Difference between revisions of "User:Maximilian Janisch/latexlist/latex/NoNroff/50"
Line 522: | Line 522: | ||
261. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120110/f12011044.png ; $x \notin - \Delta ^ { \circ }$ ; confidence 0.628 | 261. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120110/f12011044.png ; $x \notin - \Delta ^ { \circ }$ ; confidence 0.628 | ||
− | 262. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120220/b12022072.png ; $\partial _ { t } \eta ( u ) + \operatorname { div } _ { X } G ( u ) \leq 0$ ; confidence 0.627 | + | 262. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120220/b12022072.png ; $\partial _ { t } \eta ( u ) + \operatorname { div } _ { X } G ( u ) \leq 0,$ ; confidence 0.627 |
263. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130230/b13023047.png ; $\operatorname { St } _ { G } ( u )$ ; confidence 0.627 | 263. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130230/b13023047.png ; $\operatorname { St } _ { G } ( u )$ ; confidence 0.627 | ||
− | 264. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120230/s12023044.png ; $\frac { 1 } { ( 2 \pi ) ^ { n p / 2 } } | \Sigma | ^ { - n / 2 } \operatorname { etr } \{ - \frac { 1 } { 2 } \Sigma ^ { - 1 } X X ^ { \prime } \} , X \in R ^ { p \times n }$ ; confidence 0.627 | + | 264. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120230/s12023044.png ; $\frac { 1 } { ( 2 \pi ) ^ { n p / 2 } } | \Sigma | ^ { - n / 2 } \operatorname { etr } \{ - \frac { 1 } { 2 } \Sigma ^ { - 1 } X X ^ { \prime } \} , X \in \mathbf{R} ^ { p \times n },$ ; confidence 0.627 |
− | 265. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010520/a01052030.png ; $3 | + | 265. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010520/a01052030.png ; $3 / 2$ ; confidence 0.627 |
266. https://www.encyclopediaofmath.org/legacyimages/c/c020/c020030/c0200305.png ; $P \subset X$ ; confidence 0.627 | 266. https://www.encyclopediaofmath.org/legacyimages/c/c020/c020030/c0200305.png ; $P \subset X$ ; confidence 0.627 | ||
Line 534: | Line 534: | ||
267. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120020/v120020115.png ; $x _ { 0 } \in F ( x _ { 0 } )$ ; confidence 0.627 | 267. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120020/v120020115.png ; $x _ { 0 } \in F ( x _ { 0 } )$ ; confidence 0.627 | ||
− | 268. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130100/p130100137.png ; $K \subset C ^ { n + 1 }$ ; confidence 0.627 | + | 268. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130100/p130100137.png ; $K \subset \mathbf{C} ^ { n + 1 }$ ; confidence 0.627 |
269. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w130080215.png ; $W = p ^ { n + 1 } - q _ { 1 } p ^ { n - 1 } - \ldots - q _ { n }$ ; confidence 0.627 | 269. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w130080215.png ; $W = p ^ { n + 1 } - q _ { 1 } p ^ { n - 1 } - \ldots - q _ { n }$ ; confidence 0.627 | ||
− | 270. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130250/m1302507.png ; $0 = ( \delta ( x ) x ) \operatorname { vp } \frac { 1 } { x } \neq \delta ( x ) ( x \ | + | 270. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130250/m1302507.png ; $0 = ( \delta ( x ) x ) \operatorname { vp } \frac { 1 } { x } \neq \delta ( x ) ( x \operatorname{vp} \frac { 1 } { x } ) = \delta ( x )$ ; confidence 0.627 |
271. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t13005082.png ; $\sigma _ { \delta }$ ; confidence 0.627 | 271. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t13005082.png ; $\sigma _ { \delta }$ ; confidence 0.627 | ||
Line 546: | Line 546: | ||
273. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130010/i13001053.png ; $\lambda = ( \lambda _ { 1 } , \dots , \lambda _ { s } , \dots , \lambda _ { t } )$ ; confidence 0.627 | 273. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130010/i13001053.png ; $\lambda = ( \lambda _ { 1 } , \dots , \lambda _ { s } , \dots , \lambda _ { t } )$ ; confidence 0.627 | ||
− | 274. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120040/g12004067.png ; $\Gamma \subset \Omega \times ( R ^ { n } \backslash \{ 0 \} )$ ; confidence 0.627 | + | 274. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120040/g12004067.png ; $\Gamma \subset \Omega \times ( \mathbf{R} ^ { n } \backslash \{ 0 \} )$ ; confidence 0.627 |
275. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120120/a12012086.png ; $c _ { t } ^ { \prime } > c _ { t }$ ; confidence 0.627 | 275. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120120/a12012086.png ; $c _ { t } ^ { \prime } > c _ { t }$ ; confidence 0.627 | ||
− | 276. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120320/b12032088.png ; $a _ { n } | + | 276. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120320/b12032088.png ; $a _ { n^i } = ( a _ { n } )^i$ ; confidence 0.627 |
− | 277. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120150/s120150127.png ; $G | + | 277. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120150/s120150127.png ; $G /G_X$ ; confidence 0.627 |
278. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130030/i130030161.png ; $l ^ { 2 } ( \Gamma )$ ; confidence 0.627 | 278. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130030/i130030161.png ; $l ^ { 2 } ( \Gamma )$ ; confidence 0.627 | ||
− | 279. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110320/a11032027.png ; $ | + | 279. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110320/a11032027.png ; $u_{m + 1}$ ; confidence 0.627 |
280. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120280/a12028071.png ; $\rho \otimes x$ ; confidence 0.627 | 280. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120280/a12028071.png ; $\rho \otimes x$ ; confidence 0.627 | ||
− | 281. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120230/s120230143.png ; $S _ { i } > 0 , i = 1 , \dots , r$ ; confidence 0.627 | + | 281. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120230/s120230143.png ; $S _ { i } > 0 , i = 1 , \dots , r.$ ; confidence 0.627 |
282. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130020/k13002014.png ; $y _ { j } < y _ { k }$ ; confidence 0.627 | 282. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130020/k13002014.png ; $y _ { j } < y _ { k }$ ; confidence 0.627 | ||
− | 283. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120190/m12019030.png ; $= \pi ^ { 2 } \sqrt { \frac { \pi } { 2 } } \int _ { 0 } ^ { \infty } \tau \frac { \operatorname { sinh } ( \pi \tau ) } { \operatorname { cosh } ^ { 3 } ( \pi \tau ) } P _ { i \tau - 1 / 2 } ( x ) F ( \tau ) G ( \tau ) d \tau$ ; confidence 0.627 | + | 283. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120190/m12019030.png ; $= \pi ^ { 2 } \sqrt { \frac { \pi } { 2 } } \int _ { 0 } ^ { \infty } \tau \frac { \operatorname { sinh } ( \pi \tau ) } { \operatorname { cosh } ^ { 3 } ( \pi \tau ) } P _ { i \tau - 1 / 2 } ( x ) F ( \tau ) G ( \tau ) d \tau,$ ; confidence 0.627 |
− | 284. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120190/t12019021.png ; $ | + | 284. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120190/t12019021.png ; $n/ ( k - 1 )$ ; confidence 0.627 |
− | 285. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022110/c02211030.png ; $p _ { i } ( \theta ) = P \{ X _ { i } \in ( x _ { i } - 1 , x _ { i } ] \} > 0$ ; confidence 0.626 | + | 285. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022110/c02211030.png ; $p _ { i } ( \theta ) = \mathbf{P} \{ X _ { i } \in ( x _ { i } - 1 , x _ { i } ] \} > 0,$ ; confidence 0.626 |
− | 286. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240206.png ; $ | + | 286. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240206.png ; $\operatorname{rank} ( X ) = r$ ; confidence 0.626 |
− | 287. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130030/e1300303.png ; $\rho : G / Q \rightarrow GL ( M )$ ; confidence 0.626 | + | 287. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130030/e1300303.png ; $\rho : G / \mathbf{Q} \rightarrow \operatorname{GL} (\mathcal{M} )$ ; confidence 0.626 |
− | 288. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120060/t120060108.png ; $\rho _ { atom } ^ { TF } ( x , N = Z , Z ) \sim \gamma ^ { 3 } ( \frac { 3 } { \pi } ) ^ { 3 } | x | ^ { - 6 }$ ; confidence 0.626 | + | 288. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120060/t120060108.png ; $\rho _ { \text{atom} } ^ { \text{TF} } ( x , N = Z , Z ) \sim \gamma ^ { 3 } ( \frac { 3 } { \pi } ) ^ { 3 } | x | ^ { - 6 },$ ; confidence 0.626 |
− | 289. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130100/z13010037.png ; $\forall x \forall y \exists z \forall v ( v \in z \leftrightarrow ( v = x \vee v = y ) )$ ; confidence 0.626 | + | 289. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130100/z13010037.png ; $\forall x \forall y \exists z \forall v ( v \in z \leftrightarrow ( v = x \vee v = y ) ).$ ; confidence 0.626 |
