ^ { \# } \equiv S \xi$, and $\mathcal{A}$ is equivalently contained in $\mathcal{A} ^ { \prime \prime }$, that is, $\mathcal{A} \subset \mathcal{A} ^ { \prime \prime }$ and they have the same modular (conjugation) operators. The set $\mathcal{A} _ { 0 } \equiv \left\{ \xi \in A ^ { \prime \prime } : \xi \in \cap _ { \alpha \in \text{C} } \mathcal{D} ( \Delta ^ { \alpha } ) \right\}$ is a left Hilbert algebra which is equivalently contained in $\mathcal{A} ^ { \prime \prime }$ and $\{ \Delta ^ { \alpha } : \alpha \in \mathbf{C} \}$ is a complex one-parameter group of automorphisms of $\mathcal{A} _ { 0 }$, called the modular automorphism group. It satisfies the conditions:
  
c) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120150/t12015067.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120150/t12015068.png" />;
+
a) $( \Delta ^ { \alpha } \xi ) ^ { \# } = \Delta ^ { - \overline { \alpha } } \xi ^ { \# }$, $\xi \in \mathcal{A} _ { 0 }$, $\alpha \in \mathbf{C}$;
  
d) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120150/t12015069.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120150/t12015070.png" />, is an analytic function on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120150/t12015071.png" />. Such a left Hilbert algebra is called a modular Hilbert algebra (or Tomita algebra). Using the theory of modular Hilbert algebras, M. Tomita proved that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120150/t12015072.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120150/t12015073.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120150/t12015074.png" />. This theorem is called the Tomita fundamental theorem. M. Takesaki [[#References|[a3]]] arranged and deepened this theory and connected this theory with the Haag–Hugenholtz–Winnink theory [[#References|[a2]]] for equilibrium states for quantum statistical mechanics. After that, Tomita–Takesaki theory was developed by A. Connes [[#References|[a1]]], H. Araki, U. Haagerup and the others, and has contributed to the advancement of the structure theory of von Neumann algebras, non-commutative integration theory, and quantum physics. Using an integral formula relating the resolvent of the modular operator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120150/t12015075.png" /> with the operators <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t120/t120150/t12015076.png" />, A. van Daele [[#References|[a5]]] has simplified a discussion in the complicated Tomita–Takesaki theory.
+
b) $( \Delta ^ { \alpha } \xi | \eta ) = ( \xi | \Delta ^ { \overline { \alpha } } \eta )$, $\xi , \eta \in \mathcal{A} _ { 0 }$, $\alpha \in \mathbf{C}$;
 +
 
 +
c) $( \Delta \xi ^ { \# } | \eta ^ { \# } ) = ( \eta | \xi )$, $\xi , \eta \in \mathcal{A} _ { 0 }$;
 +
 
 +
d) $\alpha \in \mathbf{C} \rightarrow ( \Delta ^ { \alpha } \xi | \eta )$, $\xi , \eta \in \mathcal{A} _ { 0 }$, is an analytic function on $\mathbf{C}$. Such a left Hilbert algebra is called a modular Hilbert algebra (or Tomita algebra). Using the theory of modular Hilbert algebras, M. Tomita proved that $J \mathcal{L} ( \mathcal{A} ) J = \mathcal{L} ( \mathcal{A} ) ^ { \prime }$ and $\Delta ^ { i t } \mathcal{L} ( \mathcal{A} ) \Delta ^ { - i t } = \mathcal{L} ( \mathcal{A} )$ for all $t \in \mathbf{R}$. This theorem is called the Tomita fundamental theorem. M. Takesaki [[#References|[a3]]] arranged and deepened this theory and connected this theory with the Haag–Hugenholtz–Winnink theory [[#References|[a2]]] for equilibrium states for quantum statistical mechanics. After that, Tomita–Takesaki theory was developed by A. Connes [[#References|[a1]]], H. Araki, U. Haagerup and the others, and has contributed to the advancement of the structure theory of von Neumann algebras, non-commutative integration theory, and quantum physics. Using an integral formula relating the resolvent of the modular operator $\Delta$ with the operators $\Delta ^ { i t }$, A. van Daele [[#References|[a5]]] has simplified a discussion in the complicated Tomita–Takesaki theory.
  
