Difference between revisions of "User:Maximilian Janisch/latexlist/latex/NoNroff/57"
(→List) |
Rui Martins (talk | contribs) (→List) |
||
Line 10: | Line 10: | ||
5. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120030/c12003029.png ; $h _ { K }$ ; confidence 0.524 | 5. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120030/c12003029.png ; $h _ { K }$ ; confidence 0.524 | ||
− | 6. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130010/i13001042.png ; $\overline { d } _{ | + | 6. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130010/i13001042.png ; $\overline { d } _{(n)} ( A ) = \operatorname { per } ( A ) \geq \overline { d } _ { \lambda } ( A ).$ ; confidence 0.524 |
7. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130130/d13013071.png ; $\psi _ { + }$ ; confidence 0.524 | 7. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130130/d13013071.png ; $\psi _ { + }$ ; confidence 0.524 | ||
Line 20: | Line 20: | ||
10. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110300/a11030024.png ; $\theta _ { X }$ ; confidence 0.524 | 10. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110300/a11030024.png ; $\theta _ { X }$ ; confidence 0.524 | ||
− | 11. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w120090373.png ; $M = \mathcal{U} _ { Z } v ^ { + }$ ; confidence 0.524 | + | 11. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w120090373.png ; $M = \mathcal{U} _ { \mathbf{Z} } v ^ { + }$ ; confidence 0.524 |
− | 12. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130040/z1300409.png ; $ | + | 12. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130040/z1300409.png ; $\lceil n / 2 \rceil $ ; confidence 0.523 |
13. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120070/a120070121.png ; $\frac { d u } { d t } = A ( t , v ) u + f ( t , v ) , 0 < t \leq T , u ( 0 ) = u_0.$ ; confidence 0.523 | 13. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120070/a120070121.png ; $\frac { d u } { d t } = A ( t , v ) u + f ( t , v ) , 0 < t \leq T , u ( 0 ) = u_0.$ ; confidence 0.523 | ||
Line 32: | Line 32: | ||
16. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120260/a120260102.png ; $X = ( X _ { 1 } , \ldots , X _ { n } )$ ; confidence 0.523 | 16. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120260/a120260102.png ; $X = ( X _ { 1 } , \ldots , X _ { n } )$ ; confidence 0.523 | ||
− | 17. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120230/f12023077.png ; $\mathcal{L} _ { X } = [ | + | 17. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120230/f12023077.png ; $\mathcal{L} _ { X } = [ i_{X} , d ] = i_{X} d + d i _{X}$ ; confidence 0.523 |
18. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130190/f13019010.png ; $j = 0 , \ldots , 2 N - 1$ ; confidence 0.523 | 18. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130190/f13019010.png ; $j = 0 , \ldots , 2 N - 1$ ; confidence 0.523 | ||
Line 44: | Line 44: | ||
22. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120110/f120110153.png ; $\operatorname{supp} f \subset K$ ; confidence 0.523 | 22. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120110/f120110153.png ; $\operatorname{supp} f \subset K$ ; confidence 0.523 | ||
− | 23. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120230/d12023074.png ; $R ^ { - 1 } - Z ^ { * } R ^ { - 1 } Z = \ | + | 23. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120230/d12023074.png ; $R ^ { - 1 } - Z ^ { * } R ^ { - 1 } Z = \widetilde{ H } \square ^ { * } J \widetilde { H }$ ; confidence 0.523 |
24. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130260/m130260228.png ; $Q ( A )$ ; confidence 0.523 | 24. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130260/m130260228.png ; $Q ( A )$ ; confidence 0.523 | ||
− | 25. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120030/m12003092.png ; $\sum _ { i = 1 } ^ { n } \eta ( \ | + | 25. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120030/m12003092.png ; $\sum _ { i = 1 } ^ { n } \eta ( \overset{\rightharpoonup} { x } _ { i } , r _ { i } ) \overset{\rightharpoonup}{ x } _ { i } = \overset{\rightharpoonup}{ 0 },$ ; confidence 0.523 |
26. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130010/z13001039.png ; $\tilde{x} ( z ) z ^ { n - 1 } = h ( z ) / g ( z )$ ; confidence 0.523 | 26. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130010/z13001039.png ; $\tilde{x} ( z ) z ^ { n - 1 } = h ( z ) / g ( z )$ ; confidence 0.523 | ||
− | 27. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130300/b130300141.png ; $D ( 2 n_1 ) \times D ( 2 n_2 ) ^ { l }$ ; confidence 0.523 | + | 27. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130300/b130300141.png ; $D ( 2 n_1 ) \times D ( 2 n_2 ) ^ { \text{l} }$ ; confidence 0.523 |
− | 28. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120120/l12012092.png ; $p \in P$ ; confidence 0.523 | + | 28. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120120/l12012092.png ; $\operatorname{p} \in P$ ; confidence 0.523 |
29. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120230/a12023044.png ; $\overline{ D }$ ; confidence 0.522 | 29. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120230/a12023044.png ; $\overline{ D }$ ; confidence 0.522 | ||
− | 30. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a1300406.png ; $\lambda ^ { Fm } : Fm ^ { n } \rightarrow Fm$ ; confidence 0.522 | + | 30. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a1300406.png ; $\lambda ^ { \operatorname{Fm} } : \operatorname{Fm} ^ { n } \rightarrow \operatorname{Fm}$ ; confidence 0.522 |
31. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w120090268.png ; $h _ { \beta }$ ; confidence 0.522 | 31. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w120090268.png ; $h _ { \beta }$ ; confidence 0.522 | ||
Line 78: | Line 78: | ||
39. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130160/r13016036.png ; $\mathcal{R} ^ { \infty } \rightarrow \ldots \rightarrow \mathcal{R} ^ { m } \rightarrow \ldots \rightarrow \mathcal{R} ^ { 0 }$ ; confidence 0.522 | 39. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130160/r13016036.png ; $\mathcal{R} ^ { \infty } \rightarrow \ldots \rightarrow \mathcal{R} ^ { m } \rightarrow \ldots \rightarrow \mathcal{R} ^ { 0 }$ ; confidence 0.522 | ||
− | 40. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120100/b12010034.png ; $F _ { | + | 40. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120100/b12010034.png ; $F _ { s } ( t , x _ { 1 } , \ldots , x _ { s } ) =$ ; confidence 0.522 |
− | 41. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w12011045.png ; $= \int _ { \mathbf{R} ^ { 2 n } } \hat { | + | 41. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w12011045.png ; $= \int _ { \mathbf{R} ^ { 2 n } } \hat { a } ( \Xi ) \operatorname { exp } ( 2 i \pi \Xi . M ) d \Xi , $ ; confidence 0.522 |
− | 42. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012090/a01209011.png ; $ | + | 42. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012090/a01209011.png ; $a , b \in R$ ; confidence 0.522 |
43. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015340/b0153407.png ; $G ^ { \prime }$ ; confidence 0.522 | 43. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015340/b0153407.png ; $G ^ { \prime }$ ; confidence 0.522 | ||
− | 44. https://www.encyclopediaofmath.org/legacyimages/q/q130/q130050/q13005065.png ; $QS ( \mathbf{T} )$ ; confidence 0.522 | + | 44. https://www.encyclopediaofmath.org/legacyimages/q/q130/q130050/q13005065.png ; $\operatorname{QS} ( \mathbf{T} )$ ; confidence 0.522 |
− | 45. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120230/a12023052.png ; $\partial \Omega _ { | + | 45. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120230/a12023052.png ; $\partial \Omega _ { r }$ ; confidence 0.521 |
46. https://www.encyclopediaofmath.org/legacyimages/b/b017/b017030/b017030110.png ; $\Omega ^ { * }$ ; confidence 0.521 | 46. https://www.encyclopediaofmath.org/legacyimages/b/b017/b017030/b017030110.png ; $\Omega ^ { * }$ ; confidence 0.521 | ||
Line 96: | Line 96: | ||
48. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120310/c12031036.png ; $\alpha _ { l } \leq k $ ; confidence 0.521 | 48. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120310/c12031036.png ; $\alpha _ { l } \leq k $ ; confidence 0.521 | ||
− | 49. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120020/j12002083.png ; $\ | + | 49. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120020/j12002083.png ; $\mathsf{E} | Y _ { \infty } - Y _ { T } | \leq c \mathsf{P} [ T < \infty ]$ ; confidence 0.521 |
50. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012410/a012410136.png ; $U _ { 1 }$ ; confidence 0.521 | 50. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012410/a012410136.png ; $U _ { 1 }$ ; confidence 0.521 | ||
Line 106: | Line 106: | ||
53. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130290/a13029017.png ; $L_0$ ; confidence 0.521 | 53. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130290/a13029017.png ; $L_0$ ; confidence 0.521 | ||
− | 54. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120190/w1201909.png ; $f _ { | + | 54. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120190/w1201909.png ; $f _ { \text{w} }$ ; confidence 0.521 |
55. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130260/b13026067.png ; $f : \overline { \Omega } \rightarrow \mathbf{R} ^ { n }$ ; confidence 0.521 | 55. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130260/b13026067.png ; $f : \overline { \Omega } \rightarrow \mathbf{R} ^ { n }$ ; confidence 0.521 | ||
Line 114: | Line 114: | ||
57. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120440/b12044069.png ; $\{ g_j\}$ ; confidence 0.521 | 57. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120440/b12044069.png ; $\{ g_j\}$ ; confidence 0.521 | ||
− | 58. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130010/m13001035.png ; $\ | + | 58. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130010/m13001035.png ; $\mathsf{P} ( X _ { i } | \gamma _ { i } )$ ; confidence 0.521 |
59. https://www.encyclopediaofmath.org/legacyimages/q/q130/q130020/q13002031.png ; $\mathcal{P} ^ { \# _\mathcal{ P}}$ ; confidence 0.521 | 59. https://www.encyclopediaofmath.org/legacyimages/q/q130/q130020/q13002031.png ; $\mathcal{P} ^ { \# _\mathcal{ P}}$ ; confidence 0.521 | ||
− | 60. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120210/b12021036.png ; $X _ { i } \in a$ ; confidence 0.521 | + | 60. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120210/b12021036.png ; $X _ { i } \in \mathfrak{a}$ ; confidence 0.521 |
61. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057000/l05700071.png ; $W \equiv \lambda x . F ( x x )$ ; confidence 0.521 | 61. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057000/l05700071.png ; $W \equiv \lambda x . F ( x x )$ ; confidence 0.521 | ||
Line 126: | Line 126: | ||
63. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120160/s12016020.png ; $\| I _ { 1 } ( f ) - U ^ { i } ( f ) \| _ { 0 }$ ; confidence 0.520 | 63. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120160/s12016020.png ; $\| I _ { 1 } ( f ) - U ^ { i } ( f ) \| _ { 0 }$ ; confidence 0.520 | ||
− | 64. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130180/a1301809.png ; $\models _ { \mathcal{L} } \subseteq Mod \times Fm$ ; confidence 0.520 | + | 64. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130180/a1301809.png ; $\models _ { \mathcal{L} } \subseteq \operatorname{Mod} \times \operatorname{Fm}$ ; confidence 0.520 |
65. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120190/f12019038.png ; $Nh$ ; confidence 0.520 | 65. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120190/f12019038.png ; $Nh$ ; confidence 0.520 | ||
− | 66. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110660/b11066032.png ; $H f ( x ) = \operatorname { lim } _ { \epsilon | + | 66. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110660/b11066032.png ; $H f ( x ) = \operatorname { lim } _ { \epsilon \downarrow 0} \int _ { | t | > \epsilon } f ( x - t ) / t d t$ ; confidence 0.520 |
67. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120240/f1202409.png ; $t \mapsto t + T$ ; confidence 0.520 | 67. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120240/f1202409.png ; $t \mapsto t + T$ ; confidence 0.520 | ||
Line 146: | Line 146: | ||
73. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130300/a13030097.png ; $\mathcal{C} ( K )$ ; confidence 0.520 | 73. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130300/a13030097.png ; $\mathcal{C} ( K )$ ; confidence 0.520 | ||
− | 74. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130120/h13012016.png ; $\| f ( x ) - | + | 74. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130120/h13012016.png ; $\| f ( x ) - a ( x ) \| \leq \varepsilon$ ; confidence 0.520 |
− | 75. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120130/l12013049.png ; $V ( \ | + | 75. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120130/l12013049.png ; $V ( \widetilde{Z} _ { p } ) \neq \emptyset$ ; confidence 0.520 |
76. https://www.encyclopediaofmath.org/legacyimages/d/d110/d110080/d11008040.png ; $v ^ { H }$ ; confidence 0.520 | 76. https://www.encyclopediaofmath.org/legacyimages/d/d110/d110080/d11008040.png ; $v ^ { H }$ ; confidence 0.520 | ||
Line 156: | Line 156: | ||
78. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120150/s120150132.png ; $\pi : X \rightarrow X // G$ ; confidence 0.520 | 78. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120150/s120150132.png ; $\pi : X \rightarrow X // G$ ; confidence 0.520 | ||
− | 79. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130060/k13006027.png ; $ | + | 79. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130060/k13006027.png ; $a _ { k } = n$ ; confidence 0.520 |
80. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b130200118.png ; $\alpha _ { j } ( D _ { i } ) = \delta _ { i j }$ ; confidence 0.519 | 80. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b130200118.png ; $\alpha _ { j } ( D _ { i } ) = \delta _ { i j }$ ; confidence 0.519 | ||
− | 81. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240418.png ; $n ^ { - 1 } M _ { \ | + | 81. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240418.png ; $n ^ { - 1 } \mathbf{M} _ { \mathsf{E} }$ ; confidence 0.519 |
82. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130270/a13027031.png ; $P_n$ ; confidence 0.519 | 82. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130270/a13027031.png ; $P_n$ ; confidence 0.519 | ||
Line 166: | Line 166: | ||
83. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120230/c1202302.png ; $A _ { 0 } \subset \mathbf{R} ^ { n }$ ; confidence 0.519 | 83. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120230/c1202302.png ; $A _ { 0 } \subset \mathbf{R} ^ { n }$ ; confidence 0.519 | ||
− | 84. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120020/j12002050.png ; $\ | + | 84. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120020/j12002050.png ; $\mathsf{E} B _ { s } B _ { t } = \operatorname { min } ( s , t )$ ; confidence 0.519 |
85. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130270/a13027083.png ; $Q _ { n } ^ { * } w \rightarrow w$ ; confidence 0.519 | 85. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130270/a13027083.png ; $Q _ { n } ^ { * } w \rightarrow w$ ; confidence 0.519 | ||
Line 192: | Line 192: | ||
96. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120190/f12019074.png ; $\omega ^ { n} \neq \omega$ ; confidence 0.519 | 96. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120190/f12019074.png ; $\omega ^ { n} \neq \omega$ ; confidence 0.519 | ||
− | 97. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130620/s13062090.png ; $\mu _ { d }$ ; confidence 0.519 | + | 97. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130620/s13062090.png ; $\mu _ { \operatorname{d} }$ ; confidence 0.519 |
98. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130290/b130290177.png ; $\alpha _ { 1 } ^ { n _ { 1 } } , \dots , \alpha _ { d } ^ { n _ { d } }$ ; confidence 0.519 | 98. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130290/b130290177.png ; $\alpha _ { 1 } ^ { n _ { 1 } } , \dots , \alpha _ { d } ^ { n _ { d } }$ ; confidence 0.519 | ||
Line 200: | Line 200: | ||
100. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030090/d0300909.png ; $P _ { \nu } + R _ { \nu } = 0 , \quad \nu = 1,2 , \dots ,$ ; confidence 0.519 | 100. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030090/d0300909.png ; $P _ { \nu } + R _ { \nu } = 0 , \quad \nu = 1,2 , \dots ,$ ; confidence 0.519 | ||
− | 101. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130070/h1300707.png ; $[ k ^ { p } ( | + | 101. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130070/h1300707.png ; $[ k ^ { p } ( a _ { 1 } , \dots , a _ { s } ) : k ^ { p } ] = p ^ { s }$ ; confidence 0.519 |
102. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022110/c02211062.png ; $\mu _ { 1 } , \dots , \mu _ { m }$ ; confidence 0.519 | 102. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022110/c02211062.png ; $\mu _ { 1 } , \dots , \mu _ { m }$ ; confidence 0.519 | ||
Line 208: | Line 208: | ||
104. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120170/l120170193.png ; $\tau \notin \operatorname{Wh} ^ { * } ( \pi )$ ; confidence 0.518 | 104. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120170/l120170193.png ; $\tau \notin \operatorname{Wh} ^ { * } ( \pi )$ ; confidence 0.518 | ||
− | 105. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130030/e13003086.png ; $Q ( \zeta ( p ) )$ ; confidence 0.518 | + | 105. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130030/e13003086.png ; $\mathbf{Q} ( \zeta ( p ) )$ ; confidence 0.518 |
106. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120050/w12005048.png ; $\mathcal{D} \otimes \mathcal{D} = \mathbf{R} [ x , y ] / \langle x ^ { 2 } , y ^ { 2 } \rangle$ ; confidence 0.518 | 106. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120050/w12005048.png ; $\mathcal{D} \otimes \mathcal{D} = \mathbf{R} [ x , y ] / \langle x ^ { 2 } , y ^ { 2 } \rangle$ ; confidence 0.518 | ||
Line 214: | Line 214: | ||
107. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015010/b01501020.png ; $j_\gamma : B O _ { r } \rightarrow B O _ { r + 1}$ ; confidence 0.518 | 107. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015010/b01501020.png ; $j_\gamma : B O _ { r } \rightarrow B O _ { r + 1}$ ; confidence 0.518 | ||
− | 108. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130070/v13007016.png ; $( \ | + | 108. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130070/v13007016.png ; $( \overset{\rightharpoonup} { n } . \nabla \phi ) = U \overset{\rightharpoonup}{ n } . \overset{\rightharpoonup}{ x }.$ ; confidence 0.518 |
109. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130090/c13009030.png ; $\frac { d C _ { j } } { d x } ( x _ { k } ) = \left\{ \begin{array} { l l } { \frac { 1 } { 6 } ( 1 + 2 N ^ { 2 } ) } & { \text { for } j = k = 0 ,} \\ { - \frac { 1 } { 6 } ( 1 + 2 N ^ { 2 } ) } & { \text { for } j = k = N, } \\ { - \frac { x _ { j } } { 2 ( 1 - x _ { j } ^ { 2 } ) } } & { \text { for } j = k , 0 < j < N ,} \\ { ( - 1 ) ^ { j + k } \frac { \bar{c} _ { k } } { \bar{c} _ { j } ( x _ { k } - x _ { j } ) } } & { \text { for } j \neq k, } \end{array} \right.$ ; confidence 0.518 | 109. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130090/c13009030.png ; $\frac { d C _ { j } } { d x } ( x _ { k } ) = \left\{ \begin{array} { l l } { \frac { 1 } { 6 } ( 1 + 2 N ^ { 2 } ) } & { \text { for } j = k = 0 ,} \\ { - \frac { 1 } { 6 } ( 1 + 2 N ^ { 2 } ) } & { \text { for } j = k = N, } \\ { - \frac { x _ { j } } { 2 ( 1 - x _ { j } ^ { 2 } ) } } & { \text { for } j = k , 0 < j < N ,} \\ { ( - 1 ) ^ { j + k } \frac { \bar{c} _ { k } } { \bar{c} _ { j } ( x _ { k } - x _ { j } ) } } & { \text { for } j \neq k, } \end{array} \right.$ ; confidence 0.518 | ||
Line 240: | Line 240: | ||
120. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130210/c13021025.png ; $w _ { L _ { - } } = w _ { L _ { + } } * w _ { L _ { 0 } }$ ; confidence 0.517 | 120. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130210/c13021025.png ; $w _ { L _ { - } } = w _ { L _ { + } } * w _ { L _ { 0 } }$ ; confidence 0.517 | ||
− | 121. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120210/c1202103.png ; $A _ { | + | 121. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120210/c1202103.png ; $A _ { n } \in\mathcal{ A} _ { n }$ ; confidence 0.517 |
122. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120010/c12001049.png ; $F \subset \mathbf{P} ^ { n - 1 }$ ; confidence 0.517 | 122. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120010/c12001049.png ; $F \subset \mathbf{P} ^ { n - 1 }$ ; confidence 0.517 | ||
− | 123. https://www.encyclopediaofmath.org/legacyimages/y/y120/y120030/y1200308.png ; $^ { * } F _ { A } = - F _ { A }$ ; confidence 0.517 | + | 123. https://www.encyclopediaofmath.org/legacyimages/y/y120/y120030/y1200308.png ; $^ { * } F _ { A } = - F _ { A }.$ ; confidence 0.517 |
124. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130640/s13064031.png ; $\operatorname{wind}( a - z )$ ; confidence 0.517 | 124. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130640/s13064031.png ; $\operatorname{wind}( a - z )$ ; confidence 0.517 | ||
Line 258: | Line 258: | ||
129. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130210/t1302103.png ; $x = [ a , b ]$ ; confidence 0.517 | 129. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130210/t1302103.png ; $x = [ a , b ]$ ; confidence 0.517 | ||
− | 130. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130050/v13005046.png ; $Y ( 1 , x ) = 1$ ; confidence 0.517 | + | 130. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130050/v13005046.png ; $Y ( \mathbf{1} , x ) = 1$ ; confidence 0.517 |
131. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130020/h13002070.png ; $ \geq N$ ; confidence 0.517 | 131. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130020/h13002070.png ; $ \geq N$ ; confidence 0.517 | ||
Line 278: | Line 278: | ||
139. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120170/l120170233.png ; $T _ { \mathcal{P} }$ ; confidence 0.516 | 139. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120170/l120170233.png ; $T _ { \mathcal{P} }$ ; confidence 0.516 | ||
− | 140. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c12018059.png ; $g = E d x \ | + | 140. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c12018059.png ; $g = E d x \bigotimes d x +$ ; confidence 0.516 |
141. https://www.encyclopediaofmath.org/legacyimages/s/s083/s083360/s0833602.png ; $J _ { n } ( z ) = \frac { 1 } { \pi } \int _ { 0 } ^ { \pi } \operatorname { cos } ( n \theta - z \operatorname { sin } \theta ) d \theta +$ ; confidence 0.516 | 141. https://www.encyclopediaofmath.org/legacyimages/s/s083/s083360/s0833602.png ; $J _ { n } ( z ) = \frac { 1 } { \pi } \int _ { 0 } ^ { \pi } \operatorname { cos } ( n \theta - z \operatorname { sin } \theta ) d \theta +$ ; confidence 0.516 | ||
Line 294: | Line 294: | ||
147. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130010/f13001019.png ; $\mathbf{F} _ { q } [ x ]$ ; confidence 0.516 | 147. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130010/f13001019.png ; $\mathbf{F} _ { q } [ x ]$ ; confidence 0.516 | ||
− | 148. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120060/i12006043.png ; $\operatorname{PredSucc}( x ) = \{ y : y < P \text { | + | 148. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120060/i12006043.png ; $\operatorname{PredSucc}( x ) = \{ y : y <_{P} z \ \text { for allz } \in \operatorname { Succ } ( x ) \}$ ; confidence 0.516 |
149. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120420/b120420145.png ; $\sum h _ { ( 1 ) } \otimes h _ { ( 2 ) }$ ; confidence 0.516 | 149. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120420/b120420145.png ; $\sum h _ { ( 1 ) } \otimes h _ { ( 2 ) }$ ; confidence 0.516 | ||
Line 306: | Line 306: | ||
153. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120120/e12012032.png ; $\operatorname { log } L ( \theta | Y _ { aug } )$ ; confidence 0.516 | 153. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120120/e12012032.png ; $\operatorname { log } L ( \theta | Y _ { aug } )$ ; confidence 0.516 | ||
− | 154. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120030/l12003018.png ; $\mathcal{S} q ^ { 0 } = Id$ ; confidence 0.516 | + | 154. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120030/l12003018.png ; $\mathcal{S} \text{q} ^ { 0 } = \operatorname{Id}$ ; confidence 0.516 |
155. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130010/g13001081.png ; $\operatorname { log } _ { \omega } 0 = \infty$ ; confidence 0.516 | 155. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130010/g13001081.png ; $\operatorname { log } _ { \omega } 0 = \infty$ ; confidence 0.516 | ||
− | 156. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120150/e12015043.png ; $\mathcal{B} _ { j k l} ^ { i }$ ; confidence 0.516 | + | 156. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120150/e12015043.png ; $\mathcal{B} _ { j k \text{l}} ^ { i }$ ; confidence 0.516 |
− | 157. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130110/z13011033.png ; $G _ { n } ( f ( k , n ) ) = \operatorname { max } \{ k ^ { \prime } : f _ { ( k ^ { \prime } , n ) } = f ( k , n ) \}$ ; confidence 0.516 | + | 157. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130110/z13011033.png ; $G _ { n } ( f ( k , n ) ) = \operatorname { max } \left\{ k ^ { \prime } : f _ { ( k ^ { \prime } , n ) } = f ( k , n ) \right\}$ ; confidence 0.516 |
158. https://www.encyclopediaofmath.org/legacyimages/y/y120/y120040/y12004015.png ; $\operatorname { inf } _ { u \in \mathcal{A} } I ( u )$ ; confidence 0.516 | 158. https://www.encyclopediaofmath.org/legacyimages/y/y120/y120040/y12004015.png ; $\operatorname { inf } _ { u \in \mathcal{A} } I ( u )$ ; confidence 0.516 | ||
Line 318: | Line 318: | ||
159. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120050/g1200508.png ; $\subset \mathbf{R} ^ { m }$ ; confidence 0.515 | 159. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120050/g1200508.png ; $\subset \mathbf{R} ^ { m }$ ; confidence 0.515 | ||
− | 160. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120020/j12002034.png ; $\varphi _ { 2 } + i \ | + | 160. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120020/j12002034.png ; $\varphi _ { 2 } + i \widetilde { \varphi } _ { 2 }$ ; confidence 0.515 |
161. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120080/c12008088.png ; $\Delta ( z _ { 1 } , z _ { 2 } ) = \operatorname { det } \left[ \begin{array} { c c } { E _ { 1 } z _ { 1 } - A _ { 1 } } & { E _ { 2 } z _ { 2 } - A _ { 2 } } \\ { E _ { 3 } z _ { 1 } - A _ { 3 } } & { E _ { 4 } z _ { 2 } - A_4 } \end{array} \right] =$ ; confidence 0.515 | 161. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120080/c12008088.png ; $\Delta ( z _ { 1 } , z _ { 2 } ) = \operatorname { det } \left[ \begin{array} { c c } { E _ { 1 } z _ { 1 } - A _ { 1 } } & { E _ { 2 } z _ { 2 } - A _ { 2 } } \\ { E _ { 3 } z _ { 1 } - A _ { 3 } } & { E _ { 4 } z _ { 2 } - A_4 } \end{array} \right] =$ ; confidence 0.515 | ||
Line 332: | Line 332: | ||
166. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520331.png ; $\{ f _ { j _ { 1 } } , \dots , f _ { j _ { m } } \}$ ; confidence 0.515 | 166. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520331.png ; $\{ f _ { j _ { 1 } } , \dots , f _ { j _ { m } } \}$ ; confidence 0.515 | ||
− | 167. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130290/f13029019.png ; $T _ { prod } \times T _ { m }$ ; confidence 0.515 | + | 167. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130290/f13029019.png ; $T _ { \operatorname{prod} } \times T _ { m }$ ; confidence 0.515 |
168. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130070/c13007095.png ; $f ( X ^ { \prime } , X ^ { \prime } Y ^ { \prime } ) = X ^ { \prime d } f ^ { \prime } ( X ^ { \prime } , Y ^ { \prime } )$ ; confidence 0.515 | 168. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130070/c13007095.png ; $f ( X ^ { \prime } , X ^ { \prime } Y ^ { \prime } ) = X ^ { \prime d } f ^ { \prime } ( X ^ { \prime } , Y ^ { \prime } )$ ; confidence 0.515 | ||
Line 340: | Line 340: | ||
170. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013026.png ; $\phi$ ; confidence 0.515 | 170. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013026.png ; $\phi$ ; confidence 0.515 | ||
− | 171. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120200/w12020038.png ; $\int _ { | + | 171. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120200/w12020038.png ; $\int _ { a } ^ { b } ( f ^ { ( r ) } ( x ) ) ^ { 2 } d x \leq 1$ ; confidence 0.515 |