− | 290. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130030/i13003030.png ; $Ch ( [ a ] ) T ( M )$ ; confidence 0.626 | + | 290. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130030/i13003030.png ; $\operatorname{Ch} ( [ a ] ) \mathcal{T} ( M )$ ; confidence 0.626 |
291. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120050/a12005047.png ; $i = 1 , \ldots , k$ ; confidence 0.626 | 291. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120050/a12005047.png ; $i = 1 , \ldots , k$ ; confidence 0.626 | ||
− | 292. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130120/w1301203.png ; $CL ( X )$ ; confidence 0.626 | + | 292. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130120/w1301203.png ; $\operatorname{CL} ( X )$ ; confidence 0.626 |
293. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180427.png ; $( q _ { 1 } , \dots , q _ { m } )$ ; confidence 0.626 | 293. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180427.png ; $( q _ { 1 } , \dots , q _ { m } )$ ; confidence 0.626 | ||
− | 294. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c02313056.png ; $B | + | 294. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023130/c02313056.png ; $B / A$ ; confidence 0.626 |
295. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240433.png ; $A \Theta B$ ; confidence 0.626 | 295. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240433.png ; $A \Theta B$ ; confidence 0.626 | ||
− | 296. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120040/i12004044.png ; $s = ( s _ { 1 } , \dots , s _ { n } ) : \partial D \times D \rightarrow C ^ { n }$ ; confidence 0.626 | + | 296. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120040/i12004044.png ; $s = ( s _ { 1 } , \dots , s _ { n } ) : \partial D \times D \rightarrow \mathbf{C} ^ { n }$ ; confidence 0.626 |
− | 297. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w120110197.png ; $G _ { X } ( X - Y \leq \rho ^ { 2 } \Rightarrow G _ { Y } \leq C G _ { X }$ ; confidence 0.626 | + | 297. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w120110197.png ; $G _ { X } ( X - Y) \leq \rho ^ { 2 } \Rightarrow G _ { Y } \leq C G _ { X };$ ; confidence 0.626 |
298. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013044.png ; $F _ { j k } =$ ; confidence 0.626 | 298. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013044.png ; $F _ { j k } =$ ; confidence 0.626 | ||
− | 299. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010080/a01008024.png ; $M$ ; confidence 0.626 | + | 299. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010080/a01008024.png ; $\mathcal{M}$ ; confidence 0.626 |
300. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120420/b120420115.png ; $U _ { q } ( \mathfrak { g } )$ ; confidence 0.626 | 300. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120420/b120420115.png ; $U _ { q } ( \mathfrak { g } )$ ; confidence 0.626 |
Revision as of 20:31, 3 May 2020
List
1. ; $f , g \in C [ \mathbf{R} ]$ ; confidence 0.643
2. ; $o : 1 \rightarrow N$ ; confidence 0.643
3. ; $r ( K _ { X } + B )$ ; confidence 0.643
4. ; $1$ ; confidence 0.643
5. ; $\widetilde { F B }$ ; confidence 0.643
6. ; $\pi _ { 0 } : N _ { 0 } \rightarrow N$ ; confidence 0.643
7. ; $x \in A ^ { + }$ ; confidence 0.643
8. ; $\{ A _ { i } \} _ { i = 1 } ^ { k }$ ; confidence 0.642
9. ; $\operatorname{cat}_{\mathbf{R} P ^ { n }} \mathbf{R}P^n \geq n + 1$ ; confidence 0.642
10. ; $\sigma _ { 1 } , \ldots , \sigma _ { t }$ ; confidence 0.642
11. ; $C ( S \times T )$ ; confidence 0.642
12. ; $F ( x , y ) = a p _ { 1 } ^ { z _ { 1 } } \dots p _ { s } ^ { z _ { s } }$ ; confidence 0.642
13. ; $\sqrt { 1 - x ^ { 2 } } w ( x ) > 0$ ; confidence 0.642
14. ; $S = \frac { 1 } { n - 1 } \sum _ { i = 1 } ^ { n } ( X _ { i } - X ) ( X _ { i } - X ) ^ { \prime },$ ; confidence 0.642
15. ; $\phi_j$ ; confidence 0.642
16. ; $\langle [ A ] , \phi \rangle = \int _ { \operatorname { reg } A } \phi.$ ; confidence 0.642
17. ; $s \times p$ ; confidence 0.642
18. ; $l_2$ ; confidence 0.642
19. ; $F _ { \sigma } \in \widetilde { O } ( ( \Omega + \Gamma _ { \sigma } ) \cap U ).$ ; confidence 0.642
20. ; $N _ { \epsilon } ( C )$ ; confidence 0.642
