Difference between revisions of "User:Maximilian Janisch/latexlist/latex/NoNroff/43"
(→List) |
(→List) |
||
Line 14: | Line 14: | ||
7. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130130/r13013018.png ; $P _ { \sigma }$ ; confidence 0.762 | 7. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130130/r13013018.png ; $P _ { \sigma }$ ; confidence 0.762 | ||
− | 8. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120030/m12003078.png ; $e = y - \overset{\rightharpoonup} { x } ^ { t } \overset{\rightharpoonup} { \theta }$ ; confidence 1 | + | 8. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120030/m12003078.png ; $e = y - \overset{\rightharpoonup} { x } ^ { t } \overset{\rightharpoonup} { \theta }$ ; confidence 1.000 |
− | 9. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120100/m120100142.png ; $( \tilde { G } , \tilde{c} ) / \Lambda$ ; confidence 1 | + | 9. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120100/m120100142.png ; $( \tilde { G } , \tilde{c} ) / \Lambda$ ; confidence 1.000 |
10. https://www.encyclopediaofmath.org/legacyimages/c/c026/c026910/c02691097.png ; $2 \epsilon$ ; confidence 0.761 | 10. https://www.encyclopediaofmath.org/legacyimages/c/c026/c026910/c02691097.png ; $2 \epsilon$ ; confidence 0.761 | ||
Line 30: | Line 30: | ||
15. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001041.png ; $\{ \xi ^ { \alpha } , \eta ^ { \alpha } , \Phi ^ { \alpha } \} \alpha = 1,2,3$ ; confidence 0.761 | 15. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001041.png ; $\{ \xi ^ { \alpha } , \eta ^ { \alpha } , \Phi ^ { \alpha } \} \alpha = 1,2,3$ ; confidence 0.761 | ||
− | 16. https://www.encyclopediaofmath.org/legacyimages/c/c021/c021180/c021180103.png ; $S_r$ ; confidence 1 | + | 16. https://www.encyclopediaofmath.org/legacyimages/c/c021/c021180/c021180103.png ; $S_r$ ; confidence 1.000 |
17. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130160/c130160154.png ; $( \operatorname { log } n ) ^ { O ( 1 ) }$ ; confidence 0.761 | 17. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130160/c130160154.png ; $( \operatorname { log } n ) ^ { O ( 1 ) }$ ; confidence 0.761 | ||
− | 18. https://www.encyclopediaofmath.org/legacyimages/z/z120/z120020/z12002013.png ; $F _ { n _ { 1 } }$ ; confidence 1 | + | 18. https://www.encyclopediaofmath.org/legacyimages/z/z120/z120020/z12002013.png ; $F _ { n _ { 1 } }$ ; confidence 1.000 |
19. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120290/c12029053.png ; $\operatorname { Ker } ( \partial )$ ; confidence 0.761 | 19. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120290/c12029053.png ; $\operatorname { Ker } ( \partial )$ ; confidence 0.761 | ||
Line 44: | Line 44: | ||
22. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120150/d1201507.png ; $d , e \in D$ ; confidence 0.761 | 22. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120150/d1201507.png ; $d , e \in D$ ; confidence 0.761 | ||
− | 23. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120040/g12004047.png ; $( x ^ { 0 } , \xi ^ { 0 } ) \in \Omega \times ( {\bf R} ^ { n } \backslash \{ 0 \} )$ ; confidence 1 | + | 23. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120040/g12004047.png ; $( x ^ { 0 } , \xi ^ { 0 } ) \in \Omega \times ( {\bf R} ^ { n } \backslash \{ 0 \} )$ ; confidence 1.000 |
24. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120230/m12023052.png ; $- f _ { t } + ( 2 t ) ^ { - 1 } \| . \| ^ { 2 }$ ; confidence 0.761 | 24. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120230/m12023052.png ; $- f _ { t } + ( 2 t ) ^ { - 1 } \| . \| ^ { 2 }$ ; confidence 0.761 | ||
Line 50: | Line 50: | ||
25. https://www.encyclopediaofmath.org/legacyimages/i/i051/i051470/i051470126.png ; $a ^ { - 1 }$ ; confidence 0.761 | 25. https://www.encyclopediaofmath.org/legacyimages/i/i051/i051470/i051470126.png ; $a ^ { - 1 }$ ; confidence 0.761 | ||
− | 26. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120320/s120320114.png ; $U = ( U , {\cal O ( U )} , \text { ev } )$ ; confidence 1 | + | 26. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120320/s120320114.png ; $U = ( U , {\cal O ( U )} , \text { ev } )$ ; confidence 1.000 |
− | 27. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130270/a13027046.png ; $T _ { | + | 27. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130270/a13027046.png ; $T _ { n } : X _ { n } \rightarrow Y _ { n }$ ; confidence 1.000 |
28. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120230/a12023053.png ; $\Omega _ { r } = r \Omega$ ; confidence 0.761 | 28. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120230/a12023053.png ; $\Omega _ { r } = r \Omega$ ; confidence 0.761 | ||
− | 29. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130140/t130140102.png ; $q R : Z ^ { n } \rightarrow Z$ ; confidence | + | 29. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130140/t130140102.png ; $q R : {\bf Z} ^ { n } \rightarrow \bf Z$ ; confidence 1.000 |
− | 30. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012200/a012200122.png ; $G \subset R ^ { | + | 30. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012200/a012200122.png ; $G \subset {\bf R} ^ { n }$ ; confidence 1.000 |
− | 31. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120340/s12034040.png ; $- | + | 31. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120340/s12034040.png ; $- \operatorname{ id }$ ; confidence 1.000 |
− | 32. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130310/a13031070.png ; $( Q _ { 2 } , \mu _ { 2 } )$ ; confidence | + | 32. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130310/a13031070.png ; $( {\cal Q} _ { 2 } , \mu _ { 2 } )$ ; confidence 1.000 |
− | 33. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w130080212.png ; $M _ { g , n } + 1$ ; confidence | + | 33. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w130080212.png ; ${\cal M} _ { g , n } + 1$ ; confidence 1.000 |
− | 34. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120120/d12012021.png ; $U C$ ; confidence | + | 34. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120120/d12012021.png ; $U \cal C$ ; confidence 1.000 |
35. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m130140119.png ; $i , l = 1 , \dots , n$ ; confidence 0.760 | 35. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m130140119.png ; $i , l = 1 , \dots , n$ ; confidence 0.760 | ||
Line 72: | Line 72: | ||
36. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w1201107.png ; $( x . \xi ) ^ { w } = ( x . D _ { x } + D _ { x } x ) / 2$ ; confidence 0.760 | 36. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w1201107.png ; $( x . \xi ) ^ { w } = ( x . D _ { x } + D _ { x } x ) / 2$ ; confidence 0.760 | ||
− | 37. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120230/f12023035.png ; $\Omega ( M ) = \oplus _ { k } \operatorname { Der } _ { k } \Omega ( M )$ ; confidence | + | 37. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120230/f12023035.png ; $\operatorname { Der }\Omega ( M ) = \oplus _ { k } \operatorname { Der } _ { k } \Omega ( M )$ ; confidence 1.000 |
− | 38. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130070/j1300709.png ; $( \Delta )$ ; confidence | + | 38. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130070/j1300709.png ; $\operatorname { Hol }( \Delta )$ ; confidence 1.000 |
− | 39. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130010/l13001051.png ; $ | + | 39. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130010/l13001051.png ; $\| S_{NB} \| \leq CN^ { ( n - 1 ) / 2 }$ ; confidence 1.000 |
− | 40. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120260/s12026065.png ; $\{ | + | 40. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120260/s12026065.png ; $\{ A_t , A _ { s } ^ { * } \} = \delta ( t - s ) , \{ A _ { t } , A _ { s } \} = \{ A _ { t } ^ { * } , A _ { s } ^ { * } \} = 0.$ ; confidence 1.000 |
41. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120280/a12028072.png ; $\rho \otimes x ( A ) = \langle A x , \rho \rangle$ ; confidence 0.760 | 41. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120280/a12028072.png ; $\rho \otimes x ( A ) = \langle A x , \rho \rangle$ ; confidence 0.760 | ||
− | 42. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110870/b11087029.png ; $Ab$ ; confidence | + | 42. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110870/b11087029.png ; $operatorname{Ab}$ ; confidence 1.000 |
43. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120520/b12052022.png ; $F ^ { \prime } ( x _ { c } ) s = - F ( x _ { c } )$ ; confidence 0.760 | 43. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120520/b12052022.png ; $F ^ { \prime } ( x _ { c } ) s = - F ( x _ { c } )$ ; confidence 0.760 | ||
Line 90: | Line 90: | ||
45. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130070/b13007044.png ; $a ^ { - 1 } b ^ { k } a$ ; confidence 0.760 | 45. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130070/b13007044.png ; $a ^ { - 1 } b ^ { k } a$ ; confidence 0.760 | ||
− | 46. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130310/a13031098.png ; $N E X P$ ; confidence | + | 46. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130310/a13031098.png ; $\cal N E X P$ ; confidence 1.000 |
− | 47. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120210/c1202106.png ; $( X , A _ { N } )$ ; confidence 0.760 | + | 47. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120210/c1202106.png ; $( {\cal X , A} _ { N } )$ ; confidence 0.760 |
48. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120210/c120210111.png ; $\theta _ { n } = \theta + h / \sqrt { n }$ ; confidence 0.760 | 48. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120210/c120210111.png ; $\theta _ { n } = \theta + h / \sqrt { n }$ ; confidence 0.760 | ||
Line 100: | Line 100: | ||
50. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040230/f040230178.png ; $f _ { 1 } , \dots , f _ { k }$ ; confidence 0.760 | 50. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040230/f040230178.png ; $f _ { 1 } , \dots , f _ { k }$ ; confidence 0.760 | ||
− | 51. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240517.png ; $V _ { j j ^ { \prime } } = Z _ { 3 j } ^ { \prime } Z _ { 3 j }$ ; confidence 0.760 | + | 51. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240517.png ; ${\bf V} _ { j j ^ { \prime } } = {\bf Z} _ { 3 j } ^ { \prime } {\bf Z} _ { 3 j }$ ; confidence 0.760 |
− | 52. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120350/s12035028.png ; $= \lambda \operatorname { lim } _ { N \rightarrow \infty } \sum _ { t = 1 } ^ { N } E \frac { \partial } { \partial \theta } f ( Z ^ { t - 1 } , t , \theta ) ( \frac { \partial } { \partial \theta } f ( Z ^ { t - 1 } , t , \theta ) ) ^ { T }$ ; confidence | + | 52. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120350/s12035028.png ; $= \lambda \operatorname { lim } _ { N \rightarrow \infty } \sum _ { t = 1 } ^ { N } \operatorname{E} \frac { \partial } { \partial \theta } f ( Z ^ { t - 1 } , t , \theta ) ( \frac { \partial } { \partial \theta } f ( Z ^ { t - 1 } , t , \theta ) ) ^ { T }$ ; confidence 1.000 |
