Difference between revisions of "User:Maximilian Janisch/latexlist/latex/NoNroff/51"
(AUTOMATIC EDIT of page 51 out of 77 with 300 lines: Updated image/latex database (currently 22833 images latexified; order by Confidence, ascending: False.) |
(→List) |
||
Line 2: | Line 2: | ||
1. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120260/c12026032.png ; $V _ { 0 } ^ { n } = V _ { j } ^ { n } = 0$ ; confidence 0.626 | 1. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120260/c12026032.png ; $V _ { 0 } ^ { n } = V _ { j } ^ { n } = 0$ ; confidence 0.626 | ||
− | 2. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120280/a120280132.png ; $M ^ { U } ( E ) = P ( E ) X$ ; confidence | + | 2. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120280/a120280132.png ; $M ^ { U } ( E ) = P ( E )\cal X$ ; confidence 1.000 |
− | 3. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057500/l05750023.png ; $R _ { | + | 3. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057500/l05750023.png ; ${\bf R} _ { n } ^ { Y }$ ; confidence 1.000 |
− | 4. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120210/b120210134.png ; $C _ { k } = \oplus _ { w \in W ^ { ( i ) } } M ( w | + | 4. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120210/b120210134.png ; $C _ { k } = \oplus _ { w \in W ^ { ( i ) } } M ( w . \lambda )$ ; confidence 1.000 |
5. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120240/e12024080.png ; $H ^ { 2 } ( Z [ 1 / p ] ; Z _ { p } ( n ) )$ ; confidence 0.626 | 5. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120240/e12024080.png ; $H ^ { 2 } ( Z [ 1 / p ] ; Z _ { p } ( n ) )$ ; confidence 0.626 | ||
− | 6. https://www.encyclopediaofmath.org/legacyimages/h/h047/h047940/h047940173.png ; $P _ { | + | 6. https://www.encyclopediaofmath.org/legacyimages/h/h047/h047940/h047940173.png ; $P _ { n + 1}$ ; confidence 1.000 |
7. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130210/b13021014.png ; $f = ( f _ { b } ) _ { b \in B }$ ; confidence 0.625 | 7. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130210/b13021014.png ; $f = ( f _ { b } ) _ { b \in B }$ ; confidence 0.625 | ||
Line 16: | Line 16: | ||
8. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120080/k12008083.png ; $\rho ^ { \prime } ( \xi ) = ( \partial \rho / \partial \xi _ { 1 } , \dots , \partial \rho / \partial \xi _ { n } )$ ; confidence 0.625 | 8. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120080/k12008083.png ; $\rho ^ { \prime } ( \xi ) = ( \partial \rho / \partial \xi _ { 1 } , \dots , \partial \rho / \partial \xi _ { n } )$ ; confidence 0.625 | ||
− | 9. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130080/z13008022.png ; $V _ { N } ^ { m } ( x , y ) = e ^ { i m \theta } R _ { x } ^ { m } ( r )$ ; confidence 0.625 | + | 9. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130080/z13008022.png ; $V _ { N } ^ { m } ( x , y ) = e ^ { i m \theta } R _ { x } ^ { m } ( r ),$ ; confidence 0.625 |
− | 10. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130280/f13028031.png ; $N _ { | + | 10. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130280/f13028031.png ; $N _ { \tilde{A}x } ( \tilde { B } ) \geq h ^ { N }$ ; confidence 1.000 |
− | 11. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130280/f13028013.png ; $\mu _ { B } ( A x )$ ; confidence | + | 11. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130280/f13028013.png ; $\mu _ { B } ( A {\bf x} )$ ; confidence 1.000 |
12. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130490/s13049045.png ; $( p _ { 0 } < \ldots < p _ { h } )$ ; confidence 0.625 | 12. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130490/s13049045.png ; $( p _ { 0 } < \ldots < p _ { h } )$ ; confidence 0.625 | ||
Line 28: | Line 28: | ||
14. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120140/f12014047.png ; $\alpha \pi$ ; confidence 0.625 | 14. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120140/f12014047.png ; $\alpha \pi$ ; confidence 0.625 | ||
− | 15. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130010/j13001034.png ; $ | + | 15. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130010/j13001034.png ; $D_{f , 2}$ ; confidence 1.000 |