21. ; $X \times Y$ ; confidence 0.642
22. ; $Q \in [ \alpha , b ]$ ; confidence 0.642
23. ; $f _ { 1 } : = x _ { 1 } ^ { d },$ ; confidence 0.642
24. ; $t \searrow 0$ ; confidence 0.641
25. ; $E ^ { TF } ( N ) = \operatorname { inf } \{ \mathcal{E} ( \rho ) : \rho \in L ^ { 5 / 3 } , \int \rho = N , \rho \geq 0 \},$ ; confidence 0.641
26. ; $L _ { C } ^ { p } ( G )$ ; confidence 0.641
27. ; $\pi _ { n } ( X ; A , B , * ) = \pi _ { n - 1 } ( \Omega ( X ; A , B ) , * ).$ ; confidence 0.641
28. ; $\mathfrak{p} \subset \mathfrak{a}$ ; confidence 0.641
29. ; $h = 1$ ; confidence 0.641
30. ; $f \rightarrow \frac { 1 } { 2 \pi } \int _ { 0 } ^ { 2 \pi } \operatorname { Re } \frac { e ^ { i t } + z } { e ^ { t t } - z } f ( e ^ { i t } ) d t,$ ; confidence 0.641
31. ; $e \leq x$ ; confidence 0.641
32. ; $x \in \Lambda$ ; confidence 0.641
33. ; $\| u_f \| \leq \| f \| / c$ ; confidence 0.641
34. ; $E ^ { k } = M \times F \times F ^ { ( 1 ) } \times \ldots F ^ { ( k ) }$ ; confidence 0.641
35. ; $E _ { \theta } ( N ) = \frac { P _ { \theta } ( S _ { N } = K ) K - P _ { \theta } ( S _ { N } = - J ) J } { 2 \theta - 1 }.$ ; confidence 0.641
36. ; $U : \mathcal{C} \rightarrow \operatorname{Set}$ ; confidence 0.641
37. ; $s = 1 + p _ { 1 } / r + \ldots + p _ { 1 } \ldots p _ { k - 1 } / r ^ { k - 1 }$ ; confidence 0.641
38. ; $y _ { 0 } = g ( x _ { 0 } )$ ; confidence 0.641
39. ; $A = \operatorname { diag } ( \lambda _ { 1 } , \dots , \lambda _ { n } )$ ; confidence 0.641
40. ; $d _ { 2 } ( \theta _ { 2 } ^ { j } )$ ; confidence 0.640
41. ; $a \leftrightarrow b a b ^ { - 1 }$ ; confidence 0.640
42. ; $\phi _ { p }$ ; confidence 0.640
43. ; $( \mathbf{R} _ { + } \backslash \{ 0 \} , \times , \leq )$ ; confidence 0.640
44. ; $\in \bigotimes \square ^ { p + q + 1 } \mathcal{E}$ ; confidence 0.640
45. ; $R \subseteq A ^ { n }$ ; confidence 0.640
46. ; $\text{E} _ { P } ( d _ { 0 } ) = 0$ ; confidence 0.640
47. ; $( C ) \int _ { A } f d m = ( C ) \int f \cdot \chi _ { A } d m$ ; confidence 0.640
48. ; $0 \leq t < \infty$ ; confidence 0.640
49. ; $\widehat { B^* } $ ; confidence 0.640
50. ; $E _ { \theta } ( X _ { i } ) = P _ { \theta } ( X _ { i } = 1 ) = \theta = 1 - P _ { \theta } ( X _ { i } = 0 )$ ; confidence 0.640
51. ; $\mathbf{f} ^ { em } = q _ { f } \mathbf{E} + \frac { 1 } { c } \mathbf{J} \times \mathbf{B} + ( \nabla \mathbf{E} ) \mathbf{P} + ( \nabla \mathbf{B} ) M +$ ; confidence 0.640
52. ; $\operatorname{II}( W , V ) = - \operatorname { Re } ( \eta ( W ) d g ( V ) ).$ ; confidence 0.640
53. ; $\alpha , b \in \Omega$ ; confidence 0.640
54. ; $x \in \widetilde{\mathbf{Z}}$ ; confidence 0.640
55. ; $f _ { t , s }$ ; confidence 0.640
56. ; $R = \sum _ { s = 1 } ^ { n } a _ { s } \otimes b _ { s } \in A \otimes _ { k } A$ ; confidence 0.640
57. ; $\overline { m } = \{ m _ { n } \} _ { n = 0 } ^ { \infty }$ ; confidence 0.639
58. ; $S ^ { \lambda }$ ; confidence 0.639
59. ; $\operatorname{SAT}$ ; confidence 0.639
60. ; $K_n$ ; confidence 0.639
61. ; $\lambda \in \Delta$ ; confidence 0.639
62. ; $\pi \in S _ { n }$ ; confidence 0.639
63. ; $T^+ T = I = T T^+$ ; confidence 0.639
64. ; $U _ { n + 1 } ( x ) = \sum _ { j = 0 } ^ { [ n / 2 ] } \frac { ( n - j ) ! } { j ! ( n - 2 j ) ! } x ^ { n - 2 j } , n = 0,1, \dots ,$ ; confidence 0.639
65. ; $\operatorname { Re } h ( z ) > 0$ ; confidence 0.639
66. ; $\langle A \rangle _ { T } = Z ^ { - 1 } \operatorname { Tr } [ \operatorname { exp } ( - \frac { \mathcal{H} } { k _ { B } T } ) A ].$ ; confidence 0.639
67. ; $( X _ { n } ) _ { n \in Z }$ ; confidence 0.639
68. ; $Z ( C )$ ; confidence 0.639
69. ; $f _ { 1 } , \ldots , f _ { d }$ ; confidence 0.639
70. ; $V _ { ( n ) } < \infty$ ; confidence 0.639
71. ; $z_1$ ; confidence 0.638
72. ; $RN_G(D)$ ; confidence 0.638
73. ; $\operatorname { gcd } ( p _ { 1 } \ldots p _ { k } , q ) = 1$ ; confidence 0.638
74. ; $U _ { t } ^ { j } = u _ { j } ( B _ { \operatorname { min }( t , \tau ) } )$ ; confidence 0.638
75. ; $\mathcal{Y} ( T _ { A } ) = \{ N _ { B } : \operatorname { Tor } _ { 1 } ^ { B } ( N , T ) = 0 \},$ ; confidence 0.638
76. ; $\{ 0 , \pm x _ { 1 } , \ldots , \pm x _ { k } \}$ ; confidence 0.638
77. ; $f _ { n } \in H ^ { \hat{\otimes} n }$ ; confidence 0.638
78. ; $K Q$ ; confidence 0.638
79. ; $H _ { Z } ( t )$ ; confidence 0.638