− | 172. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m13014080.png ; $\mathcal{D} \subset \mathbf{C} ^ { | + | 172. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m13014080.png ; $\mathcal{D} \subset \mathbf{C} ^ { n }$ ; confidence 0.515 |
− | 173. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120290/b12029014.png ; $\varepsilon _ { | + | 173. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120290/b12029014.png ; $\varepsilon _ { x } ^ { A } ( s ) = \widehat { R } _ { s } ^ { A } ( x )$ ; confidence 0.515 |
174. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120210/c12021073.png ; $d P _ { n } ^ { \prime } / d P_n$ ; confidence 0.515 | 174. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120210/c12021073.png ; $d P _ { n } ^ { \prime } / d P_n$ ; confidence 0.515 | ||
Line 352: | Line 352: | ||
176. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120080/c12008032.png ; $\Delta \in C ^ { n \times n }$ ; confidence 0.515 | 176. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120080/c12008032.png ; $\Delta \in C ^ { n \times n }$ ; confidence 0.515 | ||
− | 177. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130060/i130060145.png ; $q ( x ) \ | + | 177. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130060/i130060145.png ; $q ( x ) \not\equiv 0$ ; confidence 0.515 |
178. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032110/d03211034.png ; $\tau \rightarrow \infty$ ; confidence 0.515 | 178. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032110/d03211034.png ; $\tau \rightarrow \infty$ ; confidence 0.515 | ||
− | 179. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130260/c13026021.png ; $ | + | 179. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130260/c13026021.png ; $\langle T , \phi \rangle$ ; confidence 0.515 |
− | 180. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120060/t12006071.png ; $E _ { atom } ^ { TF } ( N _ { j } , Z _ { j } )$ ; confidence 0.515 | + | 180. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120060/t12006071.png ; $E _ { \operatorname{atom} } ^ { \operatorname{TF} } ( N _ { j } , Z _ { j } )$ ; confidence 0.515 |
− | 181. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130020/e1300204.png ; $( \mathcal{C} ^ { \infty } ( \Omega ) ) ^ { N }$ ; confidence 0.515 | + | 181. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130020/e1300204.png ; $( \mathcal{C} ^ { \infty } ( \Omega ) ) ^ { \mathbf{N} }$ ; confidence 0.515 |
182. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120040/i12004071.png ; $K ( s _ { r } )$ ; confidence 0.515 | 182. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120040/i12004071.png ; $K ( s _ { r } )$ ; confidence 0.515 | ||
Line 376: | Line 376: | ||
188. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120120/m12012085.png ; $g b = q b $ ; confidence 0.514 | 188. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120120/m12012085.png ; $g b = q b $ ; confidence 0.514 | ||
− | 189. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120170/l12017024.png ; $K ^ { 2 } \swarrow L ^ { 3 } \searrow pt$ ; confidence 0.514 | + | 189. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120170/l12017024.png ; $K ^ { 2 } \swarrow L ^ { 3 } \searrow \operatorname{pt}$ ; confidence 0.514 |
190. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120060/i12006019.png ; $P = ( X _ { P } , < _ { P } )$ ; confidence 0.514 | 190. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120060/i12006019.png ; $P = ( X _ { P } , < _ { P } )$ ; confidence 0.514 | ||
Line 382: | Line 382: | ||
191. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130510/s130510128.png ; $v \in F ( u )$ ; confidence 0.514 | 191. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130510/s130510128.png ; $v \in F ( u )$ ; confidence 0.514 | ||
− | 192. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120020/c12002011.png ; $\ | + | 192. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120020/c12002011.png ; $\widehat{u}$ ; confidence 0.514 |
193. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130290/b130290186.png ; $R ( I )$ ; confidence 0.514 | 193. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130290/b130290186.png ; $R ( I )$ ; confidence 0.514 | ||
Line 394: | Line 394: | ||
197. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130060/b1300608.png ; $\| x + y \| \leq \| x \| + \| y \|$ ; confidence 0.514 | 197. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130060/b1300608.png ; $\| x + y \| \leq \| x \| + \| y \|$ ; confidence 0.514 | ||
− | 198. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120040/i12004097.png ; $f = \int _ { \partial D } f \ | + | 198. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120040/i12004097.png ; $f = \int _ { \partial D } f \bigwedge K _ { q } - \overline { \partial _ { z } } \int f \bigwedge K _ { q- 1 } + \int _ { D } \overline { \partial } f \bigwedge K _ { q }.$ ; confidence 0.514 |
199. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130190/c13019037.png ; $N ^ { \prime } / L ^ { \prime }$ ; confidence 0.514 | 199. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130190/c13019037.png ; $N ^ { \prime } / L ^ { \prime }$ ; confidence 0.514 | ||
Line 400: | Line 400: | ||
200. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120300/s12030010.png ; $X ^ { G } \rightarrow X ^ { h G }$ ; confidence 0.514 | 200. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120300/s12030010.png ; $X ^ { G } \rightarrow X ^ { h G }$ ; confidence 0.514 | ||
− | 201. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180153.png ; $\gamma : \mathcal{E} * \rightarrow \mathcal{E}$ ; confidence 0.514 | + | 201. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180153.png ; $\gamma : \mathcal{E}_{*} \rightarrow \mathcal{E}$ ; confidence 0.514 |
202. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130060/b13006032.png ; $\Lambda = \operatorname { diag } \{ \lambda _ { 1 } , \ldots , \lambda _ { n } \}$ ; confidence 0.514 | 202. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130060/b13006032.png ; $\Lambda = \operatorname { diag } \{ \lambda _ { 1 } , \ldots , \lambda _ { n } \}$ ; confidence 0.514 | ||
− | 203. https://www.encyclopediaofmath.org/legacyimages/x/x120/x120030/x12003031.png ; $K ( \Omega ) = \int _ { \lambda \ | + | 203. https://www.encyclopediaofmath.org/legacyimages/x/x120/x120030/x12003031.png ; $K ( \Omega ) = \int _ { \lambda \bigcap \Omega \neq \phi } d \omega ( \lambda ),$ ; confidence 0.514 |
− | 204. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110660/b11066034.png ; $\operatorname{ | + | 204. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110660/b11066034.png ; $\operatorname{BMO}$ ; confidence 0.514 |
205. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130010/g13001025.png ; $x \mapsto x ^ { q }$ ; confidence 0.514 | 205. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130010/g13001025.png ; $x \mapsto x ^ { q }$ ; confidence 0.514 | ||
Line 412: | Line 412: | ||
206. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120200/f12020020.png ; $v _ { n+1 } = A v _ { n}$ ; confidence 0.514 | 206. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120200/f12020020.png ; $v _ { n+1 } = A v _ { n}$ ; confidence 0.514 | ||
− | 207. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130210/f1302106.png ; $L _ { C } ^ { 1 } ( G )$ ; confidence 0.513 | + | 207. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130210/f1302106.png ; $L _ { \mathbf{C} } ^ { 1 } ( G )$ ; confidence 0.513 |
208. https://www.encyclopediaofmath.org/legacyimages/d/d110/d110080/d11008032.png ; $( L ^ { H } , w ^ { H } )$ ; confidence 0.513 | 208. https://www.encyclopediaofmath.org/legacyimages/d/d110/d110080/d11008032.png ; $( L ^ { H } , w ^ { H } )$ ; confidence 0.513 | ||
Line 420: | Line 420: | ||
210. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120270/e12027013.png ; $p _ { m } ^ { \alpha , \beta }$ ; confidence 0.513 | 210. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120270/e12027013.png ; $p _ { m } ^ { \alpha , \beta }$ ; confidence 0.513 | ||
− | 211. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120150/m12015063.png ; $\frac { \Gamma _ { p } [ \frac { \langle n + m + p - 1 \rangle} { 2 } ] } { \pi ^ { m p / 2 } \Gamma _ { p } ( ( n + p - 1 ) / 2 ) } | \Sigma | ^ { - m / 2 } | \Omega | ^ { - p / 2 } \times$ ; confidence 0.513 | + | 211. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120150/m12015063.png ; $\frac { \Gamma _ { p } \left[ \frac { \langle n + m + p - 1 \rangle} { 2 } \right] } { \pi ^ { m p / 2 } \Gamma _ { p } ( ( n + p - 1 ) / 2 ) } | \Sigma | ^ { - m / 2 } | \Omega | ^ { - p / 2 } \times$ ; confidence 0.513 |
− | 212. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120130/l120130104.png ; $a \in \ | + | 212. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120130/l120130104.png ; $a \in \widetilde{\mathbf{Z}} ^ { n}$ ; confidence 0.513 |
213. https://www.encyclopediaofmath.org/legacyimages/r/r082/r082060/r082060124.png ; $H _ { g }$ ; confidence 0.513 | 213. https://www.encyclopediaofmath.org/legacyimages/r/r082/r082060/r082060124.png ; $H _ { g }$ ; confidence 0.513 | ||
− | 214. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120210/b120210114.png ; $H ^ { i } ( a , M )$ ; confidence 0.513 | + | 214. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120210/b120210114.png ; $H ^ { i } ( \mathfrak{a} , M )$ ; confidence 0.513 |
− | 215. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120040/c12004012.png ; $( f \in H _ { | + | 215. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120040/c12004012.png ; $( f \in H _ { c } ( D ) )$ ; confidence 0.513 |
