Difference between revisions of "Parametrix method"
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
Ulf Rehmann (talk | contribs) m (Undo revision 48129 by Ulf Rehmann (talk)) Tag: Undo |
||
Line 1: | Line 1: | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
One of the methods for studying boundary value problems for differential equations with variable coefficients by means of integral equations. | One of the methods for studying boundary value problems for differential equations with variable coefficients by means of integral equations. | ||
− | Suppose that in some region | + | Suppose that in some region <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071570/p0715701.png" /> of the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071570/p0715702.png" />-dimensional Euclidean space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071570/p0715703.png" /> one considers an elliptic differential operator (cf. [[Elliptic partial differential equation|Elliptic partial differential equation]]) of order <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071570/p0715704.png" />, |
− | of the | ||
− | dimensional Euclidean space | ||
− | one considers an elliptic differential operator (cf. [[Elliptic partial differential equation|Elliptic partial differential equation]]) of order | ||
− | + | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071570/p0715705.png" /></td> <td valign="top" style="width:5%;text-align:right;">(1)</td></tr></table> | |
− | |||
− | |||
− | In (1) the symbol | + | In (1) the symbol <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071570/p0715706.png" /> is a multi-index, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071570/p0715707.png" />, where the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071570/p0715708.png" /> are non-negative integers, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071570/p0715709.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071570/p07157010.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071570/p07157011.png" />. With every operator (1) there is associated the homogeneous elliptic operator |
− | is a multi-index, | ||
− | where the | ||
− | are non-negative integers, | ||
− | |||
− | |||
− | With every operator (1) there is associated the homogeneous elliptic operator | ||
− | + | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071570/p07157012.png" /></td> </tr></table> | |
− | |||
− | |||
− | |||
− | with constant coefficients, where | + | with constant coefficients, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071570/p07157013.png" /> is an arbitrary fixed point. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071570/p07157014.png" /> denote a [[Fundamental solution|fundamental solution]] of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071570/p07157015.png" /> depending parametrically on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071570/p07157016.png" />. Then the function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071570/p07157017.png" /> is called the parametrix of the operator (1) with a singularity at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071570/p07157018.png" />. |
− | is an arbitrary fixed point. Let | ||
− | denote a [[Fundamental solution|fundamental solution]] of | ||
− | depending parametrically on | ||
− | Then the function | ||
− | is called the parametrix of the operator (1) with a singularity at | ||
In particular, for the second-order elliptic operator | In particular, for the second-order elliptic operator | ||
− | + | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071570/p07157019.png" /></td> </tr></table> | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | one can take as parametrix with singularity at | + | one can take as parametrix with singularity at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071570/p07157020.png" /> the Levi function |
− | the Levi function | ||
− | + | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071570/p07157021.png" /></td> <td valign="top" style="width:5%;text-align:right;">(2)</td></tr></table> | |
− | |||
− | In (2), | + | In (2), <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071570/p07157022.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071570/p07157023.png" /> is the determinant of the matrix <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071570/p07157024.png" />, |
− | |||
− | is the determinant of the matrix | ||
− | + | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071570/p07157025.png" /></td> </tr></table> | |
− | |||
− | |||
− | and | + | and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071570/p07157026.png" /> are the elements of the matrix inverse to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071570/p07157027.png" />. |
− | are the elements of the matrix inverse to | ||
− | Let | + | Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071570/p07157028.png" /> be the integral operator |
− | be the integral operator | ||
− | + | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071570/p07157029.png" /></td> <td valign="top" style="width:5%;text-align:right;">(3)</td></tr></table> | |
− | |||
− | |||
− | acting on functions from | + | acting on functions from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071570/p07157030.png" /> and let |
− | and let | ||
− | + | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071570/p07157031.png" /></td> </tr></table> | |
− | |||
− | |||
Since, by definition of a fundamental solution, | Since, by definition of a fundamental solution, | ||
− | + | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071570/p07157032.png" /></td> </tr></table> | |
− | |||
− | |||
− | |||
− | where | + | where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071570/p07157033.png" /> is the identity operator, one has |
− | is the identity operator, one has | ||
− | + | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071570/p07157034.png" /></td> </tr></table> | |
− | |||
− | |||
− | This equality indicates that for every sufficiently-smooth function | + | This equality indicates that for every sufficiently-smooth function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071570/p07157035.png" /> of compact support in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071570/p07157036.png" /> there is a representation |
− | of compact support in | ||