80. ; $v ( x , \alpha , k ) = A ( \alpha ^ { \prime } , \alpha , k ) \frac { e ^ { i k r} } { r } + o ( \frac { 1 } { r } ),$ ; confidence 0.638
81. ; $k S _ { n }$ ; confidence 0.638
82. ; $i,j = 1 , \ldots , n$ ; confidence 0.638
83. ; $\sum _ { \nu = 1 } ^ { n } \alpha _ { \nu } \leq 2$ ; confidence 0.637
84. ; $c_j ( \lambda )$ ; confidence 0.637
85. ; $S = \{ p _ { 1 } , \dots , p _ { s } \} \cup \{ p : p \text{ is prime and divides } a\}$ ; confidence 0.637
86. ; $w = ( w _ { 1 } , \dots , w _ { n } )$ ; confidence 0.637
87. ; $\sum _ { n = 1 } ^ { \infty } y _ { n }$ ; confidence 0.637
88. ; $\overline{ \mathbf{E}}_p ( X ) \approx \overline { \mathbf{E} } \square ^ { q } ( S ^ { n } \backslash X ) , p + q = n - 1,$ ; confidence 0.637
89. ; $N ( s )$ ; confidence 0.637
90. ; $X ( p ) = \operatorname { Re } \int _ { p _ { 0 } } ^ { p } ( \omega _ { 1 } , \ldots , \omega _ { n } ).$ ; confidence 0.637
91. ; $G _ { i+1 } $ ; confidence 0.637
92. ; $q_2 ( x )$ ; confidence 0.637
93. ; $\operatorname { ker } ( \gamma \circ \alpha ^ { \prime } ) \subset \mathfrak { g }$ ; confidence 0.637
94. ; $d \circ e = f$ ; confidence 0.637
95. ; $\mathcal{A}$ ; confidence 0.637
96. ; $z _ { i } = 1 , \dots , p - 1$ ; confidence 0.637
97. ; $e _ { 1 } , \dots , e _ { s }$ ; confidence 0.637
98. ; $\operatorname { max } _ { k = m + 1 , \ldots , m + n } | g ( k ) | \geq$ ; confidence 0.637
99. ; $q + 2$ ; confidence 0.637
100. ; $h ^ { i } ( K _ { X } + j L - \sum _ { k = 1 } ^ { r } [ \frac { j \alpha _ { k } } { N } ] D _ { k } ) = 0,$ ; confidence 0.637
101. ; $\alpha , b \in A _ { k }$ ; confidence 0.636
102. ; $S _ { k } = \left( \begin{array} { c } { n } \\ { k } \end{array} \right) \frac { ( n - k ) ! } { n ! }$ ; confidence 0.636
103. ; $\alpha \in \mathbf{Z} \alpha _ { 1 } + \mathbf{Z} \alpha _ { 2 } + \dots$ ; confidence 0.636
104. ; $C _ { B _ { 2 } } ( L _ { n } )$ ; confidence 0.636
105. ; $\beta ( \phi , \rho ) ( t ) = \int _ { M } u _ { \Phi } \rho.$ ; confidence 0.636
106. ; $u ^ { n } = 1$ ; confidence 0.636
107. ; $\nabla _ { Z } R$ ; confidence 0.636
108. ; $V _ { \text { simp } } ( K _ { p } )$ ; confidence 0.636
109. ; $Z ( g ^ { \alpha } h ^ { c } , g ^ { b } h ^ { d } ; z ) = \alpha Z ( g ,h ; \frac { a z + b } { c z + d } )$ ; confidence 0.636
110. ; $M _ { Z }$ ; confidence 0.636
111. ; $a ^ { [ N ] } ( z ) \equiv 1$ ; confidence 0.636
112. ; $v \notin [ 0,1$ ; confidence 0.636
113. ; $\alpha _ { 2 } = 1$ ; confidence 0.636
114. ; $\ddot { x } - \mu ( 1 - x ^ { 2 } ) \dot { x } + x = 0 , \quad \mu = \text { const } > 0 , \quad \dot { x } ( t ) \equiv \frac { d x } { d t },$ ; confidence 0.636
115. ; $Z \sim N _ { p } ( 0 , I )$ ; confidence 0.636
116. ; $x , y , z \in E _ { + }$ ; confidence 0.636
117. ; $\mathcal{L} _ { w } ( \mathcal{X} , \mathcal{Y} )$ ; confidence 0.636
118. ; $D _ { 1 }$ ; confidence 0.636
119. ; $c - 2 \operatorname { deg } l$ ; confidence 0.636
120. ; $i = 1 , \ldots , 4$ ; confidence 0.636
121. ; $S _ { f } ( a _ { 0 } )$ ; confidence 0.636
122. ; $f | _ { K }$ ; confidence 0.635
123. ; $( \alpha _ { 1 } \cup \gamma , \alpha _ { 2 } , \dots , \alpha _ { q } )$ ; confidence 0.635
124. ; $E [ C ]$ ; confidence 0.635
125. ; $\mathcal{C} _ { 1 }$ ; confidence 0.635
126. ; $V ( M )$ ; confidence 0.635
127. ; $\left( \begin{array} { c c c c } { 1 } & { 2 } & { 3 } & { 4 } \\ { 5 } & { 6 } & { 7 } & { \square } \\ { 8 } & { \square } & { \square } & { \square } \\ { 9 } & { \square } & { \square } & { \square } \end{array} \right) = \left( \begin{array} { c c c c } { 4 } & { 2 } & { 1 } & { 3 } \\ { 6 } & { 5 } & { 7 } & { \square } \\ { 8 } & { \square } & { \square } & { \square } \\ { 9 } & { \square } & { \square } & { \square } \end{array} \right) \neq$ ; confidence 0.635
128. ; $E _ { 0 }$ ; confidence 0.635
129. ; $A \mathbf{x}$ ; confidence 0.635
130. ; $X = G \wedge H$ ; confidence 0.635
131. ; $X \times X$ ; confidence 0.635
132. ; $A ( \mathbf{D} )$ ; confidence 0.635
133. ; $\mathbf{f} ^ { em } = \operatorname { div } \mathbf{t} ^ { em } - \frac { \partial \mathbf{G} ^ { em } } { \partial t }$ ; confidence 0.635
134. ; $z \in D$ ; confidence 0.635
135. ; $\dim H ^ { 2 r + 1 } ( M , \mathbf{C}) \qquad \text{is even},$ ; confidence 0.635
136. ; $\overline { \delta }_{\operatorname{BRST}}$ ; confidence 0.635