− | 16. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130060/i130060103.png ; $\{ \ | + | 16. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130060/i130060103.png ; $\{ \varphi_+ ( k ) , \varphi_- ( k ) \}$ ; confidence 1.000 |
− | 17. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120300/c12030065.png ; $B \ | + | 17. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120300/c12030065.png ; $B \rtimes _ { \alpha } \bf Z$ ; confidence 1.000 |
− | 18. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t130050182.png ; $= [ \sigma _ { Te } ( A , H ) \times \sigma _ { T } ( B , H ) ] \ | + | 18. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t130050182.png ; $= [ \sigma _ { Te } ( A , {\cal H} ) \times \sigma _ { T } ( B , {\cal H} ) ] \bigcup [ \sigma _ { T } ( A , {\cal H} ) \times \sigma _ { Te } ( B , {\cal H} ) ].$ ; confidence 1.000 |
− | 19. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120170/l120170189.png ; $Wh ^ { * } ( \pi ) \neq \{ 0 \}$ ; confidence | + | 19. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120170/l120170189.png ; $\operatorname{Wh} ^ { * } ( \pi ) \neq \{ 0 \}$ ; confidence 1.000 |
20. https://www.encyclopediaofmath.org/legacyimages/n/n130/n130030/n13003052.png ; $v = w$ ; confidence 0.625 | 20. https://www.encyclopediaofmath.org/legacyimages/n/n130/n130030/n13003052.png ; $v = w$ ; confidence 0.625 | ||
Line 44: | Line 44: | ||
22. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120040/b12004058.png ; $D _ { s } f ( t ) = f ( t / s )$ ; confidence 0.625 | 22. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120040/b12004058.png ; $D _ { s } f ( t ) = f ( t / s )$ ; confidence 0.625 | ||
− | 23. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130040/e13004052.png ; $\ | + | 23. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130040/e13004052.png ; $\overset{\rightharpoonup} { x } . \overset{\rightharpoonup} { v } < 0$ ; confidence 1.000 |
− | 24. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025650/c025650116.png ; $E \subset R ^ { | + | 24. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025650/c025650116.png ; $E \subset {\bf R} ^ { n }$ ; confidence 1.000 |
25. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130090/c13009035.png ; $b _ { N - 1 } = 2 N a _ { N }$ ; confidence 0.624 | 25. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130090/c13009035.png ; $b _ { N - 1 } = 2 N a _ { N }$ ; confidence 0.624 | ||
− | 26. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p12017079.png ; $ | + | 26. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p12017079.png ; $A$ ; confidence 1.000 |
27. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120140/t1201406.png ; $( \gamma _ { j - k } ) _ { j , k \geq 0 }$ ; confidence 0.624 | 27. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120140/t1201406.png ; $( \gamma _ { j - k } ) _ { j , k \geq 0 }$ ; confidence 0.624 | ||
− | 28. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130230/b13023011.png ; $M _ { | + | 28. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130230/b13023011.png ; $M _ { n+ 1} / M _ { n }$ ; confidence 1.000 |
− | 29. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120490/b12049047.png ; $\{ m _ { | + | 29. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120490/b12049047.png ; $\{ m _ { n } \}$ ; confidence 1.000 |
− | 30. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130290/b130290210.png ; $i \neq | + | 30. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130290/b130290210.png ; $i \neq d$ ; confidence 1.000 |
− | 31. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120130/w12013015.png ; $\sigma _ { ess } ( T ) = \sigma _ { ess } ( T + S )$ ; confidence | + | 31. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120130/w12013015.png ; $\sigma _ { \text{ess} } ( T ) = \sigma _ { \text{ess} } ( T + S ).$ ; confidence 1.000 |
32. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520383.png ; $N = N _ { 1 } \cup \ldots \cup N _ { n }$ ; confidence 0.624 | 32. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520383.png ; $N = N _ { 1 } \cup \ldots \cup N _ { n }$ ; confidence 0.624 | ||
− | 33. https://www.encyclopediaofmath.org/legacyimages/c/c020/c020180/c0201809.png ; $R ^ { | + | 33. https://www.encyclopediaofmath.org/legacyimages/c/c020/c020180/c0201809.png ; $R ^ { * }$ ; confidence 1.000 |