− | 53. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130160/r13016035.png ; $R = C ^ { \infty } ( \Omega ) \ | + | 53. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130160/r13016035.png ; ${\cal R = C} ^ { \infty } ( \Omega ) / {\cal I} _ { S }$ ; confidence 1.000 |
− | 54. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130230/m13023019.png ; $ | + | 54. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130230/m13023019.png ; $Z_2$ ; confidence 1.000 |
55. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022110/c02211046.png ; $j , r = 1 , \dots , m$ ; confidence 0.759 | 55. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022110/c02211046.png ; $j , r = 1 , \dots , m$ ; confidence 0.759 | ||
− | 56. https://www.encyclopediaofmath.org/legacyimages/r/r082/r082320/r08232070.png ; $b \leq c \leq d , e$ ; confidence | + | 56. https://www.encyclopediaofmath.org/legacyimages/r/r082/r082320/r08232070.png ; $a, b \leq c \leq d , e$ ; confidence 1.000 |
57. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130080/a13008051.png ; $= \frac { d \operatorname { ln } g ( R ; m , s ) } { d m } \frac { d \operatorname { ln } g ( L ; m , s ) } { d s }$ ; confidence 0.759 | 57. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130080/a13008051.png ; $= \frac { d \operatorname { ln } g ( R ; m , s ) } { d m } \frac { d \operatorname { ln } g ( L ; m , s ) } { d s }$ ; confidence 0.759 | ||
− | 58. https://www.encyclopediaofmath.org/legacyimages/c/c110/c110400/c11040014.png ; $C ( G )$ ; confidence | + | 58. https://www.encyclopediaofmath.org/legacyimages/c/c110/c110400/c11040014.png ; ${\cal C} ( G )$ ; confidence 1.000 |
59. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520244.png ; $d _ { i } \times d _ { j }$ ; confidence 0.759 | 59. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520244.png ; $d _ { i } \times d _ { j }$ ; confidence 0.759 | ||
Line 120: | Line 120: | ||
60. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130190/f13019043.png ; $O ( N ^ { 2 d } )$ ; confidence 0.759 | 60. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130190/f13019043.png ; $O ( N ^ { 2 d } )$ ; confidence 0.759 | ||
− | 61. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120060/t120060106.png ; $\rho _ { \text { atom } } ^ { TF }$ ; confidence | + | 61. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120060/t120060106.png ; $\rho _ { \text { atom } } ^ { \text{TF} }$ ; confidence 1.000 |
62. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180393.png ; $q _ { 1 } + \ldots + q _ { m }$ ; confidence 0.759 | 62. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180393.png ; $q _ { 1 } + \ldots + q _ { m }$ ; confidence 0.759 | ||
− | 63. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120220/a12022010.png ; $X = | + | 63. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120220/a12022010.png ; $X = c_0$ ; confidence 1.000 |
− | 64. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130060/b13006017.png ; $\| A \| _ { 1 } = \operatorname { max } _ { i } \sum _ { j } | a _ { i j } |$ ; confidence 0.759 | + | 64. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130060/b13006017.png ; $\| A \| _ { 1 } = \operatorname { max } _ { i } \sum _ { j } | a _ { i j } |,$ ; confidence 0.759 |
65. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130010/l13001080.png ; $C _ { 1 } N ^ { n + ( n - 1 ) / 2 } \leq \| S _ { H _ { N } } \| \leq C _ { 2 } N ^ { n + ( n - 1 ) / 2 }$ ; confidence 0.759 | 65. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130010/l13001080.png ; $C _ { 1 } N ^ { n + ( n - 1 ) / 2 } \leq \| S _ { H _ { N } } \| \leq C _ { 2 } N ^ { n + ( n - 1 ) / 2 }$ ; confidence 0.759 | ||
− | 66. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130010/z13001033.png ; $Z ^ { - 1 } ( x ( z ) ) = x ( n )$ ; confidence | + | 66. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130010/z13001033.png ; $Z ^ { - 1 } ( \tilde{x} ( z ) ) = x ( n )$ ; confidence 1.000 |
− | 67. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b12005014.png ; $f : U \rightarrow C$ ; confidence | + | 67. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b12005014.png ; $f : U \rightarrow \cal C$ ; confidence 1.000 |
68. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130260/b13026049.png ; $y \notin F ( \partial U )$ ; confidence 0.759 | 68. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130260/b13026049.png ; $y \notin F ( \partial U )$ ; confidence 0.759 | ||
− | 69. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130030/j13003031.png ; $ | + | 69. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130030/j13003031.png ; $a \square a ^ { * }$ ; confidence 1.000 |
70. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130250/c13025010.png ; $\beta ^ { T } = ( \beta _ { 1 } , \dots , \beta _ { p } )$ ; confidence 0.759 | 70. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130250/c13025010.png ; $\beta ^ { T } = ( \beta _ { 1 } , \dots , \beta _ { p } )$ ; confidence 0.759 | ||
Line 148: | Line 148: | ||
74. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023270/c02327011.png ; $\overline { p } = p$ ; confidence 0.759 | 74. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023270/c02327011.png ; $\overline { p } = p$ ; confidence 0.759 | ||
− | 75. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120280/d12028052.png ; $D ; \subset C ^ { 1 }$ ; confidence | + | 75. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120280/d12028052.png ; $D ; \subset {\bf C} ^ { 1 }$ ; confidence 1.000 |
76. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p12017070.png ; $\delta _ { A , B } ( X ) \in I$ ; confidence 0.758 | 76. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p12017070.png ; $\delta _ { A , B } ( X ) \in I$ ; confidence 0.758 | ||
Line 158: | Line 158: | ||
79. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120520/b12052038.png ; $B _ { + } = B _ { c } + \frac { ( y - B _ { c } s ) s ^ { T } } { s ^ { T } s }$ ; confidence 0.758 | 79. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120520/b12052038.png ; $B _ { + } = B _ { c } + \frac { ( y - B _ { c } s ) s ^ { T } } { s ^ { T } s }$ ; confidence 0.758 | ||
− | 80. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120420/b120420128.png ; $SL _ { q } ( 2 )$ ; confidence | + | 80. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120420/b120420128.png ; $\operatorname{SL} _ { q } ( 2 )$ ; confidence 1.000 |
81. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130220/a13022050.png ; $S _ { C } ( D ) = k$ ; confidence 0.758 | 81. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130220/a13022050.png ; $S _ { C } ( D ) = k$ ; confidence 0.758 | ||
Line 164: | Line 164: | ||
82. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120010/j12001053.png ; $F \in \operatorname { Aut } _ { R } R [ X ]$ ; confidence 0.758 | 82. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120010/j12001053.png ; $F \in \operatorname { Aut } _ { R } R [ X ]$ ; confidence 0.758 | ||
− | 83. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023270/c0232702.png ; $A \rightarrow \overline { A }$ ; confidence 0.758 | + | 83. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023270/c0232702.png ; $A \rightarrow \overline { A },$ ; confidence 0.758 |
84. https://www.encyclopediaofmath.org/legacyimages/q/q130/q130050/q13005091.png ; $z _ { 2 } \neq z _ { 3 }$ ; confidence 0.758 | 84. https://www.encyclopediaofmath.org/legacyimages/q/q130/q130050/q13005091.png ; $z _ { 2 } \neq z _ { 3 }$ ; confidence 0.758 | ||
− | 85. https://www.encyclopediaofmath.org/legacyimages/y/y120/y120040/y1200404.png ; $f _ { j } : \Omega \rightarrow R ^ { d }$ ; confidence | + | 85. https://www.encyclopediaofmath.org/legacyimages/y/y120/y120040/y1200404.png ; $f _ { j } : \Omega \rightarrow {\bf R} ^ { d }$ ; confidence 1.000 |
− | 86. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120050/q12005081.png ; $\mu = \frac { y ^ { T } H y | + | 86. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120050/q12005081.png ; $\mu = \frac { y ^ { T } H y . s ^ { T } B s } { ( s ^ { T } y ) ^ { 2 } }.$ ; confidence 1.000 |
− | 87. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130030/g13003041.png ; $I _ { 0 } = \{ ( u _ { j } ) _ { j \in N }$ ; confidence | + | 87. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130030/g13003041.png ; ${\cal I} _ { 0 } = \{ ( u _ { j } ) _ { j \in \bf N }$ ; confidence 1.000 |
− | 88. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t13005066.png ; $\operatorname { Ker } D _ { A } / \operatorname { Ran } D _ { A } = \operatorname { Ker } A \oplus ( X / \operatorname { Ran } A )$ ; confidence | + | 88. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t13005066.png ; $\operatorname { Ker } D _ { A } / \operatorname { Ran } D _ { A } = \operatorname { Ker } A \oplus ({\cal X} / \operatorname { Ran } A )$ ; confidence 1.000 |
− | 89. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120230/e120230175.png ; $\sigma ^ { 2 k ^ { * } } [ E ( L ) ( Z ^ { 2 k } ) ] = \sigma ^ { k + 1 ^ { * } } [ \Omega ( d L \Delta ) ( Z ^ { k + 1 } ) ]$ ; confidence | + | 89. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120230/e120230175.png ; $\sigma ^ { 2 k ^ { * } } [ {\cal E} ( L ) ( Z ^ { 2 k } ) ] = \sigma ^ { k + 1 ^ { * } } [ \Omega ( d L \Delta ) ( Z ^ { k + 1 } ) ],$ ; confidence 1.000 |
− | 90. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130180/a13018024.png ; $L$ ; confidence | + | 90. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130180/a13018024.png ; $\operatorname{Mod}_{\cal L}$ ; confidence 1.000 |
91. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130060/i130060186.png ; $S ( k ) = f ( - k ) / f ( k )$ ; confidence 0.758 | 91. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130060/i130060186.png ; $S ( k ) = f ( - k ) / f ( k )$ ; confidence 0.758 | ||
Line 184: | Line 184: | ||
92. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130120/a13012058.png ; $s > 2$ ; confidence 0.758 | 92. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130120/a13012058.png ; $s > 2$ ; confidence 0.758 | ||
− | 93. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120040/g12004098.png ; $x , \xi p _ { m } ( x , \xi )$ ; confidence | + | 93. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120040/g12004098.png ; $d_ {x , \xi} p _ { m } ( x , \xi )$ ; confidence 1.000 |
94. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057540/l05754062.png ; $C _ { + }$ ; confidence 0.758 | 94. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057540/l05754062.png ; $C _ { + }$ ; confidence 0.758 | ||
Line 190: | Line 190: | ||
95. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120040/g120040117.png ; $G ^ { S }$ ; confidence 0.758 | 95. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120040/g120040117.png ; $G ^ { S }$ ; confidence 0.758 | ||
− | 96. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120110/f120110107.png ; $Q [ K ]$ ; confidence | + | 96. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120110/f120110107.png ; ${\cal Q} [ K ]$ ; confidence 1.000 |
97. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120040/f12004027.png ; $X \times W$ ; confidence 0.757 | 97. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120040/f12004027.png ; $X \times W$ ; confidence 0.757 | ||
Line 198: | Line 198: | ||
99. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130020/i13002073.png ; $\varphi ( n ) = n - \frac { n } { p _ { 1 } } - \ldots - \frac { n } { p _ { k } } +$ ; confidence 0.757 | 99. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130020/i13002073.png ; $\varphi ( n ) = n - \frac { n } { p _ { 1 } } - \ldots - \frac { n } { p _ { k } } +$ ; confidence 0.757 | ||
− | 100. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120210/c12021082.png ; $L$ ; confidence | + | 100. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120210/c12021082.png ; $\tilde{L}^'$ ; confidence 1.000 |
101. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130290/a13029082.png ; $Q _ { id } = Q \times S ^ { 1 } \rightarrow \Sigma \times S ^ { 1 }$ ; confidence 0.757 | 101. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130290/a13029082.png ; $Q _ { id } = Q \times S ^ { 1 } \rightarrow \Sigma \times S ^ { 1 }$ ; confidence 0.757 | ||
Line 206: | Line 206: | ||
103. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120120/n12012014.png ; $x \in \Sigma ^ { * }$ ; confidence 0.757 | 103. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120120/n12012014.png ; $x \in \Sigma ^ { * }$ ; confidence 0.757 | ||
− | 104. https://www.encyclopediaofmath.org/legacyimages/k/k110/k110140/k1101403.png ; $L$ ; confidence | + | 104. https://www.encyclopediaofmath.org/legacyimages/k/k110/k110140/k1101403.png ; ${\cal L}_0$ ; confidence 1.000 |
105. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130180/a130180122.png ; $R \subseteq \square ^ { n } U$ ; confidence 0.757 | 105. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130180/a130180122.png ; $R \subseteq \square ^ { n } U$ ; confidence 0.757 | ||
− | 106. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130030/z13003066.png ; $\hat { f } ( - 2 \pi w ) = \frac { 1 } { \sqrt { 2 \pi } } \int _ { 0 } ^ { 1 } e ^ { - 2 \pi i w t } ( Z f ) ( t , w ) d t$ ; confidence 0.757 | + | 106. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130030/z13003066.png ; $\hat { f } ( - 2 \pi w ) = \frac { 1 } { \sqrt { 2 \pi } } \int _ { 0 } ^ { 1 } e ^ { - 2 \pi i w t } ( Z f ) ( t , w ) d t,$ ; confidence 0.757 |
− | 107. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130080/d130080141.png ; $\operatorname { Ker } ( I - F ^ { \prime } ( c ) ) \ | + | 107. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130080/d130080141.png ; $\operatorname { Ker } ( I - F ^ { \prime } ( c ) ) \bigoplus \operatorname { Im } ( I - F ^ { \prime } ( c ) ) = X$ ; confidence 1.000 |
− | 108. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130210/f1302102.png ; $f \in L _ { C } ^ { 1 } ( G )$ ; confidence | + | 108. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130210/f1302102.png ; $f \in L _ { \text{C} } ^ { 1 } ( G )$ ; confidence 1.000 |
109. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120110/h1201106.png ; $\Gamma \cup \text { int } ( \Gamma ) \subset \Omega$ ; confidence 0.757 | 109. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120110/h1201106.png ; $\Gamma \cup \text { int } ( \Gamma ) \subset \Omega$ ; confidence 0.757 | ||
Line 228: | Line 228: | ||
114. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130020/g13002011.png ; $e ^ { z _ { 1 } + z _ { 2 } } = e ^ { z _ { 1 } } e ^ { z _ { 2 } }$ ; confidence 0.757 | 114. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130020/g13002011.png ; $e ^ { z _ { 1 } + z _ { 2 } } = e ^ { z _ { 1 } } e ^ { z _ { 2 } }$ ; confidence 0.757 | ||
− | 115. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130080/z13008032.png ; $k , l \in N _ { 0 }$ ; confidence | + | 115. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130080/z13008032.png ; $k , l \in {\bf N} _ { 0 }$ ; confidence 1.000 |
116. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120050/q12005059.png ; $H _ { k + 1 } = H _ { k } + \beta _ { k } u ^ { k } ( u ^ { k } ) ^ { T } + \gamma _ { k } v ^ { k } ( v ^ { k } ) ^ { T }$ ; confidence 0.757 | 116. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120050/q12005059.png ; $H _ { k + 1 } = H _ { k } + \beta _ { k } u ^ { k } ( u ^ { k } ) ^ { T } + \gamma _ { k } v ^ { k } ( v ^ { k } ) ^ { T }$ ; confidence 0.757 | ||
Line 236: | Line 236: | ||
118. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130060/a13006064.png ; $G _ { R }$ ; confidence 0.757 | 118. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130060/a13006064.png ; $G _ { R }$ ; confidence 0.757 | ||
− | 119. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110010/l1100107.png ; $ | + | 119. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110010/l1100107.png ; $\preceq$ ; confidence 1.000 |
120. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130120/p1301207.png ; $s ( D )$ ; confidence 0.756 | 120. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130120/p1301207.png ; $s ( D )$ ; confidence 0.756 | ||
− | 121. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120350/s12035012.png ; $Z ^ { t - 1 } = \{ y ( t - 1 ) , u ( t - 1 ) , \dots , y ( 0 ) , u ( 0 ) \}$ ; confidence 0.756 | + | 121. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120350/s12035012.png ; $Z ^ { t - 1 } = \{ y ( t - 1 ) , u ( t - 1 ) , \dots , y ( 0 ) , u ( 0 ) \}:$ ; confidence 0.756 |
− | 122. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130110/z13011096.png ; $- \frac { 1 } { k + d n _ { k } } | + | 122. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130110/z13011096.png ; $- \frac { 1 } { k + d n _ { k } }_{..} [ ( i + d ) \mu ( i , m ) - ( i + d + 1 ) \mu ( i + 1 , m ) ] = 0.$ ; confidence 1.000 |
− | 123. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120320/b12032086.png ; $k \operatorname { log } m \leq i \operatorname { log } n < ( k + 1 ) \operatorname { log } | + | 123. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120320/b12032086.png ; $k \operatorname { log } m \leq i \operatorname { log } n < ( k + 1 ) \operatorname { log } m$ ; confidence 1.000 |
124. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130100/p13010018.png ; $P ( K ) ^ { * }$ ; confidence 0.756 | 124. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130100/p13010018.png ; $P ( K ) ^ { * }$ ; confidence 0.756 | ||
Line 250: | Line 250: | ||
125. https://www.encyclopediaofmath.org/legacyimages/s/s086/s086360/s086360140.png ; $k = 0 , \pm 1 , \pm 2 , \ldots$ ; confidence 0.756 | 125. https://www.encyclopediaofmath.org/legacyimages/s/s086/s086360/s086360140.png ; $k = 0 , \pm 1 , \pm 2 , \ldots$ ; confidence 0.756 | ||
− | 126. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120240/s12024036.png ; $E | + | 126. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120240/s12024036.png ; $E * ( )$ ; confidence 1.000 |
127. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057000/l05700010.png ; $( \lambda x M ) \in \Lambda$ ; confidence 0.756 | 127. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057000/l05700010.png ; $( \lambda x M ) \in \Lambda$ ; confidence 0.756 | ||
Line 262: | Line 262: | ||
131. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030060/d03006010.png ; $\frac { \partial ^ { 2 } u ( t , x ) } { \partial t ^ { 2 } } - a ^ { 2 } \frac { \partial ^ { 2 } u ( t , x ) } { \partial x ^ { 2 } } = f ( t , x )$ ; confidence 0.756 | 131. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030060/d03006010.png ; $\frac { \partial ^ { 2 } u ( t , x ) } { \partial t ^ { 2 } } - a ^ { 2 } \frac { \partial ^ { 2 } u ( t , x ) } { \partial x ^ { 2 } } = f ( t , x )$ ; confidence 0.756 | ||
− | 132. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120210/w12021073.png ; $( s _ { 1 } , \dots , s _ { k } , | + | 132. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120210/w12021073.png ; $( s _ { 1 } , \dots , s _ { k } , I _ { m } )$ ; confidence 1.000 |
133. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t12020095.png ; $( n / ( 2 e ( m + n ) ) ) ^ { n }$ ; confidence 0.756 | 133. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t12020095.png ; $( n / ( 2 e ( m + n ) ) ) ^ { n }$ ; confidence 0.756 | ||
− | 134. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130290/f13029038.png ; $T : L ^ { X } \rightarrow L$ ; confidence | + | 134. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130290/f13029038.png ; ${\cal T} : L ^ { X } \rightarrow L$ ; confidence 1.000 |
135. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120090/i1200901.png ; $( M ^ { 2 n } , \omega )$ ; confidence 0.756 | 135. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120090/i1200901.png ; $( M ^ { 2 n } , \omega )$ ; confidence 0.756 | ||
Line 272: | Line 272: | ||
136. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120130/t12013012.png ; $( L _ { 1 } , L _ { 2 } ) = ( S _ { 1 } \Lambda S _ { 1 } ^ { - 1 } , S _ { 2 } \Lambda ^ { t } S _ { 2 } ^ { - 1 } )$ ; confidence 0.756 | 136. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120130/t12013012.png ; $( L _ { 1 } , L _ { 2 } ) = ( S _ { 1 } \Lambda S _ { 1 } ^ { - 1 } , S _ { 2 } \Lambda ^ { t } S _ { 2 } ^ { - 1 } )$ ; confidence 0.756 | ||
− | 137. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130070/z13007013.png ; $u \in Z G$ ; confidence | + | 137. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130070/z13007013.png ; $u \in {\bf Z} G$ ; confidence 1.000 |
138. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022080/c0220803.png ; $x _ { S }$ ; confidence 0.756 | 138. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022080/c0220803.png ; $x _ { S }$ ; confidence 0.756 | ||
Line 278: | Line 278: | ||
139. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130180/d13018023.png ; $J _ { E } \subset I _ { E }$ ; confidence 0.755 | 139. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130180/d13018023.png ; $J _ { E } \subset I _ { E }$ ; confidence 0.755 | ||
− | 140. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120150/a12015046.png ; $( G ) X$ ; confidence | + | 140. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120150/a12015046.png ; $\operatorname{Ad}( G ) X$ ; confidence 1.000 |
− | 141. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130070/c130070170.png ; $C ( P )$ ; confidence | + | 141. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130070/c130070170.png ; ${\frak C} ( P )$ ; confidence 1.000 |
− | 142. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130050/v130050104.png ; $( u , v ) \mapsto u _ { | + | 142. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130050/v130050104.png ; $( u , v ) \mapsto u _ { n } ( v )$ ; confidence 1.000 |
− | 143. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120070/c12007093.png ; $F : C ^ { * } \otimes _ { k } C \rightarrow Ab$ ; confidence | + | 143. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120070/c12007093.png ; $F : {\cal C} ^ { * } \otimes _ { k } {\cal C} \rightarrow \operatorname{Ab}$ ; confidence 1.000 |