137. ; $\mathcal{P} \equiv \left( \begin{array} { c c } { \operatorname { exp } ( \frac { J + H } { k _ { B } T } ) } & { \operatorname { exp } ( \frac { - J } { k _ { B } T } ) } \\ { \operatorname { exp } ( \frac { - J } { k _ { B } T } ) } & { \operatorname { exp } ( \frac { J - H } { k _ { B } T } ) } \end{array} \right).$ ; confidence 0.635
138. ; $V _ { \alpha }$ ; confidence 0.635
139. ; $\int _ { A } \operatorname { exp } ( h ^ { \prime } \Delta _ { n } ^ { * } ( \theta ) ) d P _ { n , \theta }$ ; confidence 0.635
140. ; $T ^ { k }$ ; confidence 0.635
141. ; $\mathbf{P} _ { K } ( 1,0 ) = \alpha _ { 2 }$ ; confidence 0.635
142. ; $\mathcal{D}$ ; confidence 0.635
143. ; $\operatorname { max } _ { k = 1 , \ldots , n } ( \frac { 1 } { n } | s _ { k } | ) ^ { 1 / k } > \frac { 1 } { 5 } > \frac { 1 } { 2 + \sqrt { 8 } },$ ; confidence 0.635
144. ; $\rho ( x ) = \sum _ { j = 1 } ^ { N } | u _ { j } ( x ) | ^ { 2 }.$ ; confidence 0.635
145. ; $\mathbf{P} _ { 0 } \in P$ ; confidence 0.635
146. ; $\mathcal{M} _ { n } = \{ P ( X , Y ) = \sum _ { \nu = 0 } ^ { n } a _ { \nu } X ^ { \nu } Y ^ { n - \nu } : a _ { \nu } \in \mathbf{Q} \},$ ; confidence 0.635
147. ; $\sigma _ { k - 1 } ( n ) = \sum _ { 0 < d | n } d ^ { k - 1 }.$ ; confidence 0.635
148. ; $\operatorname { lim } _ { \tau \rightarrow \infty } \frac { \operatorname { det } ( I + W _ { \tau } ( k ) ) } { G ( a ) ^ { \tau } } = E ( a ),$ ; confidence 0.634
149. ; $\| \mathbf{y} - \mathbf{Xb} \| ^ { 2 }$ ; confidence 0.634
150. ; $\operatorname { Cap } ( E ) = \operatorname { exp } ( - \operatorname { sup } _ { z \in C ^ { n } } \rho _ { L _ { E } } ( z ) ).$ ; confidence 0.634
151. ; $\rightarrow H ^ { n + 1 } ( X , A ; G ) \rightarrow \dots $ ; confidence 0.634
152. ; $E ^ { TF } ( N )$ ; confidence 0.634
153. ; $\frac { 1 } { \beta _ { p } ( a , b ) } | V | ^ { \alpha - ( p + 1 ) / 2 } | I _ { p } + V | ^ { - ( \alpha + b ) },$ ; confidence 0.634
154. ; $\mod \Gamma$ ; confidence 0.634
155. ; $F ( t ) = \int _ { t } ^ { + \infty } p _ { 0 } ( \alpha - t ) \frac { \Pi ( \alpha ) } { \Pi ( \alpha - t ) } d \alpha,$ ; confidence 0.634
156. ; $B _ { r _ { 1 } } , B _ { r _ { 2 } }$ ; confidence 0.634
157. ; $Y \in \mathfrak { X } ( M )$ ; confidence 0.634
158. ; $\operatorname{diam}M \leq d,$ ; confidence 0.634
159. ; $G_1$ ; confidence 0.634
160. ; $k = 1 / 2$ ; confidence 0.633
161. ; $\operatorname { spec } ( M , \Delta ^ { ( 0 ) } ) , \ldots , \operatorname { spec } ( M , \Delta ^ { ( \dim M ) } )$ ; confidence 0.633
162. ; $\operatorname{QS} ( T ) = \cup _ { M \geq 1 } M$ ; confidence 0.633
163. ; $\mathbf{E} _ { n }$ ; confidence 0.633
164. ; $z \in ( 1 , \dots , M )$ ; confidence 0.633
165. ; $\psi ( \gamma ) = \frac { 2 } { \pi ^ { 2 } \gamma } + O ( \frac { 1 } { \gamma ^ { 3 } } ) \text { as } \gamma \rightarrow + \infty.$ ; confidence 0.633
166. ; $S ^ { 3 } / \Gamma$ ; confidence 0.633
167. ; $\{ l _ { n } \} _ { n = 0 } ^ { \infty }$ ; confidence 0.633
168. ; $Q_l ^ { B }$ ; confidence 0.633
169. ; $A b ^ { Z C }$ ; confidence 0.633
170. ; $\mathbf{Z} [ v ^ { \pm 1 } , z ^ { \pm 1 } ]$ ; confidence 0.633
171. ; $y _ { t } ^ { ( l ) }$ ; confidence 0.633
172. ; $H$ ; confidence 0.632
173. ; $\alpha \wedge \beta ^ { n } \neq 0$ ; confidence 0.632
174. ; $R _ { 1414 } = \alpha _ { 1 } , R _ { 2323 } = \alpha _ { 1 } , R _ { 3434 } = \alpha _ { 2 } , R _ { 1234 } = \alpha _ { 1 } , R _ { 1324 } = - \alpha _ { 1 } , R _ { 1423 } = \alpha _ { 2 },$ ; confidence 0.632
175. ; $E ( \varphi , \psi ) = \{ \epsilon _ { i } ( \varphi , \psi ) : i \in I \}$ ; confidence 0.632
176. ; $R _ { n } = I - Q _ { n }$ ; confidence 0.632
177. ; $K \subset \mathbf{C}$ ; confidence 0.632
178. ; $m$ ; confidence 0.632
179. ; $g ( z ) = r ( z ) + \sum _ { i = 1 } ^ { \infty } s _ { 2 m + i } z ^ { - ( 2 m + i ) }$ ; confidence 0.632
180. ; $V _ { \pm }$ ; confidence 0.632
181. ; $f = ( f _ { 1 } , \ldots , f _ { M } )$ ; confidence 0.632
182. ; $C_l$ ; confidence 0.632
183. ; $\bigwedge _ { j = 1 } ^ { m } \frac { d z _ { j } - d z _ { j } ^ { \prime } } { z _ { j } - z _ { j } ^ { \prime } }$ ; confidence 0.632
184. ; $x _ { 0 } > 0$ ; confidence 0.632
185. ; $\mathbf{P} _ { n }$ ; confidence 0.632
186. ; $C \in K_0$ ; confidence 0.632
187. ; $T _ { 0 }$ ; confidence 0.632
188. ; $\Sigma _ { P } = \{ ( x , \xi ) \in \Omega \times ( \mathbf{R} ^ { n } \backslash \{ 0 \} ) : p _ { m } ( x , \xi ) = 0 \},$ ; confidence 0.632
