Difference between revisions of "Structure(2)"
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
Ulf Rehmann (talk | contribs) m (Undo revision 48881 by Ulf Rehmann (talk)) Tag: Undo |
||
Line 1: | Line 1: | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
Also called mathematical structure. A generic name for unifying concepts whose general characteristic is that they can be applied to sets whose elements are of an indefinite nature. In order to define a structure, relations are given in which the elements of the set appear (the type characteristic of a structure), and it is then postulated that these relations satisfy certain conditions — axioms of the structure. | Also called mathematical structure. A generic name for unifying concepts whose general characteristic is that they can be applied to sets whose elements are of an indefinite nature. In order to define a structure, relations are given in which the elements of the set appear (the type characteristic of a structure), and it is then postulated that these relations satisfy certain conditions — axioms of the structure. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> N. Bourbaki, "Eléments d'histoire des mathématiques" , Hermann (1960)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> N. Bourbaki, "Elements of mathematics. Theory of sets" , Addison-Wesley (1968) (Translated from French)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> N. Bourbaki, "Eléments d'histoire des mathématiques" , Hermann (1960)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> N. Bourbaki, "Elements of mathematics. Theory of sets" , Addison-Wesley (1968) (Translated from French)</TD></TR></table> | ||
+ | |||
+ | |||
====Comments==== | ====Comments==== | ||
− | Sets endowed with a given structure plus mappings of sets which preserve this structure together form a [[Category|category]]. Such categories are called concrete (cf. also [[Category|Category]]; [[Sets, category of|Sets, category of]]). More precisely, a concrete category is a pair | + | Sets endowed with a given structure plus mappings of sets which preserve this structure together form a [[Category|category]]. Such categories are called concrete (cf. also [[Category|Category]]; [[Sets, category of|Sets, category of]]). More precisely, a concrete category is a pair <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090670/s0906701.png" /> consisting of a category <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090670/s0906702.png" /> and a faithful functor <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090670/s0906703.png" />. Because <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090670/s0906704.png" /> is faithful, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090670/s0906705.png" /> can be identified with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090670/s0906706.png" />, and an object <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090670/s0906707.png" /> of a concrete category is a set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090670/s0906708.png" /> with extra structure while a morphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090670/s0906709.png" /> is an actual mapping of sets that preserves the extra structure; composition of morphisms is accomplished by the usual composition of mappings of sets. Often the set of morphisms <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090670/s09067010.png" /> consists of all structure-preserving mappings of sets, but this need not be the case. |
− | consisting of a category | ||
− | and a faithful functor | ||
− | Because | ||
− | is faithful, | ||
− | can be identified with | ||
− | and an object | ||
− | of a concrete category is a set | ||
− | with extra structure while a morphism | ||
− | is an actual mapping of sets that preserves the extra structure; composition of morphisms is accomplished by the usual composition of mappings of sets. Often the set of morphisms | ||
− | consists of all structure-preserving mappings of sets, but this need not be the case. | ||
A category is concrete if and only if it satisfies the Isbell condition (the Freyd concreteness theorem). Here, the Isbell condition is the following. A span in a category is a diagram of the form | A category is concrete if and only if it satisfies the Isbell condition (the Freyd concreteness theorem). Here, the Isbell condition is the following. A span in a category is a diagram of the form | ||
− | + | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090670/s09067011.png" /></td> </tr></table> | |
− | Two | + | Two <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090670/s09067012.png" />-spans <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090670/s09067013.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090670/s09067014.png" /> are equivalent if for all pairs of morphisms <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090670/s09067015.png" /> either both diagrams |
− | spans | ||
− | and | ||
− | are equivalent if for all pairs of morphisms | ||
− | either both diagrams | ||
− | + | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090670/s09067016.png" /></td> </tr></table> | |
− | commute or both do not commute. A category satisfies the Isbell condition if for all objects | + | commute or both do not commute. A category satisfies the Isbell condition if for all objects <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090670/s09067017.png" /> there exists a set of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090670/s09067018.png" />-spans <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090670/s09067019.png" /> such that each <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090670/s09067020.png" />-span is equivalent to precisely one element of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090670/s09067021.png" />. |