− | 34. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130050/o13005014.png ; $W _ { \Theta } ( z ) = I - 2 i K ^ { * } ( T - z I ) ^ { - 1 } K J$ ; confidence 0.624 | + | 34. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130050/o13005014.png ; $W _ { \Theta } ( z ) = I - 2 i K ^ { * } ( T - z I ) ^ { - 1 } K J,$ ; confidence 0.624 |
− | 35. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130010/k13001048.png ; $ | + | 35. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130010/k13001048.png ; $10_{101}$ ; confidence 1.000 |
− | 36. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130100/f1301007.png ; $L _ { C } ^ { p } ( G )$ ; confidence | + | 36. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130100/f1301007.png ; ${\cal L} _ {\bf C } ^ { p } ( G )$ ; confidence 1.000 |
− | 37. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120020/c1200208.png ; $| S ^ { | + | 37. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120020/c1200208.png ; $| S ^ { n - 1 } |$ ; confidence 1.000 |
− | 38. https://www.encyclopediaofmath.org/legacyimages/c/c026/c026010/c026010414.png ; $ | + | 38. https://www.encyclopediaofmath.org/legacyimages/c/c026/c026010/c026010414.png ; $J ^ { * }$ ; confidence 0.624 |
39. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520330.png ; $\{ f _ { i _ { 1 } } , \dots , f _ { i _ { n } } \}$ ; confidence 0.624 | 39. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520330.png ; $\{ f _ { i _ { 1 } } , \dots , f _ { i _ { n } } \}$ ; confidence 0.624 | ||
Line 82: | Line 82: | ||
41. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120230/a1202309.png ; $z _ { 1 } ^ { m } d z _ { 1 }$ ; confidence 0.624 | 41. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120230/a1202309.png ; $z _ { 1 } ^ { m } d z _ { 1 }$ ; confidence 0.624 | ||
− | 42. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130230/m13023033.png ; $R = R _ { \geq 0 } v \subset \overline { N E } ( X / S )$ ; confidence | + | 42. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130230/m13023033.png ; $R = {\bf R} _ { \geq 0 } v \subset \overline { N E } ( X / S )$ ; confidence 1.000 |
43. https://www.encyclopediaofmath.org/legacyimages/l/l060/l060810/l0608104.png ; $m = 0,1 , \ldots$ ; confidence 0.623 | 43. https://www.encyclopediaofmath.org/legacyimages/l/l060/l060810/l0608104.png ; $m = 0,1 , \ldots$ ; confidence 0.623 | ||
Line 88: | Line 88: | ||
44. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130070/a13007030.png ; $c = 7$ ; confidence 0.623 | 44. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130070/a13007030.png ; $c = 7$ ; confidence 0.623 | ||
− | 45. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130180/a130180140.png ; $ | + | 45. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130180/a130180140.png ; $\leq 2$ ; confidence 1.000 |
46. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120060/n1200605.png ; $F M \rightarrow M$ ; confidence 0.623 | 46. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120060/n1200605.png ; $F M \rightarrow M$ ; confidence 0.623 | ||
Line 94: | Line 94: | ||
47. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040490/f04049055.png ; $F _ { m n }$ ; confidence 0.623 | 47. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040490/f04049055.png ; $F _ { m n }$ ; confidence 0.623 | ||
− | 48. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130030/z13003039.png ; $Z [ f ( t + m ) ] ( t , w ) = e ^ { 2 \pi i m w | + | 48. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130030/z13003039.png ; $Z [ f ( t + m ) ] ( t , w ) = e ^ { 2 \pi i m w } } Z [ f ] ( t , w ).$ ; confidence 1.000 |
49. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130110/z13011025.png ; $\mu _ { n } = \sum _ { i = 1 } ^ { N } 1 _ { \{ f _ { i n } \geq 1 \} }$ ; confidence 0.623 | 49. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130110/z13011025.png ; $\mu _ { n } = \sum _ { i = 1 } ^ { N } 1 _ { \{ f _ { i n } \geq 1 \} }$ ; confidence 0.623 | ||
− | 50. https://www.encyclopediaofmath.org/legacyimages/e/e036/e036440/e03644017.png ; $| x |$ ; confidence 0.623 | + | 50. https://www.encyclopediaofmath.org/legacyimages/e/e036/e036440/e03644017.png ; $| x |$ ; confidence 0.623 FIN QUI |
51. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012980/a012980112.png ; $k = 1 , \dots , n$ ; confidence 0.623 | 51. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012980/a012980112.png ; $k = 1 , \dots , n$ ; confidence 0.623 |
Revision as of 18:30, 29 April 2020
List
1. ; $V _ { 0 } ^ { n } = V _ { j } ^ { n } = 0$ ; confidence 0.626
2. ; $M ^ { U } ( E ) = P ( E )\cal X$ ; confidence 1.000
3. ; ${\bf R} _ { n } ^ { Y }$ ; confidence 1.000
4. ; $C _ { k } = \oplus _ { w \in W ^ { ( i ) } } M ( w . \lambda )$ ; confidence 1.000
5. ; $H ^ { 2 } ( Z [ 1 / p ] ; Z _ { p } ( n ) )$ ; confidence 0.626
6. ; $P _ { n + 1}$ ; confidence 1.000
7. ; $f = ( f _ { b } ) _ { b \in B }$ ; confidence 0.625
8. ; $\rho ^ { \prime } ( \xi ) = ( \partial \rho / \partial \xi _ { 1 } , \dots , \partial \rho / \partial \xi _ { n } )$ ; confidence 0.625
9. ; $V _ { N } ^ { m } ( x , y ) = e ^ { i m \theta } R _ { x } ^ { m } ( r ),$ ; confidence 0.625
10. ; $N _ { \tilde{A}x } ( \tilde { B } ) \geq h ^ { N }$ ; confidence 1.000
11. ; $\mu _ { B } ( A {\bf x} )$ ; confidence 1.000
12. ; $( p _ { 0 } < \ldots < p _ { h } )$ ; confidence 0.625
13. ; $1 = e _ { 1 } + \ldots + e _ { k }$ ; confidence 0.625
14. ; $\alpha \pi$ ; confidence 0.625
15. ; $D_{f , 2}$ ; confidence 1.000
16. ; $\{ \varphi_+ ( k ) , \varphi_- ( k ) \}$ ; confidence 1.000
17. ; $B \rtimes _ { \alpha } \bf Z$ ; confidence 1.000
18. ; $= [ \sigma _ { Te } ( A , {\cal H} ) \times \sigma _ { T } ( B , {\cal H} ) ] \bigcup [ \sigma _ { T } ( A , {\cal H} ) \times \sigma _ { Te } ( B , {\cal H} ) ].$ ; confidence 1.000
19. ; $\operatorname{Wh} ^ { * } ( \pi ) \neq \{ 0 \}$ ; confidence 1.000
20. ; $v = w$ ; confidence 0.625
21. ; $\lambda ( T T ^ { \prime } ) = \operatorname { diag } ( \tau _ { 1 } , \dots , \tau _ { 1 } )$ ; confidence 0.625
22. ; $D _ { s } f ( t ) = f ( t / s )$ ; confidence 0.625
23. ; $\overset{\rightharpoonup} { x } . \overset{\rightharpoonup} { v } < 0$ ; confidence 1.000
24. ; $E \subset {\bf R} ^ { n }$ ; confidence 1.000
25. ; $b _ { N - 1 } = 2 N a _ { N }$ ; confidence 0.624
26. ; $A$ ; confidence 1.000
27. ; $( \gamma _ { j - k } ) _ { j , k \geq 0 }$ ; confidence 0.624
28. ; $M _ { n+ 1} / M _ { n }$ ; confidence 1.000
29. ; $\{ m _ { n } \}$ ; confidence 1.000
30. ; $i \neq d$ ; confidence 1.000
31. ; $\sigma _ { \text{ess} } ( T ) = \sigma _ { \text{ess} } ( T + S ).$ ; confidence 1.000
32. ; $N = N _ { 1 } \cup \ldots \cup N _ { n }$ ; confidence 0.624
33. ; $R ^ { * }$ ; confidence 1.000
34. ; $W _ { \Theta } ( z ) = I - 2 i K ^ { * } ( T - z I ) ^ { - 1 } K J,$ ; confidence 0.624
35. ; $10_{101}$ ; confidence 1.000
36. ; ${\cal L} _ {\bf C } ^ { p } ( G )$ ; confidence 1.000
37. ; $| S ^ { n - 1 } |$ ; confidence 1.000
38. ; $J ^ { * }$ ; confidence 0.624
39. ; $\{ f _ { i _ { 1 } } , \dots , f _ { i _ { n } } \}$ ; confidence 0.624
40. ; $\operatorname { dim } D _ { s } ^ { \perp } = 2 ^ { n } - n - 1$ ; confidence 0.624
41. ; $z _ { 1 } ^ { m } d z _ { 1 }$ ; confidence 0.624
42. ; $R = {\bf R} _ { \geq 0 } v \subset \overline { N E } ( X / S )$ ; confidence 1.000
43. ; $m = 0,1 , \ldots$ ; confidence 0.623
44. ; $c = 7$ ; confidence 0.623
45. ; $\leq 2$ ; confidence 1.000
46. ; $F M \rightarrow M$ ; confidence 0.623
47. ; $F _ { m n }$ ; confidence 0.623
48. ; $Z [ f ( t + m ) ] ( t , w ) = e ^ { 2 \pi i m w } } Z [ f ] ( t , w ).$ ; confidence 1.000
49. ; $\mu _ { n } = \sum _ { i = 1 } ^ { N } 1 _ { \{ f _ { i n } \geq 1 \} }$ ; confidence 0.623
50. ; $| x |$ ; confidence 0.623 FIN QUI
51. ; $k = 1 , \dots , n$ ; confidence 0.623
52. ; $d _ { k } = rd _ { Y } M _ { k }$ ; confidence 0.623
53. ; $H _ { k } ^ { ( m ) } > 0 , m = 0 , \pm 1 , \pm 2 , \ldots , k = 1,2 ,$ ; confidence 0.623
54. ; $k _ { B }$ ; confidence 0.623
55. ; $Cd \approx \frac { l } { b } , f \approx \frac { l } { U } , Cd \approx \frac { f U } { d } , Cd \approx \frac { 1 } { St }$ ; confidence 0.623
56. ; $P ( m , F )$ ; confidence 0.623
57. ; $E ^ { k + 1 }$ ; confidence 0.623
58. ; $B ^ { x - k }$ ; confidence 0.623
59. ; $m = 1 + I + J + I J$ ; confidence 0.623
60. ; $H ^ { 1 } ( R _ { X } )$ ; confidence 0.622