189. ; $D _ { x } ^ { \alpha } = D _ { x _ { 1 } } ^ { \alpha _ { 1 } } \ldots D _ { x _ { n } } ^ { \alpha _ { n } }$ ; confidence 0.632
190. ; $f _ { j k l } = \frac { - i } { 4 } \operatorname { Tr } [ ( \lambda _ { j } \lambda _ { k } - \lambda _ { k } \lambda _ { j } ) \lambda _ { l } ].$ ; confidence 0.632
191. ; $W ^ { n }$ ; confidence 0.632
192. ; $\frac { \partial u ( t , x ) } { \partial t } + \frac { 1 } { 2 } \| d _ { x } u ( t , x ) \| ^ { 2 } = 0 , \quad ( t , x ) \in ( 0 , T ) \times H,$ ; confidence 0.632
193. ; $\mathcal{A} ( X )$ ; confidence 0.632
194. ; $( \alpha _ { 1 } , \dots , \alpha _ { n } )$ ; confidence 0.632
195. ; $( A , [. ,. ] )$ ; confidence 0.632
196. ; $\operatorname { lim } _ { n \rightarrow \infty } \frac { T _ { x } - S } { S _ { n } - S } = 0.$ ; confidence 0.632
197. ; $\partial _ { S }$ ; confidence 0.631
198. ; $T \in \operatorname{GL} ( n , \mathbf{R} )$ ; confidence 0.631
199. ; $\mathbf{E} \varepsilon _ { t } \varepsilon _ { s } ^ { \prime } = \delta _ { s t } \Sigma$ ; confidence 0.631
200. ; $B ( x _ { 0 } , r ) = \{ x \in \mathbf{R} ^ { n } : | x - x _ { 0 } | < r \}$ ; confidence 0.631
201. ; $F _ { K } \circ \Phi$ ; confidence 0.631
202. ; $| x | | y | \bigwedge | y | ^ { 2 } | x | ^ { 2 } = | x | | y |$ ; confidence 0.631
203. ; $\mathcal{E} _ { \text{avg} } ( \mu , m ) = \int | \epsilon ( p , m ) | d \mu ( p )$ ; confidence 0.631
204. ; $\pi ( a ) M ^ { U } ( [ t , \infty ) ) \subseteq M ^ { U } ( [ t + s , \infty ) )$ ; confidence 0.631
205. ; $( l _ { m } - k ^ { 2 } ) f _ { m } = 0,$ ; confidence 0.631
206. ; $g _ { j } \in L ^ { 2 } ( [ 0,1 ] )$ ; confidence 0.631
207. ; $\mathbf{E} ( \mathbf{Z} _ { 3 } ) = 0$ ; confidence 0.631
208. ; $+ O ( \frac { ( \operatorname { log } n ) ^ { 1 / 2 } ( \operatorname { log } \operatorname { log } n ) ^ { 1 / 4 } } { n ^ { 3 / 4 } } ) \text{ a.s..}$ ; confidence 0.631
209. ; $\gamma_jj = 0$ ; confidence 0.631
210. ; $\{ F _ { n } \} _ { n = 0 } ^ { \infty }$ ; confidence 0.631
211. ; $B U _ { q } ( g )$ ; confidence 0.631
212. ; $t _ { \operatorname { min } } < t _ { 1 } < \ldots < t _ { m } < t _ { \operatorname { max } }$ ; confidence 0.631
213. ; $\sigma _ { \pi } ( A , \mathcal{X} ) = \sigma _ { \delta } ( A , \mathcal{X} ) = \sigma _ { T } ( A , \mathcal{X} )$ ; confidence 0.631
214. ; $\operatorname{ad}( \mathfrak{g} ) = \operatorname { Der } (\mathfrak{g} )$ ; confidence 0.631
215. ; $p_y$ ; confidence 0.630
216. ; $\mathbf{N} ( X )$ ; confidence 0.630
217. ; $1 , \dots , n$ ; confidence 0.630
218. ; $P _ { \Omega } ( . , \xi )$ ; confidence 0.630
219. ; $D _ { 1 } \subset \mathbf{R} ^ { 2 }$ ; confidence 0.630
220. ; $\zeta _ { \lambda } ^ { \pi }$ ; confidence 0.630
221. ; $\overline{A} \in \mathcal{S}$ ; confidence 0.630
222. ; $L _ { i } \in \Omega ^ { l } ( N ; T N )$ ; confidence 0.630
223. ; $C _ { 1 } N ^ { ( n - 1 ) / 2 } \leq \| S _ { N } \| \leq C _ { 2 } N ^ { ( n - 1 ) / 2 }.$ ; confidence 0.630
224. ; $ax \leq ay$ ; confidence 0.630
225. ; $\{ r _ { i } ( A ) \} _ { i = 1 } ^ { n }$ ; confidence 0.630
226. ; $m _ { s } = \operatorname { lim } _ { H \rightarrow 0 } m ( T , H ) > 0.$ ; confidence 0.630
227. ; $K I = K ( I , \preceq )$ ; confidence 0.630
228. ; $\sum | c_k| < \infty$ ; confidence 0.630
229. ; $( \mathcal{L} _ { K } \omega ) ( X _ { 1 } , \dots , X _ { k + 1 } ) =$ ; confidence 0.630
230. ; $A _ { \alpha }$ ; confidence 0.630
231. ; $\mathbf{N}$ ; confidence 0.630
232. ; $a + b \in F$ ; confidence 0.629
233. ; $r ( 1 + 2.78 / \lambda )$ ; confidence 0.629
234. ; $( u = v ) \in S$ ; confidence 0.629
235. ; $R$ ; confidence 0.629
236. ; $\overline { R } = \sum _ { i = 1 } ^ { n } R _ { i } / n = ( n + 1 ) / 2 = \sum _ { i = 1 } ^ { n } S _ { i } / n = \overline { S }$ ; confidence 0.629
237. ; $\overline { H } \square ^ { * }$ ; confidence 0.629
238. ; $G \subset \operatorname { GL } ( V )$ ; confidence 0.629
239. ; $H ^ { n } ( S ^ { n } )$ ; confidence 0.629
240. ; $\widetilde { D } = \{ \alpha \in G : \alpha D \alpha ^ { - 1 } \text { is commensurable with} D\}$ ; confidence 0.629
241. ; $p _ { m } ( z ) = m ! \sum _ { 0 \leq n \leq m - 1 } b _ { m } ( n + 1 ) z ^ { n } , \quad z \in \mathbf{C},$ ; confidence 0.629
242. ; $c _ { 1 } ( M ) _ { \mathbf{R} } > 0$ ; confidence 0.629
243. ; $x , y , z _ { 1 } , \dots , z _ { s } \in \mathbf{Z}$ ; confidence 0.629