− | there exists a set of | ||
− | spans | ||
− | such that each | ||
− | span is equivalent to precisely one element of | ||
====References==== | ====References==== | ||
Line 53: | Line 25: | ||
====Comments==== | ====Comments==== | ||
+ | |||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> A.G. Kurosh, "Theory of groups" , '''2''' , Chelsea, reprint (1955) pp. 85 (Translated from Russian)</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> A.G. Kurosh, "Theory of groups" , '''2''' , Chelsea, reprint (1955) pp. 85 (Translated from Russian)</TD></TR></table> | ||
− | A structure on a manifold, a geometric quantity, a geometric object, or a field of geometric objects, is a section of a bundle associated with the principal bundle of coframes on the manifold | + | A structure on a manifold, a geometric quantity, a geometric object, or a field of geometric objects, is a section of a bundle associated with the principal bundle of coframes on the manifold <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090670/s09067022.png" />. Intuitively, a geometric quantity can be considered as a quantity whose value depends not only on the point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090670/s09067023.png" /> of the manifold <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090670/s09067024.png" />, but also on the choice of the coframe — an infinitesimal system of coordinates at the point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090670/s09067025.png" /> (see [[Chart|Chart]]). |
− | Intuitively, a geometric quantity can be considered as a quantity whose value depends not only on the point | ||
− | of the manifold | ||
− | but also on the choice of the coframe — an infinitesimal system of coordinates at the point | ||
− | see [[Chart|Chart]]). | ||
− | More precisely, let | + | More precisely, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090670/s09067026.png" /> be the general differential group of order <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090670/s09067027.png" /> (the group of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090670/s09067028.png" />-jets at zero of transformations of the space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090670/s09067029.png" /> that preserve the origin), and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090670/s09067030.png" /> be the manifold of coframes of order <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090670/s09067031.png" /> of an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090670/s09067032.png" />-dimensional manifold <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090670/s09067033.png" /> (i.e. the manifold of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090670/s09067034.png" />-jets <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090670/s09067035.png" /> of local charts <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090670/s09067036.png" /> with origin at the point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090670/s09067037.png" />). The group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090670/s09067038.png" /> acts from the left on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090670/s09067039.png" /> by |
− | be the general differential group of order | ||
− | the group of | ||
− | jets at zero of transformations of the space | ||
− | that preserve the origin), and let | ||
− | be the manifold of coframes of order | ||
− | of an | ||
− | dimensional manifold | ||
− | i.e. the manifold of | ||
− | jets | ||
− | of local charts | ||
− | with origin at the point | ||
− | The group | ||
− | acts from the left on | ||
− | by | ||
− | + | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090670/s09067040.png" /></td> </tr></table> | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | and this action defines on | + | and this action defines on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090670/s09067041.png" /> the structure of a principal <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090670/s09067042.png" />-bundle <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090670/s09067043.png" />, which is called the bundle of coframes of order <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090670/s09067045.png" />. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090670/s09067046.png" /> be an arbitrary <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090670/s09067047.png" />-manifold, i.e. a manifold with a left action of the group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090670/s09067048.png" />. Finally, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090670/s09067049.png" /> be the orbit space of the left action of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090670/s09067050.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090670/s09067051.png" />, while <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090670/s09067052.png" /> is its natural projection onto <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090670/s09067053.png" />. The bundle <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090670/s09067054.png" /> (associated with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090670/s09067055.