− | there is a representation | ||
− | + | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071570/p07157037.png" /></td> <td valign="top" style="width:5%;text-align:right;">(4)</td></tr></table> | |
− | |||
− | |||
Moreover, if | Moreover, if | ||
− | + | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071570/p07157038.png" /></td> </tr></table> | |
− | |||
− | |||
− | then | + | then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071570/p07157039.png" /> is a solution of the equation |
− | is a solution of the equation | ||
− | + | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071570/p07157040.png" /></td> </tr></table> | |
− | |||
− | |||
− | Thus, the question of the local solvability of | + | Thus, the question of the local solvability of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071570/p07157041.png" /> reduces to that of invertibility of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071570/p07157042.png" />. |
− | reduces to that of invertibility of | ||
− | If one applies | + | If one applies <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071570/p07157043.png" /> to functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071570/p07157044.png" /> that vanish outside a ball of radius <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071570/p07157045.png" /> with centre at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071570/p07157046.png" />, then for a sufficiently small <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071570/p07157047.png" /> the norm of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071570/p07157048.png" /> can be made smaller than one. Then the operator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071570/p07157049.png" /> exists; consequently, also <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071570/p07157050.png" /> exists, which is the inverse operator to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071570/p07157051.png" />. Here <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071570/p07157052.png" /> is an integral operator with as kernel a fundamental solution of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071570/p07157053.png" />. |
− | to functions | ||
− | that vanish outside a ball of radius | ||
− | with centre at | ||
− | then for a sufficiently small | ||
− | the norm of | ||
− | can be made smaller than one. Then the operator | ||
− | exists; consequently, also | ||
− | exists, which is the inverse operator to | ||
− | Here | ||
− | is an integral operator with as kernel a fundamental solution of | ||
− | The name parametrix is sometimes given not only to the function | + | The name parametrix is sometimes given not only to the function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071570/p07157054.png" />, but also to the integral operator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071570/p07157055.png" /> with the kernel <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071570/p07157056.png" />, as defined by (3). |
− | but also to the integral operator | ||
− | with the kernel | ||
− | as defined by (3). | ||
− | In the theory of pseudo-differential operators, instead of | + | In the theory of pseudo-differential operators, instead of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071570/p07157057.png" /> a parametrix of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071570/p07157058.png" /> is defined as an operator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071570/p07157059.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071570/p07157060.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071570/p07157061.png" /> are integral operators with infinitely-differentiable kernels (cf. [[Pseudo-differential operator|Pseudo-differential operator]]). If only <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071570/p07157062.png" /> (or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071570/p07157063.png" />) is such an operator, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071570/p07157064.png" /> is called a left (or right) parametrix of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071570/p07157065.png" />. In other words, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071570/p07157066.png" /> in (4) is a left parametrix if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071570/p07157067.png" /> in this equality has an infinitely-differentiable kernel. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071570/p07157068.png" /> has a left parametrix <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071570/p07157069.png" /> and a right parametrix <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071570/p07157070.png" />, then each of them is a parametrix. The existence of a parametrix has been proved for hypo-elliptic pseudo-differential operators (see [[#References|[3]]]). |
− | a parametrix of | ||
− | is defined as an operator | ||
− | such that | ||
− | and | ||
− | are integral operators with infinitely-differentiable kernels (cf. [[Pseudo-differential operator|Pseudo-differential operator]]). If only | ||
− | or | ||
− | is such an operator, then | ||
− | is called a left (or right) parametrix of | ||
− | In other words, | ||
− | in (4) is a left parametrix if | ||
− | in this equality has an infinitely-differentiable kernel. If | ||
− | has a left parametrix | ||
− | and a right parametrix | ||
− | then each of them is a parametrix. The existence of a parametrix has been proved for hypo-elliptic pseudo-differential operators (see [[#References|[3]]]). | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> L. Bers, F. John, M. Schechter, "Partial differential equations" , Interscience (1964)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> C. Miranda, "Partial differential equations of elliptic type" , Springer (1970) (Translated from Italian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> L. Hörmander, , ''Pseudo-differential operators'' , Moscow (1967) (In Russian; translated from English)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> L. Bers, F. John, M. Schechter, "Partial differential equations" , Interscience (1964)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> C. Miranda, "Partial differential equations of elliptic type" , Springer (1970) (Translated from Italian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> L. Hörmander, , ''Pseudo-differential operators'' , Moscow (1967) (In Russian; translated from English)</TD></TR></table> | ||