244. ; $X ^ { 2 n + 1 }$ ; confidence 0.629
245. ; $k = i k_j$ ; confidence 0.629
246. ; $H _ { p }$ ; confidence 0.629
247. ; $\Gamma = \operatorname { Gal } ( K / k )$ ; confidence 0.628
248. ; $\mathbf{x} = ( x , \ldots , x )$ ; confidence 0.628
249. ; $q_l : \mathbf{Z} ^ { l } \rightarrow \mathbf{Z}$ ; confidence 0.628
250. ; $\operatorname { su } ( 2 )$ ; confidence 0.628
251. ; $y _ { n } \geq 0$ ; confidence 0.628
252. ; $\mathbf{R} = \mathbf{V} _ { 33 } ^ { - 1 } \mathbf{V} _ { 32 }$ ; confidence 0.628
253. ; $\rho = ( 1 / 2 ) \sum _ { \alpha \in \Delta ^ { + } } \alpha$ ; confidence 0.628
254. ; $\operatorname{TD} [ r , s ]$ ; confidence 0.628
255. ; $\| W _ { k } \| = \| \mathcal{F} k \| _ { L^\infty } $ ; confidence 0.628
256. ; $u_-$ ; confidence 0.628
257. ; $f \in X \text{ implies } \bar{f} \in X \text{ and } \mathcal{P}_-f \in X,$ ; confidence 0.628
258. ; $n ^ { \text { th } }$ ; confidence 0.628
259. ; $A X B + C \sim E _ { q , n } ( A M B + C , ( A \Sigma A ^ { \prime } ) \otimes ( B ^ { \prime } \Phi B ) , \psi )$ ; confidence 0.628
260. ; $x . D _ { x }$ ; confidence 0.628
261. ; $x \notin - \Delta ^ { \circ }$ ; confidence 0.628
262. ; $\partial _ { t } \eta ( u ) + \operatorname { div } _ { X } G ( u ) \leq 0,$ ; confidence 0.627
263. ; $\operatorname { St } _ { G } ( u )$ ; confidence 0.627
264. ; $\frac { 1 } { ( 2 \pi ) ^ { n p / 2 } } | \Sigma | ^ { - n / 2 } \operatorname { etr } \{ - \frac { 1 } { 2 } \Sigma ^ { - 1 } X X ^ { \prime } \} , X \in \mathbf{R} ^ { p \times n },$ ; confidence 0.627
265. ; $3 / 2$ ; confidence 0.627
266. ; $P \subset X$ ; confidence 0.627
267. ; $x _ { 0 } \in F ( x _ { 0 } )$ ; confidence 0.627
268. ; $K \subset \mathbf{C} ^ { n + 1 }$ ; confidence 0.627
269. ; $W = p ^ { n + 1 } - q _ { 1 } p ^ { n - 1 } - \ldots - q _ { n }$ ; confidence 0.627
270. ; $0 = ( \delta ( x ) x ) \operatorname { vp } \frac { 1 } { x } \neq \delta ( x ) ( x \operatorname{vp} \frac { 1 } { x } ) = \delta ( x )$ ; confidence 0.627
271. ; $\sigma _ { \delta }$ ; confidence 0.627
272. ; $D _ { j }$ ; confidence 0.627
273. ; $\lambda = ( \lambda _ { 1 } , \dots , \lambda _ { s } , \dots , \lambda _ { t } )$ ; confidence 0.627
274. ; $\Gamma \subset \Omega \times ( \mathbf{R} ^ { n } \backslash \{ 0 \} )$ ; confidence 0.627
275. ; $c _ { t } ^ { \prime } > c _ { t }$ ; confidence 0.627
276. ; $a _ { n^i } = ( a _ { n } )^i$ ; confidence 0.627
277. ; $G /G_X$ ; confidence 0.627
278. ; $l ^ { 2 } ( \Gamma )$ ; confidence 0.627
279. ; $u_{m + 1}$ ; confidence 0.627
280. ; $\rho \otimes x$ ; confidence 0.627
281. ; $S _ { i } > 0 , i = 1 , \dots , r.$ ; confidence 0.627
282. ; $y _ { j } < y _ { k }$ ; confidence 0.627
283. ; $= \pi ^ { 2 } \sqrt { \frac { \pi } { 2 } } \int _ { 0 } ^ { \infty } \tau \frac { \operatorname { sinh } ( \pi \tau ) } { \operatorname { cosh } ^ { 3 } ( \pi \tau ) } P _ { i \tau - 1 / 2 } ( x ) F ( \tau ) G ( \tau ) d \tau,$ ; confidence 0.627
284. ; $n/ ( k - 1 )$ ; confidence 0.627
285. ; $p _ { i } ( \theta ) = \mathbf{P} \{ X _ { i } \in ( x _ { i } - 1 , x _ { i } ] \} > 0,$ ; confidence 0.626
286. ; $\operatorname{rank} ( X ) = r$ ; confidence 0.626
287. ; $\rho : G / \mathbf{Q} \rightarrow \operatorname{GL} (\mathcal{M} )$ ; confidence 0.626
288. ; $\rho _ { \text{atom} } ^ { \text{TF} } ( x , N = Z , Z ) \sim \gamma ^ { 3 } ( \frac { 3 } { \pi } ) ^ { 3 } | x | ^ { - 6 },$ ; confidence 0.626
289. ; $\forall x \forall y \exists z \forall v ( v \in z \leftrightarrow ( v = x \vee v = y ) ).$ ; confidence 0.626
290. ; $\operatorname{Ch} ( [ a ] ) \mathcal{T} ( M )$ ; confidence 0.626
291. ; $i = 1 , \ldots , k$ ; confidence 0.626
292. ; $\operatorname{CL} ( X )$ ; confidence 0.626
293. ; $( q _ { 1 } , \dots , q _ { m } )$ ; confidence 0.626
294. ; $B / A$ ; confidence 0.626
295. ; $A \Theta B$ ; confidence 0.626
296. ; $s = ( s _ { 1 } , \dots , s _ { n } ) : \partial D \times D \rightarrow \mathbf{C} ^ { n }$ ; confidence 0.626
297. ; $G _ { X } ( X - Y) \leq \rho ^ { 2 } \Rightarrow G _ { Y } \leq C G _ { X };$ ; confidence 0.626
298. ; $F _ { j k } =$ ; confidence 0.626
299. ; $\mathcal{M}$ ; confidence 0.626
300. ; $U _ { q } ( \mathfrak { g } )$ ; confidence 0.626
Maximilian Janisch/latexlist/latex/NoNroff/50. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Maximilian_Janisch/latexlist/latex/NoNroff/50&oldid=45702