− | 144. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130110/d1301106.png ; $( p _ { x } ^ { 2 } + p _ { y } ^ { 2 } + p _ { z } ^ { 2 } ) + m _ { 0 } ^ { 2 } c ^ { 2 } =$ ; confidence | + | 144. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130110/d1301106.png ; $( {\bf p} _ { x } ^ { 2 } + {\bf p} _ { y } ^ { 2 } + {\bf p} _ { z } ^ { 2 } ) + m _ { 0 } ^ { 2 } c ^ { 2 } =$ ; confidence 1.000 |
145. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120340/b12034074.png ; $\| f \| \leq 2 f ( z _ { 0 } )$ ; confidence 0.755 | 145. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120340/b12034074.png ; $\| f \| \leq 2 f ( z _ { 0 } )$ ; confidence 0.755 | ||
− | 146. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120060/w12006085.png ; $T _ { A } \xi$ ; confidence | + | 146. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120060/w12006085.png ; ${\cal T} _ { A } \xi$ ; confidence 1.000 |
147. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130030/i130030166.png ; $\phi * ( \text { ind } ( D ) )$ ; confidence 0.755 | 147. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130030/i130030166.png ; $\phi * ( \text { ind } ( D ) )$ ; confidence 0.755 | ||
− | 148. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130030/o13003046.png ; $N ( X ) = \sum _ { j = 1 } ^ { 8 } X _ { j } ^ { 2 }$ ; confidence | + | 148. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130030/o13003046.png ; ${\bf N} ( X ) = \sum _ { j = 1 } ^ { 8 } X _ { j } ^ { 2 }$ ; confidence 1.000 |
149. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130130/m13013020.png ; $m _ { i j } = 0$ ; confidence 0.755 | 149. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130130/m13013020.png ; $m _ { i j } = 0$ ; confidence 0.755 | ||
Line 302: | Line 302: | ||
151. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120050/i120050112.png ; $P _ { \theta } ( \| T _ { N } - \theta \| > \epsilon _ { N } )$ ; confidence 0.755 | 151. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120050/i120050112.png ; $P _ { \theta } ( \| T _ { N } - \theta \| > \epsilon _ { N } )$ ; confidence 0.755 | ||
− | 152. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130640/s13064058.png ; $k$ ; confidence | + | 152. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130640/s13064058.png ; $\hat{k}$ ; confidence 1.000 |
153. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130070/a130070129.png ; $n = 1.3 .5 . . ( 2 k - 1 )$ ; confidence 0.755 | 153. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130070/a130070129.png ; $n = 1.3 .5 . . ( 2 k - 1 )$ ; confidence 0.755 | ||
Line 312: | Line 312: | ||
156. https://www.encyclopediaofmath.org/legacyimages/d/d110/d110080/d11008037.png ; $\delta ( w | v )$ ; confidence 0.755 | 156. https://www.encyclopediaofmath.org/legacyimages/d/d110/d110080/d11008037.png ; $\delta ( w | v )$ ; confidence 0.755 | ||
− | 157. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130050/d1300501.png ; $m | + | 157. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130050/d1300501.png ; $m \geq 4$ ; confidence 1.000 |
− | 158. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120060/l12006055.png ; $= \int _ { 0 } ^ { \infty } | ( V \phi | \lambda ) | ^ { 2 } ( \frac { 1 } { \zeta - \lambda - i \epsilon } - \frac { 1 } { \zeta - \lambda + i \epsilon } ) d \lambda =$ ; confidence | + | 158. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120060/l12006055.png ; $= \int _ { 0 } ^ { \infty } | ( V \phi | \lambda ) | ^ { 2 } ( \frac { 1 } { \zeta - \lambda - i \epsilon } - \frac { 1 } { \zeta - \lambda + i \epsilon } ) d \lambda =;$ ; confidence 1.000 |
− | 159. https://www.encyclopediaofmath.org/legacyimages/b/b016/b016730/b0167303.png ; $s = 1,2 , \dots$ ; confidence | + | 159. https://www.encyclopediaofmath.org/legacyimages/b/b016/b016730/b0167303.png ; $s = 1,2 , \dots,$ ; confidence 1.000 |
− | 160. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120240/f12024083.png ; $t + \theta < | + | 160. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120240/f12024083.png ; $t + \theta < t_0$ ; confidence 1.000 |
161. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l11002068.png ; $| x y | \preceq | x | | y | | x |$ ; confidence 0.754 | 161. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l11002068.png ; $| x y | \preceq | x | | y | | x |$ ; confidence 0.754 | ||
− | 162. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120280/c1202803.png ; $C _ { 2 } \rightarrow C _ { 1 } \rightarrow C _ { 0 }$ ; confidence | + | 162. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120280/c1202803.png ; $C _ { 2 } \rightarrow C _ { 1 } \underset{\rightarrow}{\rightarrow} C _ { 0 }$ ; confidence 1.000 |
163. https://www.encyclopediaofmath.org/legacyimages/g/g043/g043320/g0433208.png ; $u \in C _ { 0 } ^ { \infty } ( G )$ ; confidence 0.754 | 163. https://www.encyclopediaofmath.org/legacyimages/g/g043/g043320/g0433208.png ; $u \in C _ { 0 } ^ { \infty } ( G )$ ; confidence 0.754 | ||
Line 328: | Line 328: | ||
164. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120010/w12001039.png ; $W _ { \infty }$ ; confidence 0.754 | 164. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120010/w12001039.png ; $W _ { \infty }$ ; confidence 0.754 | ||
− | 165. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120170/c12017046.png ; $K \subset R$ ; confidence | + | 165. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120170/c12017046.png ; $K \subset \bf R$ ; confidence 1.000 |
− | 166. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120070/t12007057.png ; $ | + | 166. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120070/t12007057.png ; $n \geq - 1$ ; confidence 1.000 |
− | 167. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130090/w13009052.png ; $\theta _ { | + | 167. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130090/w13009052.png ; $\theta _ { n } ( f ) = \varphi$ ; confidence 1.000 |
− | 168. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130180/a130180148.png ; $ | + | 168. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130180/a130180148.png ; $\bf P$ ; confidence 1.000 |
169. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130080/d13008035.png ; $b \in \partial \Delta$ ; confidence 0.754 | 169. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130080/d13008035.png ; $b \in \partial \Delta$ ; confidence 0.754 | ||
− | 170. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040615.png ; $h = \operatorname { mng } | + | 170. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040615.png ; $h = \operatorname { mng } _ {{\cal S}_P, \mathfrak { N } } $ ; confidence 1.000 |
171. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040440/f04044029.png ; $a \leq 0$ ; confidence 0.754 | 171. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040440/f04044029.png ; $a \leq 0$ ; confidence 0.754 | ||
− | 172. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120100/b12010021.png ; $( [ L , A ] F ) _ { | + | 172. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120100/b12010021.png ; $( [ {\cal L , A} ] F ) _ { n } ( X ) =$ ; confidence 1.000 |
173. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130170/d13017021.png ; $\{ \varphi _ { i } \} _ { l = 1 } ^ { k - 1 }$ ; confidence 0.754 | 173. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130170/d13017021.png ; $\{ \varphi _ { i } \} _ { l = 1 } ^ { k - 1 }$ ; confidence 0.754 | ||
− | 174. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130130/p13013029.png ; $SP ( n )$ ; confidence | + | 174. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130130/p13013029.png ; $\operatorname{SP} ( n )$ ; confidence 1.000 |
− | 175. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120310/c12031033.png ; $\| f \| ^ { 2 } = \sum _ { \alpha _ { l } \leq k } \| D ^ { \alpha } f \| ^ { 2 | + | 175. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120310/c12031033.png ; $\| f \| ^ { 2 } = \sum _ { \alpha _ { l } \leq k } \| D ^ { \alpha } f \| ^ { 2 _{L _ { 2 }}},$ ; confidence 1.000 |
− | 176. https://www.encyclopediaofmath.org/legacyimages/a/a013/a013010/a013010149.png ; $A _ { | + | 176. https://www.encyclopediaofmath.org/legacyimages/a/a013/a013010/a013010149.png ; $A _ { p }$ ; confidence 1.000 |
177. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120120/b12012014.png ; $R ( t ) = R ( \gamma ^ { \prime } ( t ) , . ) \gamma ^ { \prime } ( t )$ ; confidence 0.754 | 177. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120120/b12012014.png ; $R ( t ) = R ( \gamma ^ { \prime } ( t ) , . ) \gamma ^ { \prime } ( t )$ ; confidence 0.754 | ||
− | 178. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120200/c1202002.png ; $\xi = ker \alpha$ ; confidence | + | 178. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120200/c1202002.png ; $\xi = \operatorname{ker} \alpha$ ; confidence 1.000 |
179. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130540/s13054097.png ; $\{ a , b \} _ { \infty }$ ; confidence 0.753 | 179. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130540/s13054097.png ; $\{ a , b \} _ { \infty }$ ; confidence 0.753 | ||
− | 180. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130070/m13007025.png ; $ | + | 180. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130070/m13007025.png ; $E_{[ m , s ]} A ( f ) \Omega \neq 0$ ; confidence 1.000 |
− | 181. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130050/v13005048.png ; $Y ( v , x ) 1$ ; confidence | + | 181. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130050/v13005048.png ; $Y ( v , x ) \bf 1$ ; confidence 1.000 |
− | 182. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130170/w13017017.png ; $K _ { j } \in R ^ { n \times n } , K _ { 0 } = l , \sum _ { j = 0 } ^ { \infty } \| K _ { j } \| ^ { 2 } < \infty$ ; confidence | + | 182. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130170/w13017017.png ; $K _ { j } \in {\bf R} ^ { n \times n } , K _ { 0 } = l , \sum _ { j = 0 } ^ { \infty } \| K _ { j } \| ^ { 2 } < \infty ,$ ; confidence 1.000 |
183. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120190/e120190110.png ; $m \in S$ ; confidence 0.753 | 183. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120190/e120190110.png ; $m \in S$ ; confidence 0.753 | ||
− | 184. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120020/d120020161.png ; $X \neq | + | 184. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120020/d120020161.png ; $X \neq \emptyset$ ; confidence 1.000 |
− | 185. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120230/s12023088.png ; $P ( | XX ^ { \prime } | \neq 0 ) = 1$ ; confidence | + | 185. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120230/s12023088.png ; $\operatorname{P} ( | XX ^ { \prime } | \neq 0 ) = 1$ ; confidence 1.000 |
− | 186. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120150/p12015036.png ; $n | + | 186. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120150/p12015036.png ; $n / 2$ ; confidence 1.000 |
187. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120020/j120020198.png ; $k _ { \vartheta } ( z ) = \frac { 1 - | z | ^ { 2 } } { | z - e ^ { i \vartheta | ^ { 2 } } }$ ; confidence 0.753 | 187. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120020/j120020198.png ; $k _ { \vartheta } ( z ) = \frac { 1 - | z | ^ { 2 } } { | z - e ^ { i \vartheta | ^ { 2 } } }$ ; confidence 0.753 | ||