 
====References====
 
====References====
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  A. Connes,  "Une classification des facteurs de type III"  ''Ann. Sci. Ecole Norm. Sup.'' , '''6'''  (1973)  pp. 133–252</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  R. Haag,  N.M. Hugenholts,  M. Winnink,  "On the equilibrium states in quantum mechanics"  ''Comm. Math. Phys.'' , '''5'''  (1967)  pp. 215–236</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  M. Takesaki,  "Tomita's theory of modular Hilbert algebras and its applications" , ''Lecture Notes Math.'' , '''128''' , Springer  (1970)</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top">  M. Tomita,  "Standard forms of von Neumann algebras" , ''The Vth Functional Analysis Symposium of Math. Soc. Japan, Sendai''  (1967)</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top">  A. Van Daele,  "A new approach to the Tomita–Takesaki theory of generalized Hilbert algebras"  ''J. Funct. Anal.'' , '''15'''  (1974)  pp. 378–393</TD></TR></table>
+
<table><tr><td valign="top">[a1]</td> <td valign="top">  A. Connes,  "Une classification des facteurs de type III"  ''Ann. Sci. Ecole Norm. Sup.'' , '''6'''  (1973)  pp. 133–252</td></tr><tr><td valign="top">[a2]</td> <td valign="top">  R. Haag,  N.M. Hugenholts,  M. Winnink,  "On the equilibrium states in quantum mechanics"  ''Comm. Math. Phys.'' , '''5'''  (1967)  pp. 215–236</td></tr><tr><td valign="top">[a3]</td> <td valign="top">  M. Takesaki,  "Tomita's theory of modular Hilbert algebras and its applications" , ''Lecture Notes Math.'' , '''128''' , Springer  (1970)</td></tr><tr><td valign="top">[a4]</td> <td valign="top">  M. Tomita,  "Standard forms of von Neumann algebras" , ''The Vth Functional Analysis Symposium of Math. Soc. Japan, Sendai''  (1967)</td></tr><tr><td valign="top">[a5]</td> <td valign="top">  A. Van Daele,  "A new approach to the Tomita–Takesaki theory of generalized Hilbert algebras"  ''J. Funct. Anal.'' , '''15'''  (1974)  pp. 378–393</td></tr></table>

Latest revision as of 16:45, 1 July 2020

M. Tomita [a4] defined the notion of a left Hilbert algebra as follows: An involutive algebra $\mathcal{A}$ over the field $\mathbf{C}$ of complex numbers, with involution $\xi \in \mathcal{A} \mapsto \xi ^ { \# } \in \mathcal{A}$, that admits an inner product $( \xi | \eta )$ satisfying the following conditions:

i) the mapping $\eta \in \mathcal{A} \mapsto \xi \eta \in \mathcal{A}$ is continuous for every $\xi \in \mathcal{A}$;

ii) $( \xi \eta _ { 1 } | \eta _ { 2 } ) = ( \eta _ { 1 } | \xi ^ { \# } \eta _ { 2 } )$ for all $\xi , \eta _ { 1 } , \eta _ { 2 } \in \mathcal{A}$;

iii) $\mathcal{A} ^ { 2 } \equiv \{ \xi \eta : \xi , \eta \in \mathcal{A} \}$ is total in the Hilbert space $\mathcal{H}$ obtained by completion of $\mathcal{A}$.

iv) $\xi \in \mathcal{A} \mapsto \xi ^ { \# } \in \mathcal{A}$ is a closeable conjugate-linear operator in $\mathcal{H}$. Let $\mathcal{A}$ be a left Hilbert algebra in a Hilbert space $\mathcal{H}$. For any $\xi \in \mathcal{A}$, let $\pi ( \xi )$ denote the unique continuous linear operator on $\mathcal{H}$ such that $\pi ( \xi ) \eta = \xi \eta$, $\eta \in \mathcal{A}$. The von Neumann algebra ${\cal L} ( A )$ generated by $\pi ( \mathcal{A} )$ is called the left von Neumann algebra of $\mathcal{A}$. Let $S$ be the closure of the mapping $\xi \in \mathcal{A} \rightarrow \xi ^ { \# } \in \mathcal{A}$ and let $S = J \Delta ^ { 1 / 2 }$ be the polar decomposition of $S$. Then $J$ is an isometric involution and $\Delta$ is a non-singular positive self-adjoint operator in $\mathcal{H}$ satisfying $S = J \Delta ^ { 1 / 2 } = \Delta ^ { - 1 / 2 } J$ and $S ^ { * } = J \Delta ^ { - 1 / 2 } = \Delta ^ { 1 / 2 } J$; $\Delta$ and $J$ are called the modular operator and the modular conjugation operator of $\mathcal{A}$, respectively. Let $\mathcal{A} ^ { \prime }$ denote the set of vectors $\eta \in \mathcal{D} ( S ^ { * } )$ such that the mapping $\xi \in \mathcal{A} \rightarrow \pi ( \xi ) \eta$ is continuous. For any $\eta \in \mathcal{A} ^ { \prime }$, denote by $\pi ^ { \prime } ( \eta )$ the unique continuous extension of $\xi \rightarrow \pi ( \xi ) \eta$ to $\mathcal{H}$. Let $\mathcal{A} ^ { \prime \prime }$ be the set of vectors $\xi \in \mathcal{D} ( S )$ such that the mapping $\eta \in \mathcal{A} ^ { \prime } \rightarrow \pi ^ { \prime } ( \eta ) \xi$ is continuous. For any $\xi \in \mathcal{A} ^ { \prime \prime }$, denote by $\pi ( \xi )$ the unique continuous extension of $\eta \rightarrow \pi ^ { \prime } ( \eta ) \xi$ to $\mathcal{H}$. Then $\mathcal{A} ^ { \prime \prime }$ is a left Hilbert algebra in $\mathcal{H}$, equipped with the multiplication $\xi _ { 1 } \xi _ { 2 } \equiv \pi ( \xi _ { 1 } ) \xi _ { 2 }$ and the involution $\xi \rightarrow \xi ^ { \# } \equiv S \xi$, and $\mathcal{A}$ is equivalently contained in $\mathcal{A} ^ { \prime \prime }$, that is, $\mathcal{A} \subset \mathcal{A} ^ { \prime \prime }$ and they have the same modular (conjugation) operators. The set $\mathcal{A} _ { 0 } \equiv \left\{ \xi \in A ^ { \prime \prime } : \xi \in \cap _ { \alpha \in \text{C} } \mathcal{D} ( \Delta ^ { \alpha } ) \right\}$ is a left Hilbert algebra which is equivalently contained in $\mathcal{A} ^ { \prime \prime }$ and $\{ \Delta ^ { \alpha } : \alpha \in \mathbf{C} \}$ is a complex one-parameter group of automorphisms of $\mathcal{A} _ { 0 }$, called the modular automorphism group. It satisfies the conditions:

a) $( \Delta ^ { \alpha } \xi ) ^ { \# } = \Delta ^ { - \overline { \alpha } } \xi ^ { \# }$, $\xi \in \mathcal{A} _ { 0 }$, $\alpha \in \mathbf{C}$;

b) $( \Delta ^ { \alpha } \xi | \eta ) = ( \xi | \Delta ^ { \overline { \alpha } } \eta )$, $\xi , \eta \in \mathcal{A} _ { 0 }$, $\alpha \in \mathbf{C}$;

c) $( \Delta \xi ^ { \# } | \eta ^ { \# } ) = ( \eta | \xi )$, $\xi , \eta \in \mathcal{A} _ { 0 }$;

d) $\alpha \in \mathbf{C} \rightarrow ( \Delta ^ { \alpha } \xi | \eta )$, $\xi , \eta \in \mathcal{A} _ { 0 }$, is an analytic function on $\mathbf{C}$. Such a left Hilbert algebra is called a modular Hilbert algebra (or Tomita algebra). Using the theory of modular Hilbert algebras, M. Tomita proved that $J \mathcal{L} ( \mathcal{A} ) J = \mathcal{L} ( \mathcal{A} ) ^ { \prime }$ and $\Delta ^ { i t } \mathcal{L} ( \mathcal{A} ) \Delta ^ { - i t } = \mathcal{L} ( \mathcal{A} )$ for all $t \in \mathbf{R}$. This theorem is called the Tomita fundamental theorem. M. Takesaki [a3] arranged and deepened this theory and connected this theory with the Haag–Hugenholtz–Winnink theory [a2] for equilibrium states for quantum statistical mechanics. After that, Tomita–Takesaki theory was developed by A. Connes [a1], H. Araki, U. Haagerup and the others, and has contributed to the advancement of the structure theory of von Neumann algebras, non-commutative integration theory, and quantum physics. Using an integral formula relating the resolvent of the modular operator $\Delta$ with the operators $\Delta ^ { i t }$, A. van Daele [a5] has simplified a discussion in the complicated Tomita–Takesaki theory.

References

[a1] A. Connes, "Une classification des facteurs de type III" Ann. Sci. Ecole Norm. Sup. , 6 (1973) pp. 133–252
[a2] R. Haag, N.M. Hugenholts, M. Winnink, "On the equilibrium states in quantum mechanics" Comm. Math. Phys. , 5 (1967) pp. 215–236
[a3] M. Takesaki, "Tomita's theory of modular Hilbert algebras and its applications" , Lecture Notes Math. , 128 , Springer (1970)
[a4] M. Tomita, "Standard forms of von Neumann algebras" , The Vth Functional Analysis Symposium of Math. Soc. Japan, Sendai (1967)
[a5] A. Van Daele, "A new approach to the Tomita–Takesaki theory of generalized Hilbert algebras" J. Funct. Anal. , 15 (1974) pp. 378–393
How to Cite This Entry:
Tomita-Takesaki theory. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Tomita-Takesaki_theory&oldid=49948
This article was adapted from an original article by A. Inoue (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article