− | 216. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120060/w12006095.png ; $\xi ( f g ) = \xi ( f ) g + f . \xi ( g ) + \xi ( f ) . \xi ( g ),$ ; confidence 0.513 | + | 216. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120060/w12006095.png ; $\xi ( f . g ) = \xi ( f ) g + f . \xi ( g ) + \xi ( f ) . \xi ( g ),$ ; confidence 0.513 |
217. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130270/a13027038.png ; $Q _ { n } y = \sum _ { i = 1 } ^ { n } ( y , \psi _ { i } ) \psi _ { i }$ ; confidence 0.513 | 217. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130270/a13027038.png ; $Q _ { n } y = \sum _ { i = 1 } ^ { n } ( y , \psi _ { i } ) \psi _ { i }$ ; confidence 0.513 | ||
Line 438: | Line 438: | ||
219. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130110/d13011048.png ; $\gamma_3$ ; confidence 0.513 | 219. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130110/d13011048.png ; $\gamma_3$ ; confidence 0.513 | ||
− | 220. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130290/b13029037.png ; $A = B / ( X _ { 1 } , \dots , X _ { d } ) \ | + | 220. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130290/b13029037.png ; $A = B / ( X _ { 1 } , \dots , X _ { d } ) \bigcap ( Y _ { 1 } , \dots , Y _ { d } ),$ ; confidence 0.513 |
− | 221. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130260/c13026012.png ; $\operatorname{supp} \ | + | 221. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130260/c13026012.png ; $\operatorname{supp} \phi_{j} \subset K$ ; confidence 0.513 |
222. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120010/b12001012.png ; $u ^ { \prime }$ ; confidence 0.513 | 222. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120010/b12001012.png ; $u ^ { \prime }$ ; confidence 0.513 | ||
Line 448: | Line 448: | ||
224. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120150/m12015037.png ; $f _ { Y } ( Y )$ ; confidence 0.513 | 224. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120150/m12015037.png ; $f _ { Y } ( Y )$ ; confidence 0.513 | ||
− | 225. https://www.encyclopediaofmath.org/legacyimages/d/d110/d110080/d11008019.png ; $[ L : K ] = d . e . f. g$ ; confidence 0.512 | + | 225. https://www.encyclopediaofmath.org/legacyimages/d/d110/d110080/d11008019.png ; $[ L : K ] = d.e.f.g$ ; confidence 0.512 |
226. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130250/m13025057.png ; $\rho _ { \varepsilon }$ ; confidence 0.512 | 226. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130250/m13025057.png ; $\rho _ { \varepsilon }$ ; confidence 0.512 | ||
− | 227. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120260/a12026075.png ; $y _ { | + | 227. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120260/a12026075.png ; $y _ { c }$ ; confidence 0.512 |
228. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120270/a1202708.png ; $\rho : \operatorname { Gal } ( N / K ) \rightarrow G l _ { n } ( C )$ ; confidence 0.512 | 228. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120270/a1202708.png ; $\rho : \operatorname { Gal } ( N / K ) \rightarrow G l _ { n } ( C )$ ; confidence 0.512 | ||
− | 229. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120150/p12015021.png ; $\ | + | 229. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120150/p12015021.png ; $\widehat { \chi }_{K}$ ; confidence 0.512 |
230. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120160/a12016019.png ; $U_i$ ; confidence 0.512 | 230. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120160/a12016019.png ; $U_i$ ; confidence 0.512 | ||
Line 464: | Line 464: | ||
232. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120290/d12029089.png ; $m = 1,2 , \dots$ ; confidence 0.512 | 232. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120290/d12029089.png ; $m = 1,2 , \dots$ ; confidence 0.512 | ||
− | 233. https://www.encyclopediaofmath.org/legacyimages/v/v096/v096900/v096900145.png ; $Z = \cup _ { p = 1 } ^ { | + | 233. https://www.encyclopediaofmath.org/legacyimages/v/v096/v096900/v096900145.png ; $Z = \cup _ { p = 1 } ^ { \aleph _ { 0 } } Z _ { p }$ ; confidence 0.512 |
− | 234. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030280/d0302804.png ; $\operatorname { lim } _ { n \rightarrow \infty } [ a _ { 0 } + \frac { n } { n + 1 } a _ { 1 } + \frac { n ( n - 1 ) } { ( n + 1 ) ( n + 2 ) } a _ { 2 } + ...$ ; confidence 0.512 | + | 234. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030280/d0302804.png ; $\operatorname { lim } _ { n \rightarrow \infty } \left[ a _ { 0 } + \frac { n } { n + 1 } a _ { 1 } + \frac { n ( n - 1 ) } { ( n + 1 ) ( n + 2 ) } a _ { 2 } + ... \right.$ ; confidence 0.512 |
235. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120080/c120080117.png ; $\sum _ { i = 0 } ^ { r _ { 1 } } \sum _ { i = 0 } ^ { r _ { 2 } } a _ { i j } T _ { i j } = 0$ ; confidence 0.512 | 235. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120080/c120080117.png ; $\sum _ { i = 0 } ^ { r _ { 1 } } \sum _ { i = 0 } ^ { r _ { 2 } } a _ { i j } T _ { i j } = 0$ ; confidence 0.512 | ||
Line 472: | Line 472: | ||
236. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120060/n12006032.png ; $T T$ ; confidence 0.512 | 236. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120060/n12006032.png ; $T T$ ; confidence 0.512 | ||
− | 237. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120160/a12016080.png ; $y _ { i } = \Delta \text { sales } = ( \frac { c _ { 1 } } { 1 - \lambda } ) \frac { I } { k } ( \text { in market } i )$ ; confidence 0.512 | + | 237. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120160/a12016080.png ; $y _ { i } = \Delta \text { sales } = \left( \frac { c _ { 1 } } { 1 - \lambda } \right) \frac { I } { k } ( \text { in market } i )$ ; confidence 0.512 |
238. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130090/w130090105.png ; $\{ g _ { n } \} _ { n = 0 } ^ { \infty }$ ; confidence 0.512 | 238. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130090/w130090105.png ; $\{ g _ { n } \} _ { n = 0 } ^ { \infty }$ ; confidence 0.512 | ||
Line 480: | Line 480: | ||
240. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040586.png ; $\operatorname{Fm} _ { P }$ ; confidence 0.512 | 240. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040586.png ; $\operatorname{Fm} _ { P }$ ; confidence 0.512 | ||
− | 241. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120140/b12014045.png ; $s _ { i } ( z ) | + | 241. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120140/b12014045.png ; $s _ { i } ( z ) a ( z ) \equiv r _ { i } ( z ) ( \operatorname { mod } b ( z ) )$ ; confidence 0.512 |
− | 242. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m130140101.png ; $\operatorname { det } \| \frac { 1 } { b _ { j } ^ { l } } \| \neq 0$ ; confidence 0.511 | + | 242. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m130140101.png ; $\operatorname { det } \left\| \frac { 1 } { b _ { j } ^ { l } } \right\| \neq 0,$ ; confidence 0.511 |
243. https://www.encyclopediaofmath.org/legacyimages/c/c110/c110310/c11031012.png ; $X _ { \lambda }$ ; confidence 0.511 | 243. https://www.encyclopediaofmath.org/legacyimages/c/c110/c110310/c11031012.png ; $X _ { \lambda }$ ; confidence 0.511 | ||
Line 508: | Line 508: | ||
254. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120050/k12005048.png ; $\lambda = \operatorname { sup } \{ t \in \mathbf{Q} : H + t ( K _ { X } + B ) \text { is } f\square \text{ ample} \}$ ; confidence 0.511 | 254. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120050/k12005048.png ; $\lambda = \operatorname { sup } \{ t \in \mathbf{Q} : H + t ( K _ { X } + B ) \text { is } f\square \text{ ample} \}$ ; confidence 0.511 | ||
− | 255. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120150/b12015095.png ; $P _ { 0 }$ ; confidence 0.510 | + | 255. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120150/b12015095.png ; $\mathsf{P} _ { 0 }$ ; confidence 0.510 |
− | 256. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120260/a12026046.png ; $y \cong \ | + | 256. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120260/a12026046.png ; $y \cong \widetilde{y}$ ; confidence 0.510 |
257. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130190/f13019034.png ; $j = 0 , \dots , N - 1$ ; confidence 0.510 | 257. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130190/f13019034.png ; $j = 0 , \dots , N - 1$ ; confidence 0.510 | ||
Line 516: | Line 516: | ||
258. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120370/b12037024.png ; $g _ { 1 } , \ldots , g _ { k }$ ; confidence 0.510 | 258. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120370/b12037024.png ; $g _ { 1 } , \ldots , g _ { k }$ ; confidence 0.510 | ||
− | 259. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180281.png ; $ | + | 259. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180281.png ; $a \in C ^ { \infty } ( M )$ ; confidence 0.510 |
− | 260. https://www.encyclopediaofmath.org/legacyimages/v/v096/v096490/v09649073.png ; $X ^ { * * }$ ; confidence 0.510 | + | 260. https://www.encyclopediaofmath.org/legacyimages/v/v096/v096490/v09649073.png ; $X ^ {**}$ ; confidence 0.510 |
261. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120190/e1201909.png ; $p + F . v $ ; confidence 0.510 | 261. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120190/e1201909.png ; $p + F . v $ ; confidence 0.510 | ||
Line 528: | Line 528: | ||
264. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130030/h13003012.png ; $r ( z ) = p ( z ) / q ( z )$ ; confidence 0.510 | 264. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130030/h13003012.png ; $r ( z ) = p ( z ) / q ( z )$ ; confidence 0.510 | ||