− | 188. https://www.encyclopediaofmath.org/legacyimages/l/l059/l059610/l0596103.png ; $q = ( r _ { 1 } , \dots , r _ { N } )$ ; confidence | + | 188. https://www.encyclopediaofmath.org/legacyimages/l/l059/l059610/l0596103.png ; $q = ( {\bf r} _ { 1 } , \dots , {\bf r} _ { N } )$ ; confidence 1.000 |
− | 189. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120020/d1200206.png ; $( | + | 189. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120020/d1200206.png ; $( \operatorname{PD} )$ ; confidence 1.000 |
− | 190. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120260/a12026057.png ; $A ^ { N }$ ; confidence | + | 190. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120260/a12026057.png ; $A ^ {\bf N }$ ; confidence 1.000 |
191. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120060/e12006030.png ; $T _ { y } Y = V _ { y } Y + \Gamma ( y )$ ; confidence 0.753 | 191. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120060/e12006030.png ; $T _ { y } Y = V _ { y } Y + \Gamma ( y )$ ; confidence 0.753 | ||
− | 192. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130080/t13008012.png ; $V _ { t } = \mu _ { | + | 192. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130080/t13008012.png ; $V _ { t } = \mu _ { X + t} d t S - P d t +$ ; confidence 0.753 |
193. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011490/a01149074.png ; $x ^ { \prime }$ ; confidence 0.753 | 193. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011490/a01149074.png ; $x ^ { \prime }$ ; confidence 0.753 | ||
− | 194. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130020/f13002013.png ; $c ^ { | + | 194. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130020/f13002013.png ; $c ^ { a } ( x ) c ^ { b } ( y ) = - c ^ { b } ( y ) c ^ { a } ( x )$ ; confidence 1.000 |
− | 195. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120260/d12026014.png ; $E f ( X _ { n } ) \rightarrow E f ( w ) , \quad n \rightarrow \infty$ ; confidence | + | 195. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120260/d12026014.png ; $\operatorname{E} f ( X _ { n } ) \rightarrow \operatorname{E} f ( w ) , \quad n \rightarrow \infty, $ ; confidence 1.000 |
− | 196. https://www.encyclopediaofmath.org/legacyimages/g/g043/g043390/g04339014.png ; $\delta f ( x _ { 0 } , h ) = f _ { G } ^ { \prime } ( x _ { 0 } ) h , \quad f _ { G } ^ { \prime } ( x _ { 0 } ) \in L ( X , Y )$ ; confidence 0.752 | + | 196. https://www.encyclopediaofmath.org/legacyimages/g/g043/g043390/g04339014.png ; $\delta f ( x _ { 0 } , h ) = f _ { G } ^ { \prime } ( x _ { 0 } ) h , \quad f _ { G } ^ { \prime } ( x _ { 0 } ) \in L ( X , Y ).$ ; confidence 0.752 |
− | 197. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130140/t13014070.png ; $h _ { j } \in Gl ( v _ { j } , K )$ ; confidence | + | 197. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130140/t13014070.png ; $h _ { j } \in \operatorname{Gl} ( v _ { j } , K )$ ; confidence 1.000 |
198. https://www.encyclopediaofmath.org/legacyimages/c/c021/c021890/c02189013.png ; $r = 2$ ; confidence 0.752 | 198. https://www.encyclopediaofmath.org/legacyimages/c/c021/c021890/c02189013.png ; $r = 2$ ; confidence 0.752 | ||
Line 404: | Line 404: | ||
202. https://www.encyclopediaofmath.org/legacyimages/q/q130/q130030/q1300306.png ; $\alpha | 0 \rangle + \beta | 1 \rangle$ ; confidence 0.752 | 202. https://www.encyclopediaofmath.org/legacyimages/q/q130/q130030/q1300306.png ; $\alpha | 0 \rangle + \beta | 1 \rangle$ ; confidence 0.752 | ||
− | 203. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130060/m1300607.png ; $\alpha _ { 1 } \geq d ^ { m - 1 } ( d - 1 )$ ; confidence 0.752 | + | 203. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130060/m1300607.png ; $\operatorname{deg}_{x_m}\alpha _ { 1 } \geq d ^ { m - 1 } ( d - 1 )$ ; confidence 0.752 |
− | 204. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120070/q120070143.png ; $R : G _ { q } \rightarrow U _ { q } ( g )$ ; confidence | + | 204. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120070/q120070143.png ; ${\cal R} : G _ { q } \rightarrow U _ { q } ( {\frak g} )$ ; confidence 1.000 |
− | 205. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130070/k13007042.png ; $L ^ { \infty }$ ; confidence | + | 205. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130070/k13007042.png ; $\operatorname{L} ^ { \infty }$ ; confidence 1.000 |
− | 206. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t130050153.png ; $( A ) = \operatorname { dim } \operatorname { Ker } D _ { A } ^ { 0 } - \operatorname { dim } ( \operatorname { Ker } D _ { A } ^ { 1 } / \operatorname { Ran } D _ { A } ^ { 0 } ) + \operatorname { dim } ( X / \operatorname { Ran } D _ { A } ^ { 1 } )$ ; confidence | + | 206. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t130050153.png ; $\operatorname{index}( A ) = \operatorname { dim } \operatorname { Ker } D _ { A } ^ { 0 } - \operatorname { dim } ( \operatorname { Ker } D _ { A } ^ { 1 } / \operatorname { Ran } D _ { A } ^ { 0 } ) + \operatorname { dim } ( {\cal X} / \operatorname { Ran } D _ { A } ^ { 1 } )$ ; confidence 1.000 |
207. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130230/m130230103.png ; $- ( K _ { X } + B )$ ; confidence 0.752 | 207. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130230/m130230103.png ; $- ( K _ { X } + B )$ ; confidence 0.752 | ||
− | 208. https://www.encyclopediaofmath.org/legacyimages/b/b017/b017310/b01731024.png ; $ | + | 208. https://www.encyclopediaofmath.org/legacyimages/b/b017/b017310/b01731024.png ; $y_1$ ; confidence 1.000 |
209. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120060/i12006079.png ; $L _ { 1 } , \ldots , L _ { k }$ ; confidence 0.752 | 209. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120060/i12006079.png ; $L _ { 1 } , \ldots , L _ { k }$ ; confidence 0.752 | ||
Line 420: | Line 420: | ||
210. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130160/c130160165.png ; $( w \in S )$ ; confidence 0.752 | 210. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130160/c130160165.png ; $( w \in S )$ ; confidence 0.752 | ||
− | 211. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130360/s13036017.png ; $ | + | 211. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130360/s13036017.png ; ${\bf l}_t$ ; confidence 1.000 |
212. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011050/a01105026.png ; $f : X \rightarrow S$ ; confidence 0.752 | 212. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011050/a01105026.png ; $f : X \rightarrow S$ ; confidence 0.752 | ||
Line 432: | Line 432: | ||
216. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120050/g12005029.png ; $R < R _ { c }$ ; confidence 0.751 | 216. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120050/g12005029.png ; $R < R _ { c }$ ; confidence 0.751 | ||
− | 217. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130060/a130060102.png ; $\operatorname { lim } _ { n \rightarrow \infty } \frac { P ^ { \# } ( n ) } { G ^ { \# } ( n ) } = \lambda$ ; confidence 0.751 | + | 217. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130060/a130060102.png ; $\operatorname { lim } _ { n \rightarrow \infty } \frac { P ^ { \# } ( n ) } { G ^ { \# } ( n ) } = \lambda.$ ; confidence 0.751 |
218. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022450/c02245012.png ; $\xi _ { 1 }$ ; confidence 0.751 | 218. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022450/c02245012.png ; $\xi _ { 1 }$ ; confidence 0.751 | ||
− | 219. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180328.png ; $\tau _ { 3 } : \otimes ^ { 3 } E \rightarrow \otimes ^ { 3 } E$ ; confidence | + | 219. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180328.png ; $\tau _ { 3 } : \otimes ^ { 3 } {\cal E} \rightarrow \otimes ^ { 3 } {\cal E}$ ; confidence 1.000 |
− | 220. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a010210120.png ; $ | + | 220. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a010210120.png ; $\frak a$ ; confidence 1.000 |
− | 221. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130110/z13011028.png ; $\Delta G _ { n } ( x ) \equiv \mu _ { n } ( x ) = \sum 1 _ { \{ f _ { i n } = x \} }$ ; confidence | + | 221. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130110/z13011028.png ; $\Delta G _ { n } ( x ) \equiv \mu _ { n } ( x ) = \sum {\bf 1} _ { \{ f _ { i n } = x \} }$ ; confidence 1.000 |
− | 222. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130200/a1302006.png ; $( x , y , z ) \rightarrow \ | + | 222. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130200/a1302006.png ; $( x , y , z ) \rightarrow \langle x y z \rangle$ ; confidence 1.000 |
− | 223. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130160/c13016074.png ; $S = \Sigma ^ { * } - S$ ; confidence | + | 223. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130160/c13016074.png ; $\bar{S} = \Sigma ^ {\color{blue} * } - S$ ; confidence 1.000 |
224. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130500/s13050034.png ; $X = \{ \pi ( 1 ) , \ldots , \pi ( | X | ) \}$ ; confidence 0.751 | 224. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130500/s13050034.png ; $X = \{ \pi ( 1 ) , \ldots , \pi ( | X | ) \}$ ; confidence 0.751 | ||
− | 225. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120260/e120260100.png ; $P ( \theta , \mu _ { p _ { j } } )$ ; confidence | + | 225. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120260/e120260100.png ; $\operatorname{P} ( \theta , \mu _ { p _ { j } } )$ ; confidence 1.000 |
− | 226. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120140/d12014023.png ; $D _ { | + | 226. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120140/d12014023.png ; $D _ { n } ( x , 1 ) = u ^ { n } + u ^ { - n } = e ^ { i n \alpha } + e ^ { - i n \alpha } =$ ; confidence 1.000 |
− | 227. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240101.png ; $ | + | 227. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240101.png ; $t$ ; confidence 0.751 |
− | 228. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120150/h12015024.png ; $\operatorname { log } | \phi ( h ) | = \int \operatorname { log } | h | | + | 228. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120150/h12015024.png ; $\operatorname { log } | \phi ( h ) | = \int \operatorname { log } | h | dm$ ; confidence 1.000 |
− | 229. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130020/s13002038.png ; $l ( u ) = \operatorname { sup } \{ t \geq 0 : | + | 229. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130020/s13002038.png ; $l ( u ) = \operatorname { sup } \{ t \geq 0 : g_t ( u ) \text { is defined} \}$ ; confidence 1.000 |
230. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130100/p130100153.png ; $z \in T$ ; confidence 0.751 | 230. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130100/p130100153.png ; $z \in T$ ; confidence 0.751 | ||
− | 231. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130060/h13006012.png ; $T _ { n } f ( z ) = \sum _ { m = 0 } ^ { \infty } \gamma _ { n } ( m ) q ^ { m } ( z )$ ; confidence 0.751 | + | 231. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130060/h13006012.png ; $T _ { n } f ( z ) = \sum _ { m = 0 } ^ { \infty } \gamma _ { n } ( m ) q ^ { m } ( z ),$ ; confidence 0.751 |