61. ; $g = ( g _ { 1 } , \dots , g _ { N } )$ ; confidence 0.622
62. ; $f$ ; confidence 0.622
63. ; $b _ { j } ^ { l } > 0$ ; confidence 0.622
64. ; $p j$ ; confidence 0.622
65. ; $x \in D ( p ( A ) )$ ; confidence 0.622
66. ; $R ( \nabla ) : \otimes ^ { r } E \rightarrow \otimes ^ { + 2 } E$ ; confidence 0.622
67. ; $M _ { s }$ ; confidence 0.622
68. ; $F ( z ) = - \frac { 1 } { 2 \pi i } \int \frac { \operatorname { exp } e ^ { \zeta ^ { 2 } } } { \zeta - z } d \zeta$ ; confidence 0.622
69. ; $s ^ { 2 = 4 \lambda } ( x , y ) p q$ ; confidence 0.622
70. ; $u = \alpha ^ { s }$ ; confidence 0.622
71. ; $T _ { B \delta }$ ; confidence 0.622
72. ; $Z [ e ^ { 2 \pi i m t } f ( t + n ) ] ( t , w ) = e ^ { 2 \pi i m t } e ^ { 2 \pi i n w } ( Z f ) ( t , w )$ ; confidence 0.622
73. ; $v$ ; confidence 0.622
74. ; $\Pi _ { 1 } ^ { 1 }$ ; confidence 0.621
75. ; $U \rightarrow G _ { N } ( R ^ { N } \times R ^ { p } )$ ; confidence 0.621
76. ; $f ( x ) = \sum _ { i = 1 } ^ { m } w _ { i } \| p _ { i } - x \| , x \in R ^ { n }$ ; confidence 0.621
77. ; $V _ { R , p } ( f , x ) = f ( x )$ ; confidence 0.621
78. ; $Q _ { n } ( x )$ ; confidence 0.621
79. ; $E ( a )$ ; confidence 0.621
80. ; $g \times ^ { \varrho } f \in G \times ^ { \varrho } F$ ; confidence 0.621
81. ; $S _ { \mathfrak { g } } ^ { * }$ ; confidence 0.621
82. ; $P : E \rightarrow C$ ; confidence 0.621
83. ; $G _ { O }$ ; confidence 0.621
84. ; $\phi _ { t }$ ; confidence 0.621
85. ; $P \{ \operatorname { sup } W ^ { ( N ) } ( t ) > u \}$ ; confidence 0.621
86. ; $X \otimes Y \in \otimes ^ { 2 } E *$ ; confidence 0.621
87. ; $\xi$ ; confidence 0.621
88. ; $V \subseteq C A$ ; confidence 0.621
89. ; $M M Z$ ; confidence 0.620
90. ; $\delta _ { A } \subseteq \operatorname { ker } \delta _ { A } *$ ; confidence 0.620
91. ; $\{ , e , - 1 , \vee , \wedge \}$ ; confidence 0.620
92. ; $B _ { 1 }$ ; confidence 0.620
93. ; $r ^ { i } ( A ) * r ^ { j } ( B )$ ; confidence 0.620
94. ; $A _ { k } , A _ { k } , A _ { m }$ ; confidence 0.620
95. ; $K : = \int \frac { - \operatorname { ln } f ( . ) } { 1 + x ^ { 2 } } d x$ ; confidence 0.620
96. ; $b \in S ( m _ { 2 } , G )$ ; confidence 0.620
97. ; $P ( N _ { k } = n ) = p ^ { n } F _ { n + 1 - k } ^ { ( k ) } ( \frac { q } { p } )$ ; confidence 0.620
98. ; $\sigma ( z ) = e ^ { i \theta } z + \alpha$ ; confidence 0.620
99. ; $z ^ { d }$ ; confidence 0.620
100. ; $G = SL ( 2 , R )$ ; confidence 0.620
101. ; $( \lambda - a _ { i } ) ^ { n _ { i j } }$ ; confidence 0.620
102. ; $X = 0$ ; confidence 0.620
103. ; $x \operatorname { exp } ( x + 1 ) = 1$ ; confidence 0.620
104. ; $\langle f , g \rangle = \int \int _ { D } f ( x , y ) \overline { g ( x , y ) } d x d y$ ; confidence 0.620
105. ; $n \times p _ { 1 }$ ; confidence 0.620
106. ; $F _ { i } ( \tau ) = \int _ { 0 } ^ { \infty } \frac { \sqrt { 2 \tau \operatorname { sinh } \pi \tau } } { \pi } \frac { K _ { i \tau } } { \sqrt { x } } f _ { i } ( x ) d x$ ; confidence 0.620
107. ; $y = X \beta + e$ ; confidence 0.620
108. ; $G = GL ( N , C )$ ; confidence 0.620
109. ; $A \in T _ { X } M$ ; confidence 0.620
110. ; $\hat { K } = K$ ; confidence 0.620
111. ; $q \times p$ ; confidence 0.619
112. ; $\alpha _ { i } \in \Pi ^ { im }$ ; confidence 0.619
113. ; $: ( X , * ) \rightarrow ( X , * )$ ; confidence 0.619
114. ; $f _ { i + 1 } ^ { n } = a u _ { i + 1 } ^ { n }$ ; confidence 0.619
115. ; $\pi _ { n } ( X , Y )$ ; confidence 0.619
116. ; $g ^ { - 1 } \in S ^ { 2 } \varepsilon$ ; confidence 0.619
117. ; $= f ( N _ { * } ) + f ^ { \prime } ( N _ { * } ) n + \frac { f ^ { \prime \prime } ( N _ { * } ) } { 2 } n ^ { 2 } + \ldots$ ; confidence 0.619
118. ; $\left( \begin{array} { c } { \alpha _ { k } } \\ { k } \end{array} \right)$ ; confidence 0.619
119. ; $C ^ { \prime } C A$ ; confidence 0.619
120. ; $f \in L _ { 2 } ( R _ { + } ; x ^ { - 1 } )$ ; confidence 0.619
121. ; $A = \{ 0 , \dots , q - 1 \}$ ; confidence 0.619
122. ; $= \sum _ { i = 0 } ^ { m } D _ { i , m - i } \Lambda ^ { i } M ^ { m - i } , D _ { i j } \in C ^ { n \times n }$ ; confidence 0.619
123. ; $P ( i , i \sqrt { 2 } ) = ( - \sqrt { 2 } ) ^ { \operatorname { com } ( L ) - 1 } ( - 1 ) ^ { \operatorname { Arf } ( L ) }$ ; confidence 0.618
124. ; $V ^ { \sigma } ( y )$ ; confidence 0.618