− | 265. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120080/c12008059.png ; $\Delta ( A , E ) = \sum _ { i = 0 } ^ { n } | + | 265. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120080/c12008059.png ; $\Delta ( A , E ) = \sum _ { i = 0 } ^ { n } a _ { i , n - i }A ^ { i } E ^ { n - i } = 0.$ ; confidence 0.510 |
266. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120200/w1202004.png ; $R = I - \sum _ { \nu = 1 } ^ { n } \alpha _ { \nu } L _ { \nu }$ ; confidence 0.510 | 266. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120200/w1202004.png ; $R = I - \sum _ { \nu = 1 } ^ { n } \alpha _ { \nu } L _ { \nu }$ ; confidence 0.510 | ||
Line 554: | Line 554: | ||
277. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840214.png ; $x \in \mathcal{K}$ ; confidence 0.510 | 277. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840214.png ; $x \in \mathcal{K}$ ; confidence 0.510 | ||
− | 278. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120160/e12016016.png ; $\int ( R _ { h} + \frac { 1 } { 2 } f ^ { - 2 } h ^ { \alpha \beta } \partial _ { \alpha } \epsilon\partial _ { \beta } \overline { \ | + | 278. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120160/e12016016.png ; $\int \left( R _ { h} + \frac { 1 } { 2 } f ^ { - 2 } h ^ { \alpha \beta } \partial _ { \alpha } \epsilon\partial _ { \beta } \overline { \mathcal{E} } \right) d \mu _ { h},$ ; confidence 0.509 |
279. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120250/s12025020.png ; $E _ { n + 1 } ( x ) = T _ { n + 1 } ( x )$ ; confidence 0.509 | 279. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120250/s12025020.png ; $E _ { n + 1 } ( x ) = T _ { n + 1 } ( x )$ ; confidence 0.509 | ||
− | 280. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130060/i130060167.png ; $| F ( 2 x ) | \leq c \sigma ( x ) , | A ( x , y ) | \leq c \sigma ( \frac { x + y } { 2 } ),$ ; confidence 0.509 | + | 280. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130060/i130060167.png ; $| F ( 2 x ) | \leq c \sigma ( x ) , | A ( x , y ) | \leq c \sigma \left( \frac { x + y } { 2 } \right) ,$ ; confidence 0.509 |
281. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120020/c12002048.png ; $ c _g = \int _ { 0 } ^ { \infty } g ( t ) \operatorname { log } \frac { 1 } { t } d t,$ ; confidence 0.509 | 281. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120020/c12002048.png ; $ c _g = \int _ { 0 } ^ { \infty } g ( t ) \operatorname { log } \frac { 1 } { t } d t,$ ; confidence 0.509 | ||
Line 570: | Line 570: | ||
285. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130100/c13010032.png ; $(C)\int _ { A } f _ { 1 } d m \leq ( C ) \int _ { A } f_2 dm$ ; confidence 0.509 | 285. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130100/c13010032.png ; $(C)\int _ { A } f _ { 1 } d m \leq ( C ) \int _ { A } f_2 dm$ ; confidence 0.509 | ||
− | 286. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120500/b12050034.png ; $\mathcal{Z} _ { 0 } \cap [ 0 , t$ ; confidence 0.509 | + | 286. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120500/b12050034.png ; $\mathcal{Z} _ { 0 } \cap [ 0 , t] $ ; confidence 0.509 |
287. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120130/h12013048.png ; $\omega : I \rightarrow X$ ; confidence 0.509 | 287. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120130/h12013048.png ; $\omega : I \rightarrow X$ ; confidence 0.509 | ||
Line 578: | Line 578: | ||
289. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120130/h12013052.png ; $T o p$ ; confidence 0.509 | 289. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120130/h12013052.png ; $T o p$ ; confidence 0.509 | ||
− | 290. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130080/o1300805.png ; $q _ { m } ( x ) \in L _ { 1,1 } (\mathbf{ R} _ { + } ) : = \{ q : \int _ { 0 } ^ { \infty } x | q ( x ) | d x < \infty \}.$ ; confidence 0.509 | + | 290. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130080/o1300805.png ; $q _ { m } ( x ) \in L _ { 1,1 } (\mathbf{ R} _ { + } ) : = \left\{ q : \int _ { 0 } ^ { \infty } x | q ( x ) | d x < \infty \right\}.$ ; confidence 0.509 |
− | 291. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011050/a01105024.png ; $\mathcal{O} _ | + | 291. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011050/a01105024.png ; $\mathcal{O} _ { S }$ ; confidence 0.509 |
292. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130130/t130130102.png ; $pd _ { \Lambda } T = n < \infty$ ; confidence 0.509 | 292. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130130/t130130102.png ; $pd _ { \Lambda } T = n < \infty$ ; confidence 0.509 | ||
Line 586: | Line 586: | ||
293. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120060/w12006022.png ; $T _ { A } : \mathcal{M} f \rightarrow \mathcal{M} f$ ; confidence 0.509 | 293. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120060/w12006022.png ; $T _ { A } : \mathcal{M} f \rightarrow \mathcal{M} f$ ; confidence 0.509 | ||
− | 294. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120230/s12023052.png ; $\frac { B _ { - | + | 294. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120230/s12023052.png ; $\frac { B _ { - ( \delta + p - 1 ) / 2} \left( \frac { 1 } { 4 } \Sigma T T ^ { \prime } \right) } { \Gamma _ { p } \left[ \frac { 1 } { 2 } ( \delta + p - 1 ) \right] },$ ; confidence 0.509 |
− | 295. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120050/t1200509.png ; $d f _ { | + | 295. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120050/t1200509.png ; $d f _ { x } : T V _ { x } \rightarrow T W _ { f ( x )}$ ; confidence 0.509 |
296. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w120110205.png ; $( q_j , p _ { j } )$ ; confidence 0.508 | 296. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w120110205.png ; $( q_j , p _ { j } )$ ; confidence 0.508 |
Revision as of 21:31, 19 May 2020
List
1. ; $\operatorname{Prim}( U ( \mathfrak{g} ) )$ ; confidence 0.525
2. ; $z ( a ) = 0 = z ( b )$ ; confidence 0.524
3. ; $\psi = ( \text { id } \otimes \varphi ) \circ L : A \rightarrow \operatorname { Fun } _ { q } ( G )$ ; confidence 0.524
4. ; $B _ { m } = I _ { m }$ ; confidence 0.524
5. ; $h _ { K }$ ; confidence 0.524
6. ; $\overline { d } _{(n)} ( A ) = \operatorname { per } ( A ) \geq \overline { d } _ { \lambda } ( A ).$ ; confidence 0.524
7. ; $\psi _ { + }$ ; confidence 0.524
8. ; $w \in T V$ ; confidence 0.524
9. ; $n ( \epsilon , F _ { d } ) = \operatorname { min } \{ n : e _ { n} ( F _ { d } ) \leq \epsilon \}.$ ; confidence 0.524
10. ; $\theta _ { X }$ ; confidence 0.524
11. ; $M = \mathcal{U} _ { \mathbf{Z} } v ^ { + }$ ; confidence 0.524
12. ; $\lceil n / 2 \rceil $ ; confidence 0.523
13. ; $\frac { d u } { d t } = A ( t , v ) u + f ( t , v ) , 0 < t \leq T , u ( 0 ) = u_0.$ ; confidence 0.523
14. ; $( \varphi _ { j } ) _ { j \in \mathbf{N} }$ ; confidence 0.523
15. ; $Z = Z_j$ ; confidence 0.523
16. ; $X = ( X _ { 1 } , \ldots , X _ { n } )$ ; confidence 0.523
17. ; $\mathcal{L} _ { X } = [ i_{X} , d ] = i_{X} d + d i _{X}$ ; confidence 0.523
18. ; $j = 0 , \ldots , 2 N - 1$ ; confidence 0.523
19. ; $uv$ ; confidence 0.523
20. ; $= \Lambda ^ { m } + D _ { 1 } \Lambda ^ { m - 1 } + \ldots + D _ { m - 1 } \Lambda + D _ { m } , D _ { k } \in C ^ { n \times n } , k = 1 , \ldots , m,$ ; confidence 0.523
21. ; $N _ { 2 } / N _ { 1 }$ ; confidence 0.523
22. ; $\operatorname{supp} f \subset K$ ; confidence 0.523
23. ; $R ^ { - 1 } - Z ^ { * } R ^ { - 1 } Z = \widetilde{ H } \square ^ { * } J \widetilde { H }$ ; confidence 0.523
24. ; $Q ( A )$ ; confidence 0.523
25. ; $\sum _ { i = 1 } ^ { n } \eta ( \overset{\rightharpoonup} { x } _ { i } , r _ { i } ) \overset{\rightharpoonup}{ x } _ { i } = \overset{\rightharpoonup}{ 0 },$ ; confidence 0.523
26. ; $\tilde{x} ( z ) z ^ { n - 1 } = h ( z ) / g ( z )$ ; confidence 0.523
27. ; $D ( 2 n_1 ) \times D ( 2 n_2 ) ^ { \text{l} }$ ; confidence 0.523
28. ; $\operatorname{p} \in P$ ; confidence 0.523
29. ; $\overline{ D }$ ; confidence 0.522
30. ; $\lambda ^ { \operatorname{Fm} } : \operatorname{Fm} ^ { n } \rightarrow \operatorname{Fm}$ ; confidence 0.522
31. ; $h _ { \beta }$ ; confidence 0.522
32. ; $\left( \begin{array} { c } { v _ { 1 , t }} \\ { \vdots } \\ { v _ { k , t } } \end{array} \right).$ ; confidence 0.522
33. ; $a , b \in G$ ; confidence 0.522
34. ; $\forall \{ u_j : j \in J \} \subset L ^ { X }$ ; confidence 0.522
35. ; $H _ { S } ^ { 0 } ( D ) =\operatorname{ ker} D$ ; confidence 0.522
36. ; $g ( \overline { u } _ { 1 } ) = c ^ { T } x ^ { ( l ) } + ( A _ { 1 } x ^ { ( l ) } - b _ { 1 } ) ^ { T } \overline { u _1}$ ; confidence 0.522
37. ; $T > t$ ; confidence 0.522
38. ; $n = 1 , \infty$ ; confidence 0.522
39. ; $\mathcal{R} ^ { \infty } \rightarrow \ldots \rightarrow \mathcal{R} ^ { m } \rightarrow \ldots \rightarrow \mathcal{R} ^ { 0 }$ ; confidence 0.522
40. ; $F _ { s } ( t , x _ { 1 } , \ldots , x _ { s } ) =$ ; confidence 0.522
41. ; $= \int _ { \mathbf{R} ^ { 2 n } } \hat { a } ( \Xi ) \operatorname { exp } ( 2 i \pi \Xi . M ) d \Xi , $ ; confidence 0.522
42. ; $a , b \in R$ ; confidence 0.522
43. ; $G ^ { \prime }$ ; confidence 0.522
44. ; $\operatorname{QS} ( \mathbf{T} )$ ; confidence 0.522
45. ; $\partial \Omega _ { r }$ ; confidence 0.521
46. ; $\Omega ^ { * }$ ; confidence 0.521
47. ; $x ^ { 0 } \in \mathbf{R} ^ { n}$ ; confidence 0.521
48. ; $\alpha _ { l } \leq k $ ; confidence 0.521
49. ; $\mathsf{E} | Y _ { \infty } - Y _ { T } | \leq c \mathsf{P} [ T < \infty ]$ ; confidence 0.521
50. ; $U _ { 1 }$ ; confidence 0.521