+ | |||
+ | |||
====Comments==== | ====Comments==== | ||
− | The operator | + | The operator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071570/p07157071.png" /> is called the principal part of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071570/p07157072.png" />, cf. [[Principal part of a differential operator|Principal part of a differential operator]]. The parametrix method was anticipated in two fundamental papers by E.E. Levi [[#References|[a1]]], [[#References|[a2]]]. The same procedure is also applicable for constructing the fundamental solution of a parabolic equation with variable coefficients (see, e.g., [[#References|[a3]]]). |
− | is called the principal part of | ||
− | cf. [[Principal part of a differential operator|Principal part of a differential operator]]. The parametrix method was anticipated in two fundamental papers by E.E. Levi [[#References|[a1]]], [[#References|[a2]]]. The same procedure is also applicable for constructing the fundamental solution of a parabolic equation with variable coefficients (see, e.g., [[#References|[a3]]]). | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> E.E. Levi, "Sulle equazioni lineari alle derivate parziali totalmente ellittiche" ''Rend. R. Acc. Lincei, Classe Sci. (V)'' , '''16''' (1907)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> E.E. Levi, "Sulle equazioni lineari totalmente ellittiche alle derivate parziali" ''Rend. Circ. Mat. Palermo'' , '''24''' (1907) pp. 275–317</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> A. Friedman, "Partial differential equations of parabolic type" , Prentice-Hall (1964)</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> L.V. Hörmander, "The analysis of linear partial differential operators" , '''1–4''' , Springer (1983–1985) pp. Chapts. 7; 18</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> E.E. Levi, "Sulle equazioni lineari alle derivate parziali totalmente ellittiche" ''Rend. R. Acc. Lincei, Classe Sci. (V)'' , '''16''' (1907)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> E.E. Levi, "Sulle equazioni lineari totalmente ellittiche alle derivate parziali" ''Rend. Circ. Mat. Palermo'' , '''24''' (1907) pp. 275–317</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> A. Friedman, "Partial differential equations of parabolic type" , Prentice-Hall (1964)</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> L.V. Hörmander, "The analysis of linear partial differential operators" , '''1–4''' , Springer (1983–1985) pp. Chapts. 7; 18</TD></TR></table> |
Revision as of 14:52, 7 June 2020
One of the methods for studying boundary value problems for differential equations with variable coefficients by means of integral equations.
Suppose that in some region of the -dimensional Euclidean space one considers an elliptic differential operator (cf. Elliptic partial differential equation) of order ,
(1) |
In (1) the symbol is a multi-index, , where the are non-negative integers, , , . With every operator (1) there is associated the homogeneous elliptic operator
with constant coefficients, where is an arbitrary fixed point. Let denote a fundamental solution of depending parametrically on . Then the function is called the parametrix of the operator (1) with a singularity at .
In particular, for the second-order elliptic operator
one can take as parametrix with singularity at the Levi function
(2) |
In (2), , is the determinant of the matrix ,
and are the elements of the matrix inverse to .
Let be the integral operator
(3) |
acting on functions from and let
Since, by definition of a fundamental solution,
where is the identity operator, one has
This equality indicates that for every sufficiently-smooth function of compact support in there is a representation
(4) |
Moreover, if
then is a solution of the equation
Thus, the question of the local solvability of reduces to that of invertibility of .
If one applies to functions that vanish outside a ball of radius with centre at , then for a sufficiently small the norm of can be made smaller than one. Then the operator exists; consequently, also exists, which is the inverse operator to . Here is an integral operator with as kernel a fundamental solution of .
The name parametrix is sometimes given not only to the function , but also to the integral operator with the kernel , as defined by (3).
In the theory of pseudo-differential operators, instead of a parametrix of is defined as an operator such that and are integral operators with infinitely-differentiable kernels (cf. Pseudo-differential operator). If only (or ) is such an operator, then is called a left (or right) parametrix of . In other words, in (4) is a left parametrix if in this equality has an infinitely-differentiable kernel. If has a left parametrix and a right parametrix , then each of them is a parametrix. The existence of a parametrix has been proved for hypo-elliptic pseudo-differential operators (see [3]).
References
[1] | L. Bers, F. John, M. Schechter, "Partial differential equations" , Interscience (1964) |
[2] | C. Miranda, "Partial differential equations of elliptic type" , Springer (1970) (Translated from Italian) |
[3] | L. Hörmander, , Pseudo-differential operators , Moscow (1967) (In Russian; translated from English) |
Comments
The operator is called the principal part of , cf. Principal part of a differential operator. The parametrix method was anticipated in two fundamental papers by E.E. Levi [a1], [a2]. The same procedure is also applicable for constructing the fundamental solution of a parabolic equation with variable coefficients (see, e.g., [a3]).
References
[a1] | E.E. Levi, "Sulle equazioni lineari alle derivate parziali totalmente ellittiche" Rend. R. Acc. Lincei, Classe Sci. (V) , 16 (1907) |
[a2] | E.E. Levi, "Sulle equazioni lineari totalmente ellittiche alle derivate parziali" Rend. Circ. Mat. Palermo , 24 (1907) pp. 275–317 |
[a3] | A. Friedman, "Partial differential equations of parabolic type" , Prentice-Hall (1964) |
[a4] | L.V. Hörmander, "The analysis of linear partial differential operators" , 1–4 , Springer (1983–1985) pp. Chapts. 7; 18 |
Parametrix method. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Parametrix_method&oldid=49355