125. ; $\overline { D } \square ^ { n + 1 } \subset E ^ { n + 1 }$ ; confidence 0.618
126. ; $\alpha _ { i } = 1$ ; confidence 0.618
127. ; $1.1 _ { \infty }$ ; confidence 0.618
128. ; $F ^ { SW } = \tilde { F }$ ; confidence 0.618
129. ; $h \rightarrow D f ( x 0 , h )$ ; confidence 0.618
130. ; $\tau _ { 2 } \Theta = - \Theta$ ; confidence 0.618
131. ; $u , v \in k ( C )$ ; confidence 0.618
132. ; $\operatorname { lcm } ( 1 , \dots , n ) > 3 ^ { x }$ ; confidence 0.618
133. ; $\Delta = \gamma d x _ { 1 } \wedge \ldots \wedge d x _ { n }$ ; confidence 0.618
134. ; $H = R ^ { \gamma }$ ; confidence 0.618
135. ; $GL _ { n } ( Q A )$ ; confidence 0.618
136. ; $a _ { x } = 1$ ; confidence 0.618
137. ; $WF _ { s } ( P ( x , D ) u ) \cap \Gamma = \emptyset$ ; confidence 0.618
138. ; $A = \frac { 1 } { 6 n 16 ^ { N } } ( \frac { 1 + \rho } { 2 } ) ^ { m } ( \frac { 1 - \rho } { 2 } ) ^ { 2 n + k } | \operatorname { Re } \sum _ { j = 1 } ^ { n } b _ { j } |$ ; confidence 0.618
139. ; $\Delta _ { N } ^ { * } ( \theta )$ ; confidence 0.618
140. ; $\zeta N ( s )$ ; confidence 0.618
141. ; $\alpha _ { N / 2 } - k$ ; confidence 0.618
142. ; $\phi \in VMO$ ; confidence 0.618
143. ; $i ^ { x }$ ; confidence 0.618
144. ; $( B )$ ; confidence 0.618
145. ; $Z G = Z H$ ; confidence 0.618
146. ; $2$ ; confidence 0.617
147. ; $\pi : U M \rightarrow M$ ; confidence 0.617
148. ; $U ^ { \prime }$ ; confidence 0.617
149. ; $Ad : G \rightarrow GL ( g )$ ; confidence 0.617
150. ; $\psi = \psi ( y ; \eta ) \neq 0$ ; confidence 0.617
151. ; $t ^ { 1 / d }$ ; confidence 0.617
152. ; $| \hat { k } | > 1$ ; confidence 0.617
153. ; $c \in E$ ; confidence 0.617
154. ; $\| ( \lambda + A ( t _ { k } ) ) ^ { - 1 } \ldots ( \lambda + A ( t _ { 1 } ) ) ^ { - 1 } \| _ { L ( X ) } \leq \frac { M } { ( \lambda - \beta ) ^ { k } }$ ; confidence 0.617
155. ; $i f \in A$ ; confidence 0.617
156. ; $D _ { Y }$ ; confidence 0.617
157. ; $f _ { L } ^ { \leftarrow } ( b ) = b \circ f$ ; confidence 0.617
158. ; $R _ { l } ( p ; k , n )$ ; confidence 0.617
159. ; $f ( u ) = a u$ ; confidence 0.617
160. ; $H ^ { p , q } ( M ) \cong H ^ { q , p } ( M )$ ; confidence 0.617
161. ; $k \leq d$ ; confidence 0.617
162. ; $a _ { 1 } > a _ { 0 } + 2 \sqrt { a _ { 0 } }$ ; confidence 0.616
163. ; $C _ { C } ^ { \infty } ( G )$ ; confidence 0.616
164. ; $L ( ; t ) = h ( ; t ) ^ { * } f ( . )$ ; confidence 0.616
165. ; $U _ { q } ( \mathfrak { g } )$ ; confidence 0.616
166. ; $K _ { p } ( g \circ \lambda ) = K _ { \lambda \langle p \rangle } ( g ) \circ \lambda$ ; confidence 0.616
167. ; $T > T _ { C }$ ; confidence 0.616
168. ; $T ^ { n }$ ; confidence 0.616
169. ; $u _ { n } + 1 - k$ ; confidence 0.616
170. ; $\pi \Gamma$ ; confidence 0.616
171. ; $( m l + U t , \pm b / 2 )$ ; confidence 0.616
172. ; $\lambda \leq 0$ ; confidence 0.616
173. ; $R _ { M }$ ; confidence 0.616
174. ; $k = 0 , \ldots , r ( P ) - 1$ ; confidence 0.616
175. ; $j = 1 , \ldots , p$ ; confidence 0.616
176. ; $5$ ; confidence 0.616
177. ; $a , b \in R$ ; confidence 0.616
178. ; $a 0 , a _ { 1 } , \dots$ ; confidence 0.616
179. ; $X$ ; confidence 0.615
180. ; $N = 0$ ; confidence 0.615
181. ; $\mathfrak { c } _ { \mu } > - \infty$ ; confidence 0.615
182. ; $X ^ { 2 } ( \tilde { \theta } _ { N } ) = \operatorname { min } _ { \theta \in \Theta } X ^ { 2 } ( \theta )$ ; confidence 0.615
183. ; $\square _ { m } u = ( - \frac { d ^ { 2 } } { d x ^ { 2 } } + q _ { m } ( x ) ) u$ ; confidence 0.615
184. ; $\xi = G \times ^ { \varrho } C$ ; confidence 0.615
185. ; $h _ { p } = ( 2 , d ) _ { P } \cdot W _ { P } ( \rho ) / W _ { P } ( \operatorname { det } _ { \rho } )$ ; confidence 0.615
186. ; $K ( x ) \approx L ( x ) = \{ \kappa _ { j } ( x ) \approx \lambda _ { j } ( x ) : j \in J \}$ ; confidence 0.615
187. ; $H _ { j }$ ; confidence 0.615
188. ; $Q \lambda$ ; confidence 0.615
189. ; $y i$ ; confidence 0.615
190. ; $C _ { G } ( x ) \leq N$ ; confidence 0.615
191. ; $s ( n )$ ; confidence 0.615
192. ; $M ( G ( z , w ) ) = ( 2 \pi ) ^ { n } \delta _ { w }$ ; confidence 0.615
193. ; $q = ( q _ { 1 } , \dots , q _ { n } )$ ; confidence 0.615
194. ; $K _ { S } ( \overline { \sigma } )$ ; confidence 0.615
195. ; $\mu _ { x } ^ { \Omega } = P _ { \Omega } ( x , \xi ) d \sigma ( \xi )$ ; confidence 0.615