− | 232. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130070/i13007045.png ; $A ( \alpha ^ { \prime } , \ | + | 232. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130070/i13007045.png ; $A ( \alpha ^ { \prime } , \alpha_0 , k )$ ; confidence 1.000 |
− | 233. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130060/o13006028.png ; $\sigma _ { 1 } = \frac { 1 } { i } ( A _ { 1 } - A _ { 1 } ^ { * } ) | _ { E } , \sigma _ { 2 } = \frac { 1 } { i } ( A _ { 2 } - A _ { 2 } ^ { * } ) | _ { E } , \gamma = \frac { 1 } { i } ( A _ { 1 } A _ { 2 } ^ { * } - A _ { 2 } A _ { 1 } ^ { * } ) | _ { E } , \tilde { \gamma } = \frac { 1 } { i } ( A _ { 2 } ^ { * } A _ { 1 } - A _ { 1 } ^ { * } A _ { 2 } ) | _ { E }$ ; confidence | + | 233. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130060/o13006028.png ; $\sigma _ { 1 } = \frac { 1 } { i } ( A _ { 1 } - A _ { 1 } ^ { * } ) | _ { E } , \sigma _ { 2 } = \frac { 1 } { i } ( A _ { 2 } - A _ { 2 } ^ { * } ) | _ { \cal E } , \gamma = \frac { 1 } { i } ( A _ { 1 } A _ { 2 } ^ { * } - A _ { 2 } A _ { 1 } ^ { * } ) | _ { \cal E } , \tilde { \gamma } = \frac { 1 } { i } ( A _ { 2 } ^ { * } A _ { 1 } - A _ { 1 } ^ { * } A _ { 2 } ) | _ { \cal E }$ ; confidence 1.000 |
− | 234. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120040/l12004073.png ; $f _ { i + 1 / 2 } = f ( u _ { i + 1 / 2 } ^ { n + 1 / 2 } )$ ; confidence 0.751 | + | 234. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120040/l12004073.png ; $f _ { i + 1 / 2 } = f ( u _ { i + 1 / 2 } ^ { n + 1 / 2 } );$ ; confidence 0.751 |
− | 235. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120100/f12010096.png ; $SL ( 2 , O _ { K } )$ ; confidence | + | 235. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120100/f12010096.png ; $\operatorname{SL} ( 2 , O _ { K } )$ ; confidence 1.000 |
236. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130020/a13002017.png ; $\nu = \operatorname { lim } \sum _ { k = 0 } ^ { n - 1 } \frac { 1 } { n } \delta _ { T ^ { n } x }$ ; confidence 0.751 | 236. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130020/a13002017.png ; $\nu = \operatorname { lim } \sum _ { k = 0 } ^ { n - 1 } \frac { 1 } { n } \delta _ { T ^ { n } x }$ ; confidence 0.751 | ||
− | 237. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w120090298.png ; $b ^ { + }$ ; confidence | + | 237. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w120090298.png ; ${\frak b} ^ { + }$ ; confidence 1.000 |
− | 238. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130060/h13006019.png ; $T _ { n } ( L ) = \sum L ^ { \prime }$ ; confidence | + | 238. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130060/h13006019.png ; $\tilde{T} _ { n } ( L ) = \sum L ^ { \prime }$ ; confidence 1.000 |
239. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120100/k12010021.png ; $( t _ { 1 } , \dots , t _ { m } )$ ; confidence 0.751 | 239. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120100/k12010021.png ; $( t _ { 1 } , \dots , t _ { m } )$ ; confidence 0.751 | ||
Line 480: | Line 480: | ||
240. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130240/f13024020.png ; $\langle x , y \rangle = - \varepsilon \langle y , x \rangle$ ; confidence 0.751 | 240. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130240/f13024020.png ; $\langle x , y \rangle = - \varepsilon \langle y , x \rangle$ ; confidence 0.751 | ||
− | 241. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120260/d12026020.png ; $P \{ X _ { n } \in G \} \rightarrow P \{ w \in G \}$ ; confidence | + | 241. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120260/d12026020.png ; $\operatorname{P} \{ X _ { n } \in G \} \rightarrow \operatorname{P} \{ w \in G \}.$ ; confidence 1.000 |
242. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120010/e120010110.png ; $( f _ { i } : X \rightarrow G A _ { i } ) _ { I }$ ; confidence 0.751 | 242. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120010/e120010110.png ; $( f _ { i } : X \rightarrow G A _ { i } ) _ { I }$ ; confidence 0.751 | ||
− | 243. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130130/t13013047.png ; $( T , . ) : T \rightarrow Y$ ; confidence | + | 243. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130130/t13013047.png ; $\operatorname{Hom}_\Lambda ( T , . ) : \cal T \rightarrow Y$ ; confidence 1.000 |
− | 244. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120050/h12005037.png ; $+ \frac { 4 } { 3 } \pi ^ { - 1 / 2 } \int _ { C _ { N } } \phi _ { ; m } \rho _ { ; m } d y$ ; confidence 0.750 | + | 244. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120050/h12005037.png ; $+ \frac { 4 } { 3 } \pi ^ { - 1 / 2 } \int _ { C _ { N } } \phi _ { ; m } \rho _ { ; m } d y.$ ; confidence 0.750 |
− | 245. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120150/b120150138.png ; $k j \in N \cup \{ 0 \}$ ; confidence | + | 245. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120150/b120150138.png ; $k j \in {\bf N} \cup \{ 0 \}$ ; confidence 1.000 |
246. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b12005010.png ; $P ( z ) = A ( z , \dots , z )$ ; confidence 0.750 | 246. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b12005010.png ; $P ( z ) = A ( z , \dots , z )$ ; confidence 0.750 | ||
Line 494: | Line 494: | ||
247. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120220/a12022021.png ; $T$ ; confidence 0.750 | 247. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120220/a12022021.png ; $T$ ; confidence 0.750 | ||
− | 248. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130060/i13006013.png ; $f ( k ) = | f ( k ) | e ^ { - i \delta ( k ) }$ ; confidence 0.750 | + | 248. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130060/i13006013.png ; $f ( k ) = | f ( k ) | e ^ { - i \delta ( k ) },$ ; confidence 0.750 |
− | 249. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120140/b12014032.png ; $\omega ( \beta ) | + | 249. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120140/b12014032.png ; $\omega ( \beta ) / \sigma ^ { \prime } ( \beta )$ ; confidence 1.000 |
250. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040980/f04098026.png ; $M ^ { 4 }$ ; confidence 0.750 | 250. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040980/f04098026.png ; $M ^ { 4 }$ ; confidence 0.750 | ||
− | 251. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120230/b12023031.png ; $\Sigma V$ ; confidence | + | 251. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120230/b12023031.png ; $\Sigma \cal V$ ; confidence 1.000 |
− | 252. https://www.encyclopediaofmath.org/legacyimages/q/q130/q130040/q1300409.png ; $G$ ; confidence 0.750 | + | 252. https://www.encyclopediaofmath.org/legacyimages/q/q130/q130040/q1300409.png ; $G.$ ; confidence 0.750 |
− | 253. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120240/s12024040.png ; $H _ { | + | 253. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120240/s12024040.png ; $H _ { * } ^ { S }$ ; confidence 1.000 |
− | 254. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240235.png ; $SS _ { e } = \sum _ { i = r + 1 } ^ { n } z _ { i } ^ { 2 }$ ; confidence | + | 254. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240235.png ; $\operatorname{SS} _ { e } = \sum _ { i = r + 1 } ^ { n } z _ { i } ^ { 2 }$ ; confidence 1.000 |
− | 255. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130040/w13004027.png ; $g = - \frac { \omega _ { 1 } + i \omega _ { 2 } } { \omega _ { 3 } } = \frac { \omega _ { 3 } } { \omega _ { 1 } - i \omega _ { 2 } } , \eta = g ^ { - 1 } \omega _ { 3 }$ ; confidence 0.750 | + | 255. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130040/w13004027.png ; $g = - \frac { \omega _ { 1 } + i \omega _ { 2 } } { \omega _ { 3 } } = \frac { \omega _ { 3 } } { \omega _ { 1 } - i \omega _ { 2 } } , \eta = g ^ { - 1 } \omega _ { 3 }.$ ; confidence 0.750 |
256. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120050/t12005095.png ; $\Sigma ^ { i _ { 1 } , \ldots , i _ { r } } ( V , W )$ ; confidence 0.750 | 256. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120050/t12005095.png ; $\Sigma ^ { i _ { 1 } , \ldots , i _ { r } } ( V , W )$ ; confidence 0.750 | ||
Line 514: | Line 514: | ||
257. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120120/m120120104.png ; $R C \subseteq R N \subseteq Q _ { s } ( R )$ ; confidence 0.750 | 257. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120120/m120120104.png ; $R C \subseteq R N \subseteq Q _ { s } ( R )$ ; confidence 0.750 | ||
− | 258. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120030/m12003089.png ; $\ | + | 258. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120030/m12003089.png ; $\overset{\rightharpoonup} { x }$ ; confidence 1.000 |
− | 259. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130480/s13048058.png ; $M = G / | + | 259. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130480/s13048058.png ; $M = G / G_0$ ; confidence 1.000 |
− | 260. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120090/e12009023.png ; $F _ { \nu } ^ { \mu \nu } = S ^ { \mu }$ ; confidence | + | 260. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120090/e12009023.png ; $F _ { ,\nu } ^ { \mu \nu } = S ^ { \mu }$ ; confidence 1.000 |
261. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120230/a12023047.png ; $d \zeta = d \zeta _ { 1 } \wedge \ldots \wedge d \zeta _ { n }$ ; confidence 0.749 | 261. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120230/a12023047.png ; $d \zeta = d \zeta _ { 1 } \wedge \ldots \wedge d \zeta _ { n }$ ; confidence 0.749 | ||
− | 262. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040127.png ; $\psi$ ; confidence | + | 262. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040127.png ; $\psi^'$ ; confidence 1.000 |
− | 263. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130050/i13005076.png ; $ | + | 263. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130050/i13005076.png ; $r_+ ( k ) = O ( 1 / k )$ ; confidence 1.000 |
− | 264. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t12020085.png ; $\theta \approx 0 | + | 264. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t12020085.png ; $\theta \approx 0.2784$ ; confidence 1.000 |
− | 265. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120060/a12006027.png ; $A u = \sum _ { j = 1 } ^ { m } | + | 265. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120060/a12006027.png ; ${\cal A} u = \sum _ { j = 1 } ^ { m } a _ { j } ( x ) \frac { \partial u } { \partial x _ { j } } + c ( x ) u$ ; confidence 0.749 |
− | 266. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130030/i13003072.png ; $T _ { vert } ^ { * } Y : = T ^ { * } Y / \pi ^ { * } ( T ^ { * } B )$ ; confidence | + | 266. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130030/i13003072.png ; $T _ { \text{vert} } ^ { * } Y : = T ^ { * } Y / \pi ^ { * } ( T ^ { * } B )$ ; confidence 1.000 |
267. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520492.png ; $\Lambda ( \lambda _ { 1 } , \dots , \lambda _ { n } )$ ; confidence 0.749 | 267. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520492.png ; $\Lambda ( \lambda _ { 1 } , \dots , \lambda _ { n } )$ ; confidence 0.749 | ||
− | 268. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120270/a12027059.png ; $( N / K )$ ; confidence | + | 268. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120270/a12027059.png ; $\operatorname{Gal}( N / K )$ ; confidence 1.000 |
269. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120050/t12005026.png ; $x \in \Sigma ^ { i , j } ( f )$ ; confidence 0.749 | 269. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120050/t12005026.png ; $x \in \Sigma ^ { i , j } ( f )$ ; confidence 0.749 | ||
Line 540: | Line 540: | ||
270. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120140/e12014038.png ; $v _ { i } \in V$ ; confidence 0.749 | 270. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120140/e12014038.png ; $v _ { i } \in V$ ; confidence 0.749 | ||
− | 271. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120020/j12002099.png ; $Y _ { t } = B _ { \operatorname { min } | + | 271. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120020/j12002099.png ; $Y _ { t } = B _ { \operatorname { min } ( t , 1 )}$ ; confidence 1.000 |
272. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120040/k12004023.png ; $K _ { 1 } \# - K _ { 2 }$ ; confidence 0.749 | 272. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120040/k12004023.png ; $K _ { 1 } \# - K _ { 2 }$ ; confidence 0.749 | ||
Line 550: | Line 550: | ||
275. https://www.encyclopediaofmath.org/legacyimages/n/n130/n130030/n1300306.png ; $v _ { x x } = \lambda v$ ; confidence 0.748 | 275. https://www.encyclopediaofmath.org/legacyimages/n/n130/n130030/n1300306.png ; $v _ { x x } = \lambda v$ ; confidence 0.748 | ||
− | 276. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110420/b110420103.png ; $ | + | 276. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110420/b110420103.png ; $a ( x , \xi )$ ; confidence 1.000 |
− | 277. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130060/a13006069.png ; $G _ { 1 }$ ; confidence | + | 277. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130060/a13006069.png ; ${\cal G} _ { 1 }$ ; confidence 1.000 |
278. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130180/m130180173.png ; $( M \backslash a , M , M / a )$ ; confidence 0.748 | 278. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130180/m130180173.png ; $( M \backslash a , M , M / a )$ ; confidence 0.748 | ||
Line 558: | Line 558: | ||
279. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120020/e12002093.png ; $\Sigma \Omega X \rightarrow X$ ; confidence 0.748 | 279. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120020/e12002093.png ; $\Sigma \Omega X \rightarrow X$ ; confidence 0.748 | ||
− | 280. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120070/a12007046.png ; $u ^ { \prime } \in C ^ { \alpha } ( [ 0 , T ] ; X ) \cap B ( D _ { A } ( \alpha , \infty ) )$ ; confidence 0.748 | + | 280. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120070/a12007046.png ; $u ^ { \prime } \in C ^ { \alpha } ( [ 0 , T ] ; X ) \cap B ( D _ { A } ( \alpha , \infty ) ),$ ; confidence 0.748 |
− | 281. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130030/j13003030.png ; $[ | + | 281. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130030/j13003030.png ; $[ a \square b ^ { * } , x \square y ^ { * } ] = \{ a b x \} \square y ^ { * } - x \square \{ y a b \}$ ; confidence 0.748 |
282. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120130/k12013026.png ; $p ( x ) = \sqrt { 1 - x ^ { 2 } } / \rho _ { m } ( x )$ ; confidence 0.748 | 282. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120130/k12013026.png ; $p ( x ) = \sqrt { 1 - x ^ { 2 } } / \rho _ { m } ( x )$ ; confidence 0.748 | ||
Line 566: | Line 566: | ||
283. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130160/b13016057.png ; $f | _ { K } \in A | _ { K }$ ; confidence 0.748 | 283. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130160/b13016057.png ; $f | _ { K } \in A | _ { K }$ ; confidence 0.748 | ||
− | 284. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p1201707.png ; $\delta _ { A , B } = \{ X \in B ( H ) : \delta _ { A , B } ( X ) = 0 \}$ ; confidence | + | 284. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p1201707.png ; $\operatorname{ker} \delta _ { A , B } = \{ X \in B ( H ) : \delta _ { A , B } ( X ) = 0 \}$ ; confidence 1.000 |
285. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110500/a11050055.png ; $\alpha \in K$ ; confidence 0.748 | 285. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110500/a11050055.png ; $\alpha \in K$ ; confidence 0.748 | ||
− | 286. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012330/a01233028.png ; $ | + | 286. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012330/a01233028.png ; $l\geq 0$ ; confidence 1.000 |
− | 287. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120520/b12052085.png ; $= - \prod _ { j = 0 } ^ { n - 1 } ( I - w _ { j } v _ { j } ^ { T } ) B _ { 0 } ^ { - 1 } F ( x _ { n } )$ ; confidence 0.747 | + | 287. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120520/b12052085.png ; $= - \prod _ { j = 0 } ^ { n - 1 } ( I - w _ { j } v _ { j } ^ { T } ) B _ { 0 } ^ { - 1 } F ( x _ { n } ).$ ; confidence 0.747 |
288. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030410/d0304107.png ; $a \geq 0$ ; confidence 0.747 | 288. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030410/d0304107.png ; $a \geq 0$ ; confidence 0.747 | ||
− | 289. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t13005050.png ; $\sigma _ { T } ( A , X ) = \{ \lambda \in C ^ { n } : K ( A - \lambda , X )$ ; confidence | + | 289. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t13005050.png ; $\sigma _ { T } ( A , {\cal X} ) = \{ \lambda \in C ^ { n } : K ( A - \lambda , {\cal X} ) \text{ is not exact}\}.$ ; confidence 1.000 |
290. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023570/c0235705.png ; $M \subset X$ ; confidence 0.747 | 290. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023570/c0235705.png ; $M \subset X$ ; confidence 0.747 | ||
Line 586: | Line 586: | ||
293. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030330/d03033015.png ; $\gamma \rightarrow \int _ { \gamma } \omega$ ; confidence 0.747 | 293. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030330/d03033015.png ; $\gamma \rightarrow \int _ { \gamma } \omega$ ; confidence 0.747 | ||
− | 294. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015350/b015350295.png ; $ | + | 294. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015350/b015350295.png ; $l_ { \infty }$ ; confidence 1.000 |
295. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120260/a120260127.png ; $A \{ X _ { 1 } , \dots , X _ { s _ { i } } \}$ ; confidence 0.747 | 295. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120260/a120260127.png ; $A \{ X _ { 1 } , \dots , X _ { s _ { i } } \}$ ; confidence 0.747 | ||
Line 592: | Line 592: | ||
296. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k05584061.png ; $\| G | ^ { 1 / 2 } x \|$ ; confidence 0.747 | 296. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k05584061.png ; $\| G | ^ { 1 / 2 } x \|$ ; confidence 0.747 | ||
− | 297. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130180/m13018020.png ; $g ( x ) = \sum _ { y : y \geq x } f ( y ) \Leftrightarrow f ( x ) = \sum _ { y : y \geq x } \mu ( x , y ) g ( y )$ ; confidence 0.747 | + | 297. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130180/m13018020.png ; $g ( x ) = \sum _ { y : y \geq x } f ( y ) \Leftrightarrow f ( x ) = \sum _ { y : y \geq x } \mu ( x , y ) g ( y ).$ ; confidence 0.747 |
− | 298. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120160/m12016054.png ; $ | + | 298. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120160/m12016054.png ; $\operatorname{rank} ( \Phi ) = n _ { 1 }$ ; confidence 1.000 |
− | 299. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130300/b130300100.png ; $\psi _ { i - 1 } ( A _ { i } ^ { | + | 299. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130300/b130300100.png ; $\psi _ { i - 1 } ( A _ { i } ^ { n } )$ ; confidence 0.747 |
300. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120040/s1200406.png ; $\lambda = ( \lambda _ { 1 } , \dots , \lambda _ { l } )$ ; confidence 0.747 | 300. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120040/s1200406.png ; $\lambda = ( \lambda _ { 1 } , \dots , \lambda _ { l } )$ ; confidence 0.747 |
Revision as of 17:16, 27 April 2020
List
1. ; $\tilde { y } \in A ^ { S }$ ; confidence 1.000
2. ; $d > 1$ ; confidence 0.762
3. ; $\{ \omega \}$ ; confidence 0.762
4. ; $p = n / ( n - 2 )$ ; confidence 1.000
5. ; $\operatorname { lim } _ { t \rightarrow \infty } ( U ( t + h ) - U ( t ) ) = \frac { h } { \operatorname{E} X _ { 1 } }$ ; confidence 1.000
6. ; ${\bf s} ^ { ( k ) }$ ; confidence 1.000
7. ; $P _ { \sigma }$ ; confidence 0.762
8. ; $e = y - \overset{\rightharpoonup} { x } ^ { t } \overset{\rightharpoonup} { \theta }$ ; confidence 1.000
9. ; $( \tilde { G } , \tilde{c} ) / \Lambda$ ; confidence 1.000
10. ; $2 \epsilon$ ; confidence 0.761
11. ; $\operatorname { dist } ( T _ { x } , T _ { y } ) \leq C ( r | x - y | ) ^ { 1 - \epsilon }$ ; confidence 0.761
12. ; $p \notin S$ ; confidence 0.761
13. ; $N \subset M$ ; confidence 0.761
14. ; $\lambda _ { k }$ ; confidence 0.761
15. ; $\{ \xi ^ { \alpha } , \eta ^ { \alpha } , \Phi ^ { \alpha } \} \alpha = 1,2,3$ ; confidence 0.761
16. ; $S_r$ ; confidence 1.000
17. ; $( \operatorname { log } n ) ^ { O ( 1 ) }$ ; confidence 0.761
18. ; $F _ { n _ { 1 } }$ ; confidence 1.000
19. ; $\operatorname { Ker } ( \partial )$ ; confidence 0.761
20. ; $z \mapsto \{ a b z \}$ ; confidence 0.761
21. ; $( 2 t ) ^ { - 1 } \| . \| ^ { 2 }$ ; confidence 0.761
22. ; $d , e \in D$ ; confidence 0.761
23. ; $( x ^ { 0 } , \xi ^ { 0 } ) \in \Omega \times ( {\bf R} ^ { n } \backslash \{ 0 \} )$ ; confidence 1.000
24. ; $- f _ { t } + ( 2 t ) ^ { - 1 } \| . \| ^ { 2 }$ ; confidence 0.761
25. ; $a ^ { - 1 }$ ; confidence 0.761
26. ; $U = ( U , {\cal O ( U )} , \text { ev } )$ ; confidence 1.000
27. ; $T _ { n } : X _ { n } \rightarrow Y _ { n }$ ; confidence 1.000
28. ; $\Omega _ { r } = r \Omega$ ; confidence 0.761
29. ; $q R : {\bf Z} ^ { n } \rightarrow \bf Z$ ; confidence 1.000
30. ; $G \subset {\bf R} ^ { n }$ ; confidence 1.000
31. ; $- \operatorname{ id }$ ; confidence 1.000
32. ; $( {\cal Q} _ { 2 } , \mu _ { 2 } )$ ; confidence 1.000
33. ; ${\cal M} _ { g , n } + 1$ ; confidence 1.000
34. ; $U \cal C$ ; confidence 1.000
35. ; $i , l = 1 , \dots , n$ ; confidence 0.760
36. ; $( x . \xi ) ^ { w } = ( x . D _ { x } + D _ { x } x ) / 2$ ; confidence 0.760
37. ; $\operatorname { Der }\Omega ( M ) = \oplus _ { k } \operatorname { Der } _ { k } \Omega ( M )$ ; confidence 1.000
38. ; $\operatorname { Hol }( \Delta )$ ; confidence 1.000
39. ; $\| S_{NB} \| \leq CN^ { ( n - 1 ) / 2 }$ ; confidence 1.000
40. ; $\{ A_t , A _ { s } ^ { * } \} = \delta ( t - s ) , \{ A _ { t } , A _ { s } \} = \{ A _ { t } ^ { * } , A _ { s } ^ { * } \} = 0.$ ; confidence 1.000