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090670/s09067056.png" />) is called a bundle of geometric structures of order <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090670/s09067058.png" /> and of type <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090670/s09067059.png" />, while its sections are called structures of type <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090670/s09067061.png" />. Structures of type <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090670/s09067062.png" /> are in a natural one-to-one correspondence with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090670/s09067063.png" />-equivariant mappings <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090670/s09067064.png" />. Thus, a structure of type <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090670/s09067065.png" /> can be seen as a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090670/s09067066.png" />-valued function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090670/s09067067.png" /> on the manifold <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090670/s09067068.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090670/s09067069.png" />-frames that satisfies the following condition of equivariance: |
− | the structure of a principal | ||
− | bundle | ||
− | which is called the bundle of coframes of order | ||
− | Let | ||
− | be an arbitrary | ||
− | manifold, i.e. a manifold with a left action of the group | ||
− | Finally, let | ||
− | be the orbit space of the left action of | ||
− | on | ||
− | while | ||
− | is its natural projection onto | ||
− | The bundle | ||
− | associated with | ||
− | and | ||
− | is called a bundle of geometric structures of order | ||
− | and of type | ||
− | while its sections are called structures of type | ||
− | Structures of type | ||
− | are in a natural one-to-one correspondence with | ||
− | equivariant mappings | ||
− | Thus, a structure of type | ||
− | can be seen as a | ||
− | valued function | ||
− | on the manifold | ||
− | of | ||
− | frames that satisfies the following condition of equivariance: | ||
− | + | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090670/s09067070.png" /></td> </tr></table> | |
− | |||
− | |||
− | |||
− | |||
− | The bundle | + | The bundle <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090670/s09067071.png" /> of geometric objects is a natural bundle in the sense that the diffeomorphism group of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090670/s09067072.png" /> acts as the automorphism group of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090670/s09067073.png" />. |
− | of geometric objects is a natural bundle in the sense that the diffeomorphism group of | ||
− | acts as the automorphism group of | ||
− | If | + | If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090670/s09067074.png" /> is a vector space with a linear (or affine) action of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090670/s09067075.png" />, then a structure of type <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090670/s09067076.png" /> is said to be linear (or affine). |
− | is a vector space with a linear (or affine) action of | ||
− | then a structure of type | ||
− | is said to be linear (or affine). | ||
− | A basic example of a linear structure of order one is a tensor structure, or a tensor field. Let | + | A basic example of a linear structure of order one is a tensor structure, or a tensor field. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090670/s09067079.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090670/s09067080.png" /> and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090670/s09067081.png" /> be the space of tensors of type <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090670/s09067082.png" /> with the natural tensor representation of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090670/s09067083.png" />. A structure of type <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090670/s09067084.png" /> is called a tensor field of type <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090670/s09067086.png" />. It can be regarded as a vector function on the manifold of coframes <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090670/s09067087.png" /> which assigns to the coframe <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090670/s09067088.png" /> the set of coordinates <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090670/s09067089.png" /> of the tensor <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090670/s09067090.png" />, relative to the standard basis |
− | |||
− | and let | ||
− | be the space of tensors of type | ||
− | with the natural tensor representation of | ||
− | A structure of type | ||
− | is called a tensor field of type | ||
− | It can be regarded as a vector function on the manifold of coframes | ||
− | which assigns to the coframe | ||
− | the set of coordinates | ||
− | of the tensor | ||
− | relative to the standard basis | ||
− | + | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090670/s09067091.png" /></td> </tr></table> | |
− | |||
− | |||
− | |||
− | of | + | of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090670/s09067092.png" />. Given a linear transformation of coframes <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090670/s09067093.png" />, the coordinates <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090670/s09067094.png" /> are transformed in accordance with the tensor representation: |
− | Given a linear transformation of coframes | ||
− | the coordinates | ||
− | are transformed in accordance with the tensor representation: | ||
− | + | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090670/s09067095.png" /></td> </tr></table> | |