196. ; $\frac { n ^ { \prime } } { n } < 1 + C \frac { ( \operatorname { log } \operatorname { log } n ) ^ { 2 } } { \operatorname { log } n } , C = \text { const } > 0$ ; confidence 0.614
197. ; $T _ { N + 1 } / 2 ^ { N }$ ; confidence 0.614
198. ; $11$ ; confidence 0.614
199. ; $\operatorname { lim } _ { n \rightarrow \infty } \frac { \operatorname { det } T _ { n } ( \alpha ) } { G ( \alpha ) ^ { N } } = E ( \alpha )$ ; confidence 0.614
200. ; $G _ { 2 } / \operatorname { Sp } ( 1 ) , \quad F _ { 4 } / \operatorname { Sp } ( 3 ) , E _ { 6 } / SU ( 6 ) , \quad E _ { 7 } / \operatorname { Spin } ( 12 ) , \quad E _ { 8 } / E _ { 7 }$ ; confidence 0.614
201. ; $S _ { \Lambda }$ ; confidence 0.614
202. ; $\kappa \partial _ { S } F + H _ { S } ( \frac { \delta F } { \delta u } , u , t ) = 0$ ; confidence 0.614
203. ; $\hat { \mathfrak { g } } = \mathfrak { g } ( A )$ ; confidence 0.614
204. ; $J ^ { \prime } ( V , W )$ ; confidence 0.614
205. ; $f ( T ^ { n } x ) g ( S ^ { n } y ) e ^ { 2 \pi i n \varepsilon }$ ; confidence 0.614
206. ; $m > 5$ ; confidence 0.614
207. ; $y ( x _ { i } ) = c _ { i } , \quad i = 1 , \dots , n ; \quad x _ { i } \in [ a , b ]$ ; confidence 0.614
208. ; $J _ { f } ^ { \prime }$ ; confidence 0.614
209. ; $a b = b a$ ; confidence 0.614
210. ; $\frac { | \nabla ( A ) | } { | N _ { k } + 1 | } \geq \frac { | A | } { | N _ { k } | }$ ; confidence 0.614
211. ; $\frac { 1 } { q } + a _ { 0 } + a _ { 1 } q + \alpha _ { 2 } q ^ { 2 } + \ldots , \quad q = \operatorname { exp } ( 2 \pi i z )$ ; confidence 0.614
212. ; $q = \operatorname { inf } \{ \dot { k } : \sigma _ { k } \geq 1 \}$ ; confidence 0.614
213. ; $z \in D$ ; confidence 0.613
214. ; $T _ { n } ( \zeta )$ ; confidence 0.613
215. ; $A _ { F }$ ; confidence 0.613
216. ; $| u + t |$ ; confidence 0.613
217. ; $E _ { 2 } ^ { i } - 1 _ { ( n + 1 ) }$ ; confidence 0.613
218. ; $Y \times M \rightarrow T Y$ ; confidence 0.613
219. ; $Z _ { G } ( - q ^ { - 1 } ) = 0$ ; confidence 0.613
220. ; $\square ^ { 1 } s$ ; confidence 0.613
221. ; $\sigma = \left( \begin{array} { c c } { 0 } & { Id ( E ^ { * } ) } \\ { - Id ( E ) } & { 0 } \end{array} \right)$ ; confidence 0.613
222. ; $S ^ { \perp } = \{ x \in E : \{ x , s \} = 0 \text { for all } s \in S \}$ ; confidence 0.613
223. ; $\operatorname { Ext } _ { H } ^ { 1 } ( T , - )$ ; confidence 0.613
224. ; $I _ { i } ( \omega )$ ; confidence 0.613
225. ; $A ^ { - }$ ; confidence 0.613
226. ; $r \leq n$ ; confidence 0.613
227. ; $A | _ { E _ { \lambda } ^ { \prime } }$ ; confidence 0.613
228. ; $r = 0$ ; confidence 0.613
229. ; $\Xi = R ^ { N }$ ; confidence 0.613
230. ; $( u _ { j } , v _ { j } ) \in E _ { j }$ ; confidence 0.613
231. ; $G ( \zeta ) e ^ { - \varepsilon | \operatorname { lm } \zeta | - H _ { K } \langle \operatorname { lm } \zeta ) }$ ; confidence 0.613
232. ; $R ^ { \prime } ( I ) = \oplus _ { n } \in Z ^ { n }$ ; confidence 0.613
233. ; $A _ { P }$ ; confidence 0.613
234. ; $\Omega = \{ 0,1 \} ^ { x }$ ; confidence 0.612
235. ; $\Omega = R ^ { \gamma }$ ; confidence 0.612
236. ; $T ^ { * } N$ ; confidence 0.612
237. ; $\Gamma \subset C ^ { 2 }$ ; confidence 0.612
238. ; $a _ { n } + 1 = F ( 1 , a _ { n } )$ ; confidence 0.612
239. ; $A ( \sigma ) = \int _ { M } L \circ \sigma ^ { k } \Delta = \int _ { M } \sigma ^ { k ^ { * } } ( L \Delta )$ ; confidence 0.612
240. ; $6$ ; confidence 0.612
241. ; $f ^ { \Delta \langle \varphi \rangle } : W \rightarrow \overline { R }$ ; confidence 0.612
242. ; $\| .1$ ; confidence 0.612
243. ; $\overline { X } = X \cup \{ \omega \}$ ; confidence 0.612
244. ; $P ( m _ { 0 } , F )$ ; confidence 0.612
245. ; $S = M \circ d$ ; confidence 0.612
246. ; $x \in A$ ; confidence 0.612
247. ; $\rho _ { N } ( \phi )$ ; confidence 0.612
248. ; $[ K , L ] \wedge = i _ { K } L - ( - 1 ) ^ { k } i _ { L } K$ ; confidence 0.612
249. ; $\Lambda ( X ) : = X \otimes _ { C } \Lambda$ ; confidence 0.612
250. ; $f \nabla = 1 _ { X }$ ; confidence 0.611
251. ; $\tau = ( \tau _ { 1 } , \ldots , \tau _ { N } )$ ; confidence 0.611
252. ; $m _ { k } = \int _ { l } x ^ { k } d \psi ( x )$ ; confidence 0.611
253. ; $B \in M _ { n } ( R )$ ; confidence 0.611
254. ; $b ^ { x } = 0$ ; confidence 0.611