41. ; $\rho \otimes x ( A ) = \langle A x , \rho \rangle$ ; confidence 0.760
42. ; $operatorname{Ab}$ ; confidence 1.000
43. ; $F ^ { \prime } ( x _ { c } ) s = - F ( x _ { c } )$ ; confidence 0.760
44. ; $X \subset L ^ { 0 } ( \mu )$ ; confidence 0.760
45. ; $a ^ { - 1 } b ^ { k } a$ ; confidence 0.760
46. ; $\cal N E X P$ ; confidence 1.000
47. ; $( {\cal X , A} _ { N } )$ ; confidence 0.760
48. ; $\theta _ { n } = \theta + h / \sqrt { n }$ ; confidence 0.760
49. ; $X \times I ^ { 2 }$ ; confidence 0.760
50. ; $f _ { 1 } , \dots , f _ { k }$ ; confidence 0.760
51. ; ${\bf V} _ { j j ^ { \prime } } = {\bf Z} _ { 3 j } ^ { \prime } {\bf Z} _ { 3 j }$ ; confidence 0.760
52. ; $= \lambda \operatorname { lim } _ { N \rightarrow \infty } \sum _ { t = 1 } ^ { N } \operatorname{E} \frac { \partial } { \partial \theta } f ( Z ^ { t - 1 } , t , \theta ) ( \frac { \partial } { \partial \theta } f ( Z ^ { t - 1 } , t , \theta ) ) ^ { T }$ ; confidence 1.000
53. ; ${\cal R = C} ^ { \infty } ( \Omega ) / {\cal I} _ { S }$ ; confidence 1.000
54. ; $Z_2$ ; confidence 1.000
55. ; $j , r = 1 , \dots , m$ ; confidence 0.759
56. ; $a, b \leq c \leq d , e$ ; confidence 1.000
57. ; $= \frac { d \operatorname { ln } g ( R ; m , s ) } { d m } \frac { d \operatorname { ln } g ( L ; m , s ) } { d s }$ ; confidence 0.759
58. ; ${\cal C} ( G )$ ; confidence 1.000
59. ; $d _ { i } \times d _ { j }$ ; confidence 0.759
60. ; $O ( N ^ { 2 d } )$ ; confidence 0.759
61. ; $\rho _ { \text { atom } } ^ { \text{TF} }$ ; confidence 1.000
62. ; $q _ { 1 } + \ldots + q _ { m }$ ; confidence 0.759
63. ; $X = c_0$ ; confidence 1.000
64. ; $\| A \| _ { 1 } = \operatorname { max } _ { i } \sum _ { j } | a _ { i j } |,$ ; confidence 0.759
65. ; $C _ { 1 } N ^ { n + ( n - 1 ) / 2 } \leq \| S _ { H _ { N } } \| \leq C _ { 2 } N ^ { n + ( n - 1 ) / 2 }$ ; confidence 0.759
66. ; $Z ^ { - 1 } ( \tilde{x} ( z ) ) = x ( n )$ ; confidence 1.000
67. ; $f : U \rightarrow \cal C$ ; confidence 1.000
68. ; $y \notin F ( \partial U )$ ; confidence 0.759
69. ; $a \square a ^ { * }$ ; confidence 1.000
70. ; $\beta ^ { T } = ( \beta _ { 1 } , \dots , \beta _ { p } )$ ; confidence 0.759
71. ; $( \exists g ) ( \forall \phi ) ( \exists f ) ( \forall x _ { 1 } , \dots , x _ { n } )$ ; confidence 0.759
72. ; $H _ { 0 } ^ { 2 }$ ; confidence 0.759
73. ; $\| x \| ^ { 2 } \leq \| x ^ { 2 } + y ^ { 2 } \|$ ; confidence 0.759
74. ; $\overline { p } = p$ ; confidence 0.759
75. ; $D ; \subset {\bf C} ^ { 1 }$ ; confidence 1.000
76. ; $\delta _ { A , B } ( X ) \in I$ ; confidence 0.758
77. ; $[ m ] _ { q } ! = [ m ] _ { q } [ m - 1 ] _ { q } \ldots [ 1 ] _ { q }$ ; confidence 0.758
78. ; $f ( q ) = O ( 1 / q ^ { 2 } )$ ; confidence 0.758
79. ; $B _ { + } = B _ { c } + \frac { ( y - B _ { c } s ) s ^ { T } } { s ^ { T } s }$ ; confidence 0.758
80. ; $\operatorname{SL} _ { q } ( 2 )$ ; confidence 1.000
81. ; $S _ { C } ( D ) = k$ ; confidence 0.758
82. ; $F \in \operatorname { Aut } _ { R } R [ X ]$ ; confidence 0.758
83. ; $A \rightarrow \overline { A },$ ; confidence 0.758
84. ; $z _ { 2 } \neq z _ { 3 }$ ; confidence 0.758
85. ; $f _ { j } : \Omega \rightarrow {\bf R} ^ { d }$ ; confidence 1.000
86. ; $\mu = \frac { y ^ { T } H y . s ^ { T } B s } { ( s ^ { T } y ) ^ { 2 } }.$ ; confidence 1.000
87. ; ${\cal I} _ { 0 } = \{ ( u _ { j } ) _ { j \in \bf N }$ ; confidence 1.000
88. ; $\operatorname { Ker } D _ { A } / \operatorname { Ran } D _ { A } = \operatorname { Ker } A \oplus ({\cal X} / \operatorname { Ran } A )$ ; confidence 1.000
89. ; $\sigma ^ { 2 k ^ { * } } [ {\cal E} ( L ) ( Z ^ { 2 k } ) ] = \sigma ^ { k + 1 ^ { * } } [ \Omega ( d L \Delta ) ( Z ^ { k + 1 } ) ],$ ; confidence 1.000
90. ; $\operatorname{Mod}_{\cal L}$ ; confidence 1.000
91. ; $S ( k ) = f ( - k ) / f ( k )$ ; confidence 0.758
92. ; $s > 2$ ; confidence 0.758
93. ; $d_ {x , \xi} p _ { m } ( x , \xi )$ ; confidence 1.000
94. ; $C _ { + }$ ; confidence 0.758
95. ; $G ^ { S }$ ; confidence 0.758
96. ; ${\cal Q} [ K ]$ ; confidence 1.000
97. ; $X \times W$ ; confidence 0.757
98. ; $f = ( f _ { 1 } , \dots , f _ { n } )$ ; confidence 0.757
99. ; $\varphi ( n ) = n - \frac { n } { p _ { 1 } } - \ldots - \frac { n } { p _ { k } } +$ ; confidence 0.757
100. ; $\tilde{L}^'$ ; confidence 1.000
101. ; $Q _ { id } = Q \times S ^ { 1 } \rightarrow \Sigma \times S ^ { 1 }$ ; confidence 0.757
102. ; $\operatorname { sp } ( J , x )$ ; confidence 0.757
103. ; $x \in \Sigma ^ { * }$ ; confidence 0.757
104. ; ${\cal L}_0$ ; confidence 1.000
105. ; $R \subseteq \square ^ { n } U$ ; confidence 0.757
106. ; $\hat { f } ( - 2 \pi w ) = \frac { 1 } { \sqrt { 2 \pi } } \int _ { 0 } ^ { 1 } e ^ { - 2 \pi i w t } ( Z f ) ( t , w ) d t,$ ; confidence 0.757
107. ; $\operatorname { Ker } ( I - F ^ { \prime } ( c ) ) \bigoplus \operatorname { Im } ( I - F ^ { \prime } ( c ) ) = X$ ; confidence 1.000
108. ; $f \in L _ { \text{C} } ^ { 1 } ( G )$ ; confidence 1.000
109. ; $\Gamma \cup \text { int } ( \Gamma ) \subset \Omega$ ; confidence 0.757
110. ; $L ^ { * } ( h ^ { 2 } ( X ) , s ) _ { s = 1 }$ ; confidence 0.757
111. ; $\sum _ { j \in I } f ( x _ { i j } ) < \infty$ ; confidence 0.757
112. ; $S _ { \mu }$ ; confidence 0.757
113. ; $d < b$ ; confidence 0.757
114. ; $e ^ { z _ { 1 } + z _ { 2 } } = e ^ { z _ { 1 } } e ^ { z _ { 2 } }$ ; confidence 0.757
115. ; $k , l \in {\bf N} _ { 0 }$ ; confidence 1.000
116. ; $H _ { k + 1 } = H _ { k } + \beta _ { k } u ^ { k } ( u ^ { k } ) ^ { T } + \gamma _ { k } v ^ { k } ( v ^ { k } ) ^ { T }$ ; confidence 0.757
117. ; $\operatorname { lim } _ { n \rightarrow \infty } \phi _ { n } ^ { * } ( z ) = D _ { \mu } ( z ) ^ { - 1 }$ ; confidence 0.757
118. ; $G _ { R }$ ; confidence 0.757
119. ; $\preceq$ ; confidence 1.000
120. ; $s ( D )$ ; confidence 0.756
121. ; $Z ^ { t - 1 } = \{ y ( t - 1 ) , u ( t - 1 ) , \dots , y ( 0 ) , u ( 0 ) \}:$ ; confidence 0.756
122. ; $- \frac { 1 } { k + d n _ { k } }_{..} [ ( i + d ) \mu ( i , m ) - ( i + d + 1 ) \mu ( i + 1 , m ) ] = 0.$ ; confidence 1.000
123. ; $k \operatorname { log } m \leq i \operatorname { log } n < ( k + 1 ) \operatorname { log } m$ ; confidence 1.000
124. ; $P ( K ) ^ { * }$ ; confidence 0.756
125. ; $k = 0 , \pm 1 , \pm 2 , \ldots$ ; confidence 0.756
126. ; $E * ( )$ ; confidence 1.000
127. ; $( \lambda x M ) \in \Lambda$ ; confidence 0.756
128. ; $G = \text { Coker } ( \partial )$ ; confidence 0.756
129. ; $A _ { i } \cap A _ { j } = \emptyset$ ; confidence 0.756
130. ; $t | \leq \pi$ ; confidence 0.756
131. ; $\frac { \partial ^ { 2 } u ( t , x ) } { \partial t ^ { 2 } } - a ^ { 2 } \frac { \partial ^ { 2 } u ( t , x ) } { \partial x ^ { 2 } } = f ( t , x )$ ; confidence 0.756
132. ; $( s _ { 1 } , \dots , s _ { k } , I _ { m } )$ ; confidence 1.000
133. ; $( n / ( 2 e ( m + n ) ) ) ^ { n }$ ; confidence 0.756
134. ; ${\cal T} : L ^ { X } \rightarrow L$ ; confidence 1.000
135. ; $( M ^ { 2 n } , \omega )$ ; confidence 0.756
136. ; $( L _ { 1 } , L _ { 2 } ) = ( S _ { 1 } \Lambda S _ { 1 } ^ { - 1 } , S _ { 2 } \Lambda ^ { t } S _ { 2 } ^ { - 1 } )$ ; confidence 0.756
137. ; $u \in {\bf Z} G$ ; confidence 1.000
138. ; $x _ { S }$ ; confidence 0.756
139. ; $J _ { E } \subset I _ { E }$ ; confidence 0.755
140. ; $\operatorname{Ad}( G ) X$ ; confidence 1.000
141. ; ${\frak C} ( P )$ ; confidence 1.000
142. ; $( u , v ) \mapsto u _ { n } ( v )$ ; confidence 1.000
143. ; $F : {\cal C} ^ { * } \otimes _ { k } {\cal C} \rightarrow \operatorname{Ab}$ ; confidence 1.000
144. ; $( {\bf p} _ { x } ^ { 2 } + {\bf p} _ { y } ^ { 2 } + {\bf p} _ { z } ^ { 2 } ) + m _ { 0 } ^ { 2 } c ^ { 2 } =$ ; confidence 1.000
145. ; $\| f \| \leq 2 f ( z _ { 0 } )$ ; confidence 0.755
146. ; ${\cal T} _ { A } \xi$ ; confidence 1.000
147. ; $\phi * ( \text { ind } ( D ) )$ ; confidence 0.755
148. ; ${\bf N} ( X ) = \sum _ { j = 1 } ^ { 8 } X _ { j } ^ { 2 }$ ; confidence 1.000
149. ; $m _ { i j } = 0$ ; confidence 0.755
150. ; $E _ { r } = S \cup T$ ; confidence 0.755
151. ; $P _ { \theta } ( \| T _ { N } - \theta \| > \epsilon _ { N } )$ ; confidence 0.755
152. ; $\hat{k}$ ; confidence 1.000
153. ; $n = 1.3 .5 . . ( 2 k - 1 )$ ; confidence 0.755
154. ; $| \gamma | = r + \sum _ { j = 1 } ^ { s } p _ { j }$ ; confidence 0.755
155. ; $\{ x y z \} = x \circ ( y ^ { * } \circ z ) + z \circ ( y ^ { * } \circ x ) - ( x \circ z ) \circ y ^ { * }$ ; confidence 0.755
156. ; $\delta ( w | v )$ ; confidence 0.755
157. ; $m \geq 4$ ; confidence 1.000
158. ; $= \int _ { 0 } ^ { \infty } | ( V \phi | \lambda ) | ^ { 2 } ( \frac { 1 } { \zeta - \lambda - i \epsilon } - \frac { 1 } { \zeta - \lambda + i \epsilon } ) d \lambda =;$ ; confidence 1.000
159. ; $s = 1,2 , \dots,$ ; confidence 1.000
160. ; $t + \theta < t_0$ ; confidence 1.000
161. ; $| x y | \preceq | x | | y | | x |$ ; confidence 0.754
162. ; $C _ { 2 } \rightarrow C _ { 1 } \underset{\rightarrow}{\rightarrow} C _ { 0 }$ ; confidence 1.000
163. ; $u \in C _ { 0 } ^ { \infty } ( G )$ ; confidence 0.754
164. ; $W _ { \infty }$ ; confidence 0.754
165. ; $K \subset \bf R$ ; confidence 1.000
166. ; $n \geq - 1$ ; confidence 1.000
167. ; $\theta _ { n } ( f ) = \varphi$ ; confidence 1.000
168. ; $\bf P$ ; confidence 1.000
169. ; $b \in \partial \Delta$ ; confidence 0.754
170. ; $h = \operatorname { mng } _ {{\cal S}_P, \mathfrak { N } } $ ; confidence 1.000
171. ; $a \leq 0$ ; confidence 0.754
172. ; $( [ {\cal L , A} ] F ) _ { n } ( X ) =$ ; confidence 1.000
173. ; $\{ \varphi _ { i } \} _ { l = 1 } ^ { k - 1 }$ ; confidence 0.754
174. ; $\operatorname{SP} ( n )$ ; confidence 1.000
175. ; $\| f \| ^ { 2 } = \sum _ { \alpha _ { l } \leq k } \| D ^ { \alpha } f \| ^ { 2 _{L _ { 2 }}},$ ; confidence 1.000
176. ; $A _ { p }$ ; confidence 1.000
177. ; $R ( t ) = R ( \gamma ^ { \prime } ( t ) , . ) \gamma ^ { \prime } ( t )$ ; confidence 0.754
178. ; $\xi = \operatorname{ker} \alpha$ ; confidence 1.000
179. ; $\{ a , b \} _ { \infty }$ ; confidence 0.753
180. ; $E_{[ m , s ]} A ( f ) \Omega \neq 0$ ; confidence 1.000
181. ; $Y ( v , x ) \bf 1$ ; confidence 1.000
182. ; $K _ { j } \in {\bf R} ^ { n \times n } , K _ { 0 } = l , \sum _ { j = 0 } ^ { \infty } \| K _ { j } \| ^ { 2 } < \infty ,$ ; confidence 1.000
183. ; $m \in S$ ; confidence 0.753
184. ; $X \neq \emptyset$ ; confidence 1.000
185. ; $\operatorname{P} ( | XX ^ { \prime } | \neq 0 ) = 1$ ; confidence 1.000
186. ; $n / 2$ ; confidence 1.000
187. ; $k _ { \vartheta } ( z ) = \frac { 1 - | z | ^ { 2 } } { | z - e ^ { i \vartheta | ^ { 2 } } }$ ; confidence 0.753
188. ; $q = ( {\bf r} _ { 1 } , \dots , {\bf r} _ { N } )$ ; confidence 1.000
189. ; $( \operatorname{PD} )$ ; confidence 1.000
190. ; $A ^ {\bf N }$ ; confidence 1.000
191. ; $T _ { y } Y = V _ { y } Y + \Gamma ( y )$ ; confidence 0.753
192. ; $V _ { t } = \mu _ { X + t} d t S - P d t +$ ; confidence 0.753
193. ; $x ^ { \prime }$ ; confidence 0.753
194. ; $c ^ { a } ( x ) c ^ { b } ( y ) = - c ^ { b } ( y ) c ^ { a } ( x )$ ; confidence 1.000
195. ; $\operatorname{E} f ( X _ { n } ) \rightarrow \operatorname{E} f ( w ) , \quad n \rightarrow \infty, $ ; confidence 1.000
196. ; $\delta f ( x _ { 0 } , h ) = f _ { G