51. ; $\forall x \forall y ( \forall z ( z \in x \leftrightarrow z \in y ) \rightarrow x = y ).$ ; confidence 0.521
52. ; $T _ { c } = 2 J / k _ { B }$ ; confidence 0.521
53. ; $L_0$ ; confidence 0.521
54. ; $f _ { \text{w} }$ ; confidence 0.521
55. ; $f : \overline { \Omega } \rightarrow \mathbf{R} ^ { n }$ ; confidence 0.521
56. ; $\{ \ldots \}$ ; confidence 0.521
57. ; $\{ g_j\}$ ; confidence 0.521
58. ; $\mathsf{P} ( X _ { i } | \gamma _ { i } )$ ; confidence 0.521
59. ; $\mathcal{P} ^ { \# _\mathcal{ P}}$ ; confidence 0.521
60. ; $X _ { i } \in \mathfrak{a}$ ; confidence 0.521
61. ; $W \equiv \lambda x . F ( x x )$ ; confidence 0.521
62. ; $R _ { n } < 1 - \operatorname { log } n / ( 3 n )$ ; confidence 0.520
63. ; $\| I _ { 1 } ( f ) - U ^ { i } ( f ) \| _ { 0 }$ ; confidence 0.520
64. ; $\models _ { \mathcal{L} } \subseteq \operatorname{Mod} \times \operatorname{Fm}$ ; confidence 0.520
65. ; $Nh$ ; confidence 0.520
66. ; $H f ( x ) = \operatorname { lim } _ { \epsilon \downarrow 0} \int _ { | t | > \epsilon } f ( x - t ) / t d t$ ; confidence 0.520
67. ; $t \mapsto t + T$ ; confidence 0.520
68. ; $T_g$ ; confidence 0.520
69. ; $\mathbf{Z} _ { p }$ ; confidence 0.520
70. ; $\varepsilon \mapsto ( \varepsilon , \ldots , \varepsilon )$ ; confidence 0.520
71. ; $x _ { k} ^ { \prime }$ ; confidence 0.520
72. ; $t \leq t_1$ ; confidence 0.520
73. ; $\mathcal{C} ( K )$ ; confidence 0.520
74. ; $\| f ( x ) - a ( x ) \| \leq \varepsilon$ ; confidence 0.520
75. ; $V ( \widetilde{Z} _ { p } ) \neq \emptyset$ ; confidence 0.520
76. ; $v ^ { H }$ ; confidence 0.520
77. ; $i , j$ ; confidence 0.520
78. ; $\pi : X \rightarrow X // G$ ; confidence 0.520
79. ; $a _ { k } = n$ ; confidence 0.520
80. ; $\alpha _ { j } ( D _ { i } ) = \delta _ { i j }$ ; confidence 0.519
81. ; $n ^ { - 1 } \mathbf{M} _ { \mathsf{E} }$ ; confidence 0.519
82. ; $P_n$ ; confidence 0.519
83. ; $A _ { 0 } \subset \mathbf{R} ^ { n }$ ; confidence 0.519
84. ; $\mathsf{E} B _ { s } B _ { t } = \operatorname { min } ( s , t )$ ; confidence 0.519
85. ; $Q _ { n } ^ { * } w \rightarrow w$ ; confidence 0.519
86. ; $h _ { i j } = 0$ ; confidence 0.519
87. ; $\lambda \in S _ { \theta _ { 0 } }$ ; confidence 0.519
88. ; $\sum m \underline { \square } _ { n } ( h ) h$ ; confidence 0.519
89. ; $\neq \left( \begin{array} { c c c c } { 9 } & { 2 } & { 3 } & { 6 } \\ { 7 } & { 1 } & { 4 } & { \square } \\ { 8 } & { \square } & { \square } & { \square } \\ { 9 } & { \square } & { \square } & { \square } \end{array} \right) = \left( \begin{array} { c c c c } { 2 } & { 3 } & { 9 } & { 6 } \\ { 4 } & { 1 } & { 7 } & { \square } \\ { 8 } & { \square } & { \square } & { \square } \\ { 9 } & { \square } & { \square } & { \square } \end{array} \right).$ ; confidence 0.519
90. ; $\gamma \operatorname{mod} \Gamma ^ { p^m } \mapsto \gamma \operatorname { mod } \Gamma ^ { p ^ { n } }$ ; confidence 0.519
91. ; $t \in Q_0$ ; confidence 0.519
92. ; $C _ { \delta } = \{ z : | \operatorname { Im } z | < \delta ( | \operatorname { Re } { z | } + 1 ) \}$ ; confidence 0.519
93. ; $\Sigma _ { g }$ ; confidence 0.519
94. ; $\mathfrak { X } ( M , P )$ ; confidence 0.519
95. ; $F = \operatorname { diag } \{ f _ { 0 } , \dots , f _ { n - 1 } \}$ ; confidence 0.519
96. ; $\omega ^ { n} \neq \omega$ ; confidence 0.519
97. ; $\mu _ { \operatorname{d} }$ ; confidence 0.519
98. ; $\alpha _ { 1 } ^ { n _ { 1 } } , \dots , \alpha _ { d } ^ { n _ { d } }$ ; confidence 0.519
99. ; $x \in \mathbf{R} ^ { 4 }$ ; confidence 0.519
100. ; $P _ { \nu } + R _ { \nu } = 0 , \quad \nu = 1,2 , \dots ,$ ; confidence 0.519
101. ; $[ k ^ { p } ( a _ { 1 } , \dots , a _ { s } ) : k ^ { p } ] = p ^ { s }$ ; confidence 0.519
102. ; $\mu _ { 1 } , \dots , \mu _ { m }$ ; confidence 0.519
103. ; $Q _ { n } ( f ) = \sum _ { i = 1 } ^ { n } c _ { i } f ( x _ { i } )$ ; confidence 0.518
104. ; $\tau \notin \operatorname{Wh} ^ { * } ( \pi )$ ; confidence 0.518
105. ; $\mathbf{Q} ( \zeta ( p ) )$ ; confidence 0.518
106. ; $\mathcal{D} \otimes \mathcal{D} = \mathbf{R} [ x , y ] / \langle x ^ { 2 } , y ^ { 2 } \rangle$ ; confidence 0.518
107. ; $j_\gamma : B O _ { r } \rightarrow B O _ { r + 1}$ ; confidence 0.518
108. ; $( \overset{\rightharpoonup} { n } . \nabla \phi ) = U \overset{\rightharpoonup}{ n } . \overset{\rightharpoonup}{ x }.$ ; confidence 0.518
109. ; $\frac { d C _ { j } } { d x } ( x _ { k } ) = \left\{ \begin{array} { l l } { \frac { 1 } { 6 } ( 1 + 2 N ^ { 2 } ) } & { \text { for } j = k = 0 ,} \\ { - \frac { 1 } { 6 } ( 1 + 2 N ^ { 2 } ) } & { \text { for } j = k = N, } \\ { - \frac { x _ { j } } { 2 ( 1 - x _ { j } ^ { 2 } ) } } & { \text { for } j = k , 0 < j < N ,} \\ { ( - 1 ) ^ { j + k } \frac { \bar{c} _ { k } } { \bar{c} _ { j } ( x _ { k } - x _ { j } ) } } & { \text { for } j \neq k, } \end{array} \right.$ ; confidence 0.518
110. ; $( 1 + \sqrt { 5 } ) / 2$ ; confidence 0.518
111. ; $x_{+}$ ; confidence 0.518
112. ; $\alpha _ { e} ( z ) \neq 0$ ; confidence 0.518
113. ; $\leq 1$ ; confidence 0.518
114. ; $m ( X ) \leq C ( 1 + G _ { X } ^ { \sigma } ( X - Y ) ) ^ { N } m ( Y ),$ ; confidence 0.518
115. ; $G _ { q } , U _ { q } ( \mathfrak { g } )$ ; confidence 0.518
116. ; $y ^ { 1 } , \dots , y ^ { q }$ ; confidence 0.518
117. ; $= \prod _ { p \in P } ( 1 + | p | ^ { - z } + | p | ^ { - 2 z } + \ldots ) =$ ; confidence 0.517
118. ; $f _ { 0 } , f _ { 1 } , \dots$ ; confidence 0.517
119. ; $P _ { \mathcal{E}}$ ; confidence 0.517
120. ; $w _ { L _ { - } } = w _ { L _ { + } } * w _ { L _ { 0 } }$ ; confidence 0.517
121. ; $A _ { n } \in\mathcal{ A} _ { n }$ ; confidence 0.517
122. ; $F \subset \mathbf{P} ^ { n - 1 }$ ; confidence 0.517
123. ; $^ { * } F _ { A } = - F _ { A }.$ ; confidence 0.517
124. ; $\operatorname{wind}( a - z )$ ; confidence 0.517
125. ; $S _ { 1 } , S _ { 2 } , \ldots$ ; confidence 0.517
126. ; $( s , \dots , s , B _ { m } )$ ; confidence 0.517
127. ; $P _ { n , \theta _ { n } }$ ; confidence 0.517
128. ; $f : \mathbf{R} ^ { m } \rightarrow \mathbf{R}$ ; confidence 0.517
129. ; $x = [ a , b ]$ ; confidence 0.517
130. ; $Y ( \mathbf{1} , x ) = 1$ ; confidence 0.517
131. ; $ \geq N$ ; confidence 0.517
132. ; $\mu_Z$ ; confidence 0.517
133. ; $j = 0 , \dots , n$ ; confidence 0.517
134. ; $\mu _ { p } ( K / k ) = \mu ( X )$ ; confidence 0.517
135. ; $v = d u / d t$ ; confidence 0.516
136. ; $G \times F$ ; confidence 0.516
137. ; $\operatorname { max } \{ | x | , | y | , p _ { 1 } ^ { z _ { 1 } } \ldots p _ { s } ^ { z _ { s } } \}$ ; confidence 0.516
138. ; $P _ {\overline{U+V}}$ ; confidence 0.516
139. ; $T _ { \mathcal{P} }$ ; confidence 0.516
140. ; $g = E d x \bigotimes d x +$ ; confidence 0.516
141. ; $J _ { n } ( z ) = \frac { 1 } { \pi } \int _ { 0 } ^ { \pi } \operatorname { cos } ( n \theta - z \operatorname { sin } \theta ) d \theta +$ ; confidence 0.516
142. ; $X ^ { \prime } = L _ { 1 } ^ { \prime } \cap L _ { 2 } ^ { \prime } = L _ { 2 } ^ { \prime } \cap L _ { 3 } ^ { \prime } = L _ { 1 } ^ { \prime } \cap L _ { 3 } ^ { \prime }$ ; confidence 0.516
143. ; $\mu ( U , V ) = ( - 1 ) ^ { d } q ^ { d ( d - 1 ) / 2 },$ ; confidence 0.516
144. ; $x _ { 1 } \leq x \leq x _ { m }$ ; confidence 0.516
145. ; $j = 1,2 , \dots$ ; confidence 0.516
146. ; $x _ { m }$ ; confidence 0.516
147. ; $\mathbf{F} _ { q } [ x ]$ ; confidence 0.516
148. ; $\operatorname{PredSucc}( x ) = \{ y : y <_{P} z \ \text { for allz } \in \operatorname { Succ } ( x ) \}$ ; confidence 0.516
149. ; $\sum h _ { ( 1 ) } \otimes h _ { ( 2 ) }$ ; confidence 0.516
150. ; $\sum _ { q = 1 } ^ { \infty } \varphi ( q ) f ( q )$ ; confidence 0.516
151. ; $j = 1 , \dots , m - 1$ ; confidence 0.516
152. ; $k = 0 , \dots , n$ ; confidence 0.516
153. ; $\operatorname { log } L ( \theta | Y _ { aug } )$ ; confidence 0.516
154. ; $\mathcal{S} \text{q} ^ { 0 } = \operatorname{Id}$ ; confidence 0.516
155. ; $\operatorname { log } _ { \omega } 0 = \infty$ ; confidence 0.516
156. ; $\mathcal{B} _ { j k \text{l}} ^ { i }$ ; confidence 0.516
157. ; $G _ { n } ( f ( k , n ) ) = \operatorname { max } \left\{ k ^ { \prime } : f _ { ( k ^ { \prime } , n ) } = f ( k , n ) \right\}$ ; confidence 0.516
158. ; $\operatorname { inf } _ { u \in \mathcal{A} } I ( u )$ ; confidence 0.516
159. ; $\subset \mathbf{R} ^ { m }$ ; confidence 0.515
160. ; $\varphi _ { 2 } + i \widetilde { \varphi } _ { 2 }$ ; confidence 0.515
161. ; $\Delta ( z _ { 1 } , z _ { 2 } ) = \operatorname { det } \left[ \begin{array} { c c } { E _ { 1 } z _ { 1 } - A _ { 1 } } & { E _ { 2 } z _ { 2 } - A _ { 2 } } \\ { E _ { 3 } z _ { 1 } - A _ { 3 } } & { E _ { 4 } z _ { 2 } - A_4 } \end{array} \right] =$ ; confidence 0.515
162. ; $\langle \lambda | G ( z ) \phi ) = \frac { 1 } { z - \lambda } \langle \lambda | V \phi ) ( \phi , G ( z ) \phi ).$ ; confidence 0.515
163. ; $- c _ { 1 } + c _ { 3 } d ^ { \nu } \operatorname { log } ( \rho / | \omega | )$ ; confidence 0.515
164. ; $\mathbf{R} = \text{Dbx} _ { f }$ ; confidence 0.515
165. ; $\left( \begin{array} { c c c } { x _ { 11 } } & { \dots } & { x _ { 1 n} } \\ { \vdots } & { \square } & { \vdots } \\ { x _ { p 1 } } & { \dots } & { x _ { p n} } \end{array} \right),$ ; confidence 0.515
166. ; $\{ f _ { j _ { 1 } } , \dots , f _ { j _ { m } } \}$ ; confidence 0.515
167. ; $T _ { \operatorname{prod} } \times T _ { m }$ ; confidence 0.515
168. ; $f ( X ^ { \prime } , X ^ { \prime } Y ^ { \prime } ) = X ^ { \prime d } f ^ { \prime } ( X ^ { \prime } , Y ^ { \prime } )$ ; confidence 0.515
169. ; $\Delta _ { \varepsilon } ( t ) = ( 1 - | t | / \varepsilon ) _ { + }$ ; confidence 0.515
170. ; $\phi$ ; confidence 0.515
171. ; $\int _ { a } ^ { b } ( f ^ { ( r ) } ( x ) ) ^ { 2 } d x \leq 1$ ; confidence 0.515