− | |||
− | |||
− | |||
− | The most important examples of tensor structures are a [[Vector field|vector field]], a [[Riemannian metric|Riemannian metric]], a [[Differential form|differential form]], a [[Symplectic structure|symplectic structure]], a [[Complex structure|complex structure]], and most commonly, an [[Affinor|affinor]]. All linear structures (of whatever order) are exhausted by Rashevskii super-tensors (see [[#References|[4]]]). An example of an affine structure of order two is an [[Affine connection|affine connection]] without torsion, which can be regarded as a structure of type | + | The most important examples of tensor structures are a [[Vector field|vector field]], a [[Riemannian metric|Riemannian metric]], a [[Differential form|differential form]], a [[Symplectic structure|symplectic structure]], a [[Complex structure|complex structure]], and most commonly, an [[Affinor|affinor]]. All linear structures (of whatever order) are exhausted by Rashevskii super-tensors (see [[#References|[4]]]). An example of an affine structure of order two is an [[Affine connection|affine connection]] without torsion, which can be regarded as a structure of type <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090670/s09067096.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090670/s09067097.png" /> is the kernel of the natural homomorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090670/s09067098.png" />, considered as a vector space with the natural action of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090670/s09067099.png" />. A large and important class of structures is the class of infinitesimally-homogeneous structures or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090670/s090670100.png" />-structures (cf. [[G-structure|<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090670/s090670101.png" />-structure]]) — structures of type <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090670/s090670102.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090670/s090670103.png" /> is a homogeneous space of the group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090670/s090670104.png" />. |
− | where | ||
− | is the kernel of the natural homomorphism | ||
− | considered as a vector space with the natural action of | ||
− | A large and important class of structures is the class of infinitesimally-homogeneous structures or | ||
− | structures (cf. [[G-structure| | ||
− | structure]]) — structures of type | ||
− | where | ||
− | is a homogeneous space of the group | ||
− | The above definition of a structure is not sufficiently general, and does not include a number of important geometric structures such as a [[Spinor structure|spinor structure]], a symplectic spinor structure, etc. A natural generalization is to study generalized | + | The above definition of a structure is not sufficiently general, and does not include a number of important geometric structures such as a [[Spinor structure|spinor structure]], a symplectic spinor structure, etc. A natural generalization is to study generalized <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090670/s090670105.png" />-structures that are principal bundles with a fixed homomorphism onto a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090670/s090670106.png" />-structure, and sections of associated bundles. |
− | structures that are principal bundles with a fixed homomorphism onto a | ||
− | structure, and sections of associated bundles. | ||
====References==== | ====References==== |
Revision as of 14:53, 7 June 2020
Also called mathematical structure. A generic name for unifying concepts whose general characteristic is that they can be applied to sets whose elements are of an indefinite nature. In order to define a structure, relations are given in which the elements of the set appear (the type characteristic of a structure), and it is then postulated that these relations satisfy certain conditions — axioms of the structure.
References
[1] | N. Bourbaki, "Eléments d'histoire des mathématiques" , Hermann (1960) |
[2] | N. Bourbaki, "Elements of mathematics. Theory of sets" , Addison-Wesley (1968) (Translated from French) |
Comments
Sets endowed with a given structure plus mappings of sets which preserve this structure together form a category. Such categories are called concrete (cf. also Category; Sets, category of). More precisely, a concrete category is a pair consisting of a category and a faithful functor . Because is faithful, can be identified with , and an object of a concrete category is a set with extra structure while a morphism is an actual mapping of sets that preserves the extra structure; composition of morphisms is accomplished by the usual composition of mappings of sets. Often the set of morphisms consists of all structure-preserving mappings of sets, but this need not be the case.
A category is concrete if and only if it satisfies the Isbell condition (the Freyd concreteness theorem). Here, the Isbell condition is the following. A span in a category is a diagram of the form
Two -spans and are equivalent if for all pairs of morphisms either both diagrams
commute or both do not commute. A category satisfies the Isbell condition if for all objects there exists a set of -spans such that each -span is equivalent to precisely one element of .
References
[a1] | J. Adamek, "Theory of mathematical structures" , Reidel (1983) pp. Chapt. 6 |
[a2] | S. MacLane, "Categories for the working mathematician" , Springer (1971) pp. 26 |
A structure is also an obsolete term for lattice.