255. ; $\psi$ ; confidence 0.611
256. ; $\operatorname { ker } \delta _ { A , B } \nsubseteq \operatorname { ker } \delta _ { A } ^ { * } , B ^ { * }$ ; confidence 0.611
257. ; $\frac { 1 - | F ( z _ { n } ) | } { 1 - | z _ { n } | } \rightarrow d ( \omega ) < \infty$ ; confidence 0.611
258. ; $| x _ { y } \| \rightarrow 0$ ; confidence 0.611
259. ; $f | _ { k } ^ { \vee } M = f , \forall M \in \Gamma$ ; confidence 0.611
260. ; $y ( a _ { 1 } / q _ { 1 } )$ ; confidence 0.611
261. ; $\| \square ^ { t } M _ { \varphi } \| _ { cb } : = \operatorname { sup } \| \square ^ { t } M _ { \varphi } \otimes 1 _ { n } \|$ ; confidence 0.611
262. ; $T$ ; confidence 0.611
263. ; $\frac { D } { D t } = \frac { \partial } { \partial t } + v _ { i } ( . ) , _ { i } = \frac { \partial } { \partial t } + v . \nabla$ ; confidence 0.611
264. ; $\| f ( x ) - a ( x ) \| \leq K \| x \| ^ { p }$ ; confidence 0.611
265. ; $g _ { y }$ ; confidence 0.610
266. ; $X = \{ 1 , \dots , n \}$ ; confidence 0.610
267. ; $e _ { i } e _ { j } + e _ { j } e _ { i } = 0$ ; confidence 0.610
268. ; $w ( p - \delta ) + \delta \in C$ ; confidence 0.610
269. ; $S _ { i } = X _ { i } X ^ { \prime }$ ; confidence 0.610
270. ; $h : \{ 1 , \dots , n \} \rightarrow R$ ; confidence 0.610
271. ; $| \kappa _ { N } | ^ { 2 } = M _ { N - 1 } / M _ { N }$ ; confidence 0.610
272. ; $\psi [ 1 ]$ ; confidence 0.610
273. ; $j = 1 , \dots , r$ ; confidence 0.610
274. ; $\gamma _ { 1 } ^ { 2 } = - 1 , \gamma _ { 2 } ^ { 2 } = \gamma _ { 3 } ^ { 2 } = \gamma _ { 4 } ^ { 2 } = 1$ ; confidence 0.610
275. ; $\operatorname { max } _ { j = 1 , \ldots , n - m + 1 } | s _ { j } | \geq m ( \frac { 1 } { 2 } + \frac { m } { 8 n } + \frac { 3 m ^ { 2 } } { 64 n ^ { 2 } } )$ ; confidence 0.610
276. ; $\alpha$ ; confidence 0.610
277. ; $\overline { P _ { 8 } }$ ; confidence 0.610
278. ; $\mu _ { R _ { P } } ( M _ { P } ) = \mu _ { Q ( R / P ) } ( M \otimes _ { R / P } Q ( R / P ) )$ ; confidence 0.610
279. ; $f ^ { - 1 } ( ( - \infty , t ] )$ ; confidence 0.610
280. ; $\Delta d k = d k - d k + 1$ ; confidence 0.610
281. ; $E _ { \lambda }$ ; confidence 0.610
282. ; $( M _ { T } u ) ( x ) = | \operatorname { det } T \rceil ^ { - 1 / 2 } u ( T ^ { - 1 } x )$ ; confidence 0.610
283. ; $\operatorname { Ker } ( ad ) = \{ 0 \}$ ; confidence 0.610
284. ; $\left( \begin{array} { c c c c } { h ( x _ { 1 } , y _ { 1 } ) } & { h ( x _ { 1 } , y _ { 2 } ) } & { \dots } & { h ( x _ { 1 } , y _ { n } ) } \\ { h ( x _ { 2 } , y _ { 1 } ) } & { h ( x _ { 2 } , y _ { 2 } ) } & { \dots } & { h ( x _ { 2 } , y _ { n } ) } \\ { \vdots } & { \vdots } & { \ddots } & { \vdots } \\ { h ( x _ { n } , y _ { 1 } ) } & { h ( x _ { n } , y _ { 2 } ) } & { \dots } & { h ( x _ { n } , y _ { n } ) } \end{array} \right)$ ; confidence 0.609
285. ; $: X \rightarrow X$ ; confidence 0.609
286. ; $\{ n _ { i } \}$ ; confidence 0.609
287. ; $\langle \langle A \rangle \rangle$ ; confidence 0.609
288. ; $= 2 ^ { 46 } \cdot 3 ^ { 20 } \cdot 5 ^ { 9 } \cdot 7 ^ { 6 } \cdot 11 ^ { 2 } \cdot 13 ^ { 3 }$ ; confidence 0.609
289. ; $v - A v = ( I - A ) v$ ; confidence 0.609
290. ; $S = c E \times H$ ; confidence 0.609
291. ; $\operatorname { log } a \in L ^ { 1 } ( T )$ ; confidence 0.609
292. ; $\Omega _ { 1 } \subset \Omega$ ; confidence 0.609
293. ; $\omega : \operatorname { Gal } ( k ( \mu _ { p } ) / k ) \rightarrow Z _ { p } ^ { \times } ( \omega ( \alpha ) \equiv \alpha \operatorname { mod } p )$ ; confidence 0.609
294. ; $( \alpha _ { 1 } \cup \gamma ^ { d } , \alpha _ { 2 } , \dots , \alpha _ { q } )$ ; confidence 0.609
295. ; $\operatorname { Ext } _ { H } ^ { 1 } ( T , T ) = 0$ ; confidence 0.609
296. ; $f \tau$ ; confidence 0.609
297. ; $\ldots \subset C _ { 3 } \subset \ldots \subset C _ { 2 } \subset \ldots \subset C _ { 1 } \subset \ldots \subset C _ { 0 } = R K$ ; confidence 0.609
298. ; $\sum _ { i = 1 } ^ { k } s _ { i } A _ { i } A _ { i } ^ { T } = ( m \sum _ { i = 1 } ^ { k } s _ { i } ) l _ { m }$ ; confidence 0.609
299. ; $T _ { F R }$ ; confidence 0.609
300. ; $\chi _ { f } ( x y ) = 0$ ; confidence 0.609
Maximilian Janisch/latexlist/latex/NoNroff/51. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Maximilian_Janisch/latexlist/latex/NoNroff/51&oldid=45607