172. ; $\mathcal{D} \subset \mathbf{C} ^ { n }$ ; confidence 0.515
173. ; $\varepsilon _ { x } ^ { A } ( s ) = \widehat { R } _ { s } ^ { A } ( x )$ ; confidence 0.515
174. ; $d P _ { n } ^ { \prime } / d P_n$ ; confidence 0.515
175. ; $n \geq N_0$ ; confidence 0.515
176. ; $\Delta \in C ^ { n \times n }$ ; confidence 0.515
177. ; $q ( x ) \not\equiv 0$ ; confidence 0.515
178. ; $\tau \rightarrow \infty$ ; confidence 0.515
179. ; $\langle T , \phi \rangle$ ; confidence 0.515
180. ; $E _ { \operatorname{atom} } ^ { \operatorname{TF} } ( N _ { j } , Z _ { j } )$ ; confidence 0.515
181. ; $( \mathcal{C} ^ { \infty } ( \Omega ) ) ^ { \mathbf{N} }$ ; confidence 0.515
182. ; $K ( s _ { r } )$ ; confidence 0.515
183. ; $\supset , \neg$ ; confidence 0.515
184. ; $k \in L ^ { 1 } ( \mathbf{R} )$ ; confidence 0.515
185. ; $U _ { N } ^ { ( k ) } ( x )$ ; confidence 0.514
186. ; $R = \{ r _ { 1 } , \dots , r _ { m } \}$ ; confidence 0.514
187. ; $j \in \{ 1 , \dots , m \}$ ; confidence 0.514
188. ; $g b = q b $ ; confidence 0.514
189. ; $K ^ { 2 } \swarrow L ^ { 3 } \searrow \operatorname{pt}$ ; confidence 0.514
190. ; $P = ( X _ { P } , < _ { P } )$ ; confidence 0.514
191. ; $v \in F ( u )$ ; confidence 0.514
192. ; $\widehat{u}$ ; confidence 0.514
193. ; $R ( I )$ ; confidence 0.514
194. ; $0 \leq i \leq J$ ; confidence 0.514
195. ; $Z ( a g a ^ { - 1 } , a h a ^ { - 1 } ; z ) = Z ( g , h ; z )$ ; confidence 0.514
196. ; $f ( z , \tau ) / \tau$ ; confidence 0.514
197. ; $\| x + y \| \leq \| x \| + \| y \|$ ; confidence 0.514
198. ; $f = \int _ { \partial D } f \bigwedge K _ { q } - \overline { \partial _ { z } } \int f \bigwedge K _ { q- 1 } + \int _ { D } \overline { \partial } f \bigwedge K _ { q }.$ ; confidence 0.514
199. ; $N ^ { \prime } / L ^ { \prime }$ ; confidence 0.514
200. ; $X ^ { G } \rightarrow X ^ { h G }$ ; confidence 0.514
201. ; $\gamma : \mathcal{E}_{*} \rightarrow \mathcal{E}$ ; confidence 0.514
202. ; $\Lambda = \operatorname { diag } \{ \lambda _ { 1 } , \ldots , \lambda _ { n } \}$ ; confidence 0.514
203. ; $K ( \Omega ) = \int _ { \lambda \bigcap \Omega \neq \phi } d \omega ( \lambda ),$ ; confidence 0.514
204. ; $\operatorname{BMO}$ ; confidence 0.514
205. ; $x \mapsto x ^ { q }$ ; confidence 0.514
206. ; $v _ { n+1 } = A v _ { n}$ ; confidence 0.514
207. ; $L _ { \mathbf{C} } ^ { 1 } ( G )$ ; confidence 0.513
208. ; $( L ^ { H } , w ^ { H } )$ ; confidence 0.513
209. ; $\mathcal{I} ( \theta )$ ; confidence 0.513
210. ; $p _ { m } ^ { \alpha , \beta }$ ; confidence 0.513
211. ; $\frac { \Gamma _ { p } \left[ \frac { \langle n + m + p - 1 \rangle} { 2 } \right] } { \pi ^ { m p / 2 } \Gamma _ { p } ( ( n + p - 1 ) / 2 ) } | \Sigma | ^ { - m / 2 } | \Omega | ^ { - p / 2 } \times$ ; confidence 0.513
212. ; $a \in \widetilde{\mathbf{Z}} ^ { n}$ ; confidence 0.513
213. ; $H _ { g }$ ; confidence 0.513
214. ; $H ^ { i } ( \mathfrak{a} , M )$ ; confidence 0.513
215. ; $( f \in H _ { c } ( D ) )$ ; confidence 0.513
216. ; $\xi ( f . g ) = \xi ( f ) g + f . \xi ( g ) + \xi ( f ) . \xi ( g ),$ ; confidence 0.513
217. ; $Q _ { n } y = \sum _ { i = 1 } ^ { n } ( y , \psi _ { i } ) \psi _ { i }$ ; confidence 0.513
218. ; $e _ { j } * e _ { k } = \sum _ { l = 1 } ^ { 8 } ( \sqrt { 3 } d _ { j k l } - f _ { j k l } ) e _ { l }.$ ; confidence 0.513
219. ; $\gamma_3$ ; confidence 0.513
220. ; $A = B / ( X _ { 1 } , \dots , X _ { d } ) \bigcap ( Y _ { 1 } , \dots , Y _ { d } ),$ ; confidence 0.513
221. ; $\operatorname{supp} \phi_{j} \subset K$ ; confidence 0.513
222. ; $u ^ { \prime }$ ; confidence 0.513
223. ; $v _ { i } > 0$ ; confidence 0.513
224. ; $f _ { Y } ( Y )$ ; confidence 0.513
225. ; $[ L : K ] = d.e.f.g$ ; confidence 0.512
226. ; $\rho _ { \varepsilon }$ ; confidence 0.512
227. ; $y _ { c }$ ; confidence 0.512
228. ; $\rho : \operatorname { Gal } ( N / K ) \rightarrow G l _ { n } ( C )$ ; confidence 0.512
229. ; $\widehat { \chi }_{K}$ ; confidence 0.512
230. ; $U_i$ ; confidence 0.512
231. ; $J = [ a, b ] \subset \mathbf{R}$ ; confidence 0.512
232. ; $m = 1,2 , \dots$ ; confidence 0.512
233. ; $Z = \cup _ { p = 1 } ^ { \aleph _ { 0 } } Z _ { p }$ ; confidence 0.512
234. ; $\operatorname { lim } _ { n \rightarrow \infty } \left[ a _ { 0 } + \frac { n } { n + 1 } a _ { 1 } + \frac { n ( n - 1 ) } { ( n + 1 ) ( n + 2 ) } a _ { 2 } + ... \right.$ ; confidence 0.512
235. ; $\sum _ { i = 0 } ^ { r _ { 1 } } \sum _ { i = 0 } ^ { r _ { 2 } } a _ { i j } T _ { i j } = 0$ ; confidence 0.512
236. ; $T T$ ; confidence 0.512
237. ; $y _ { i } = \Delta \text { sales } = \left( \frac { c _ { 1 } } { 1 - \lambda } \right) \frac { I } { k } ( \text { in market } i )$ ; confidence 0.512
238. ; $\{ g _ { n } \} _ { n = 0 } ^ { \infty }$ ; confidence 0.512
239. ; $F ^ { * } = p ^ { * - 1} q ^ { * }$ ; confidence 0.512
240. ; $\operatorname{Fm} _ { P }$ ; confidence 0.512
241. ; $s _ { i } ( z ) a ( z ) \equiv r _ { i } ( z ) ( \operatorname { mod } b ( z ) )$ ; confidence 0.512
242. ; $\operatorname { det } \left\| \frac { 1 } { b _ { j } ^ { l } } \right\| \neq 0,$ ; confidence 0.511
243. ; $X _ { \lambda }$ ; confidence 0.511
244. ; $N = \frac { 1 } { | g | ^ { 2 } + 1 } ( 2 \operatorname { Re } g , 2 \operatorname { Im } g , | g | ^ { 2 } - 1 )$ ; confidence 0.511
245. ; $q \in \mathbf{N}$ ; confidence 0.511
246. ; $M _ { 1 } , M _ { 2 } , \ldots$ ; confidence 0.511
247. ; $\operatorname{tr}$ ; confidence 0.511
248. ; $k = m + ( q _ { 1 } + \ldots + q _ { m } ) / 2$ ; confidence 0.511
249. ; $q \in L ^ { 2_0 } (\mathbf{ R} ^ { 3 } )$ ; confidence 0.511
250. ; $\operatorname { max } \{ q _ { 1 } + 2 , \ldots , q _ { m } + 2 \}$ ; confidence 0.511
251. ; $D ( 2 n _ { 2 } )$ ; confidence 0.511
252. ; $\operatorname{lim sup}_R S _ { R } ^ { ( n - 1 ) / 2 } f ( x ) = + \infty$ ; confidence 0.511
253. ; $R ^ { \prime } \subseteq R$ ; confidence 0.511
254. ; $\lambda = \operatorname { sup } \{ t \in \mathbf{Q} : H + t ( K _ { X } + B ) \text { is } f\square \text{ ample} \}$ ; confidence 0.511
255. ; $\mathsf{P} _ { 0 }$ ; confidence 0.510
256. ; $y \cong \widetilde{y}$ ; confidence 0.510
257. ; $j = 0 , \dots , N - 1$ ; confidence 0.510
258. ; $g _ { 1 } , \ldots , g _ { k }$ ; confidence 0.510
259. ; $a \in C ^ { \infty } ( M )$ ; confidence 0.510
260. ; $X ^ {**}$ ; confidence 0.510
261. ; $p + F . v $ ; confidence 0.510
262. ; $y _ { t+r} $ ; confidence 0.510
263. ; $\frac { \nu _ { 2 } } { \nu _ { 2 } - 2 } \quad \text { for } \nu _ { 2 } > 2$ ; confidence 0.510
264. ; $r ( z ) = p ( z ) / q ( z )$ ; confidence 0.510
265. ; $\Delta ( A , E ) = \sum _ { i = 0 } ^ { n } a _ { i , n - i }A ^ { i } E ^ { n - i } = 0.$ ; confidence 0.510
266. ; $R = I - \sum _ { \nu = 1 } ^ { n } \alpha _ { \nu } L _ { \nu }$ ; confidence 0.510
267. ; $m_0$ ; confidence 0.510
268. ; $a _ { N / 2 + k}$ ; confidence 0.510
269. ; $G _ { q , k }$ ; confidence 0.510
270. ; $T _ { A } U _ { i } = U _ { i } \times N ^ { m } \subset T _ { A } \mathbf{R} ^ { m }$ ; confidence 0.510
271. ; $M \leq N$ ; confidence 0.510
272. ; $\zeta _ { 1 } , \ldots , \zeta _ { q }$ ; confidence 0.510
273. ; $\operatorname { span } \{ e _ { i } , f _ { i } , h _ { i i } \}$ ; confidence 0.510
274. ; $| r _ { 1 } | \geq \ldots \geq | r _ { p } | > | r _ { p } + 1 | \geq \ldots \geq | r _ { n } |,$ ; confidence 0.510
275. ; $\tau _ { p } : \otimes ^ { 4 } \mathcal{E} \rightarrow \otimes ^ { 4 } \mathcal{E}$ ; confidence 0.510
276. ; $K \subset G$ ; confidence 0.510
277. ; $x \in \mathcal{K}$ ; confidence 0.510
278. ; $\int \left( R _ { h} + \frac { 1 } { 2 } f ^ { - 2 } h ^ { \alpha \beta } \partial _ { \alpha } \epsilon\partial _ { \beta } \overline { \mathcal{E} } \right) d \mu _ { h},$ ; confidence 0.509
279. ; $E _ { n + 1 } ( x ) = T _ { n + 1 } ( x )$ ; confidence 0.509
280. ; $| F ( 2 x ) | \leq c \sigma ( x ) , | A ( x , y ) | \leq c \sigma \left( \frac { x + y } { 2 } \right) ,$ ; confidence 0.509
281. ; $ c _g = \int _ { 0 } ^ { \infty } g ( t ) \operatorname { log } \frac { 1 } { t } d t,$ ; confidence 0.509
282. ; $\operatorname { Der } _ { k } \Omega ( M )$ ; confidence 0.509
283. ; $1 \in \mathbf{Z }( G / A )$ ; confidence 0.509
284. ; $Z = \sum _ { i = 1 } ^ { t } r _ { j } C _ { j }$ ; confidence 0.509
285. ; $(C)\int _ { A } f _ { 1 } d m \leq ( C ) \int _ { A } f_2 dm$ ; confidence 0.509
286. ; $\mathcal{Z} _ { 0 } \cap [ 0 , t] $ ; confidence 0.509
287. ; $\omega : I \rightarrow X$ ; confidence 0.509
288. ; $\nabla ^ { 2 } ( g (. ; t ) ^ { * } f ( . ) ) = 0$ ; confidence 0.509
289. ; $T o p$ ; confidence 0.509
290. ; $q _ { m } ( x ) \in L _ { 1,1 } (\mathbf{ R} _ { + } ) : = \left\{ q : \int _ { 0 } ^ { \infty } x | q ( x ) | d x < \infty \right\}.$ ; confidence 0.509
291. ; $\mathcal{O} _ { S }$ ; confidence 0.509
292. ; $pd _ { \Lambda } T = n < \infty$ ; confidence 0.509
293. ; $T _ { A } : \mathcal{M} f \rightarrow \mathcal{M} f$ ; confidence 0.509
294. ; $\frac { B _ { - ( \delta + p - 1 ) / 2} \left( \frac { 1 } { 4 } \Sigma T T ^ { \prime } \right) } { \Gamma _ { p } \left[ \frac { 1 } { 2 } ( \delta + p - 1 ) \right] },$ ; confidence 0.509
295. ; $d f _ { x } : T V _ { x } \rightarrow T W _ { f ( x )}$ ; confidence 0.509
296. ; $( q_j , p _ { j } )$ ; confidence 0.508
297. ; $||S_{NB} ||< C N ^ { ( n - 1 ) / 2 }$ ; confidence 0.508
298. ; $\varphi ( x _ { 1 } , \dots , x _ { n } )$ ; confidence 0.508
299. ; $P = I - \sum _ { i = 1 } ^ { n } S _ { i } S _ { i } ^ { * }$ ; confidence 0.508
300. ; $n , m = 0,1 , \dots ,$ ; confidence 0.508
Maximilian Janisch/latexlist/latex/NoNroff/57. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Maximilian_Janisch/latexlist/latex/NoNroff/57&oldid=45936