Comments
References
[a1] | A.G. Kurosh, "Theory of groups" , 2 , Chelsea, reprint (1955) pp. 85 (Translated from Russian) |
A structure on a manifold, a geometric quantity, a geometric object, or a field of geometric objects, is a section of a bundle associated with the principal bundle of coframes on the manifold . Intuitively, a geometric quantity can be considered as a quantity whose value depends not only on the point of the manifold , but also on the choice of the coframe — an infinitesimal system of coordinates at the point (see Chart).
More precisely, let be the general differential group of order (the group of -jets at zero of transformations of the space that preserve the origin), and let be the manifold of coframes of order of an -dimensional manifold (i.e. the manifold of -jets of local charts with origin at the point ). The group acts from the left on by
and this action defines on the structure of a principal -bundle , which is called the bundle of coframes of order . Let be an arbitrary -manifold, i.e. a manifold with a left action of the group . Finally, let be the orbit space of the left action of on , while is its natural projection onto . The bundle (associated with and ) is called a bundle of geometric structures of order and of type , while its sections are called structures of type . Structures of type are in a natural one-to-one correspondence with -equivariant mappings . Thus, a structure of type can be seen as a -valued function on the manifold of -frames that satisfies the following condition of equivariance:
The bundle of geometric objects is a natural bundle in the sense that the diffeomorphism group of acts as the automorphism group of .
If is a vector space with a linear (or affine) action of , then a structure of type is said to be linear (or affine).
A basic example of a linear structure of order one is a tensor structure, or a tensor field. Let , and let be the space of tensors of type with the natural tensor representation of . A structure of type is called a tensor field of type . It can be regarded as a vector function on the manifold of coframes which assigns to the coframe the set of coordinates of the tensor , relative to the standard basis
of . Given a linear transformation of coframes , the coordinates are transformed in accordance with the tensor representation:
The most important examples of tensor structures are a vector field, a Riemannian metric, a differential form, a symplectic structure, a complex structure, and most commonly, an affinor. All linear structures (of whatever order) are exhausted by Rashevskii super-tensors (see [4]). An example of an affine structure of order two is an affine connection without torsion, which can be regarded as a structure of type , where is the kernel of the natural homomorphism , considered as a vector space with the natural action of . A large and important class of structures is the class of infinitesimally-homogeneous structures or -structures (cf. -structure) — structures of type , where is a homogeneous space of the group .
The above definition of a structure is not sufficiently general, and does not include a number of important geometric structures such as a spinor structure, a symplectic spinor structure, etc. A natural generalization is to study generalized -structures that are principal bundles with a fixed homomorphism onto a -structure, and sections of associated bundles.
References
[1] | P. Rashevskii, "Caractères tensoriels de l'espace sousprojectif" Trudy Sem. Vektor. i Tenzor. Anal. , 1 (1933) pp. 126–142 |
[2] | V. Vagner, "The theory of geometric objects and the theory of finite and infinite continuous transformation groups" Dokl. Akad. Nauk SSSR , 46 : 9 (1945) pp. 347–349 (In Russian) |
[3] | O. Veblen, J.H.C. Whitehead, "The foundations of differential geometry" , Cambridge Univ. Press (1932) |
[4] | P.K. Rashevskii, "On linear representations of differential groups and Lie groups with nilpotent radical" Trudy Moskov. Mat. Obshch. , 6 (1957) pp. 337–370 (In Russian) |
[5] | S. Sternberg, "Lectures on differential geometry" , Prentice-Hall (1964) |
[6] | Ch. Ehresmann, "Introduction à la théorie des structures infinitésimals et des pseudo-groupes de Lie" , Géométrie Diff. Coll. Internat. C.N.R.S. (1953) pp. 97–110 |
D.V. Alekseevskii
Comments
Historically, E. Cartan was the first to introduce the concept of a structure.
References
[a1] | E. Cartan, "La théorie des groupes et les récherches récentes de géometrie différentielle" Enseign. Math. , 24 (1925) pp. 5–18 |
Structure(2). Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Structure(2)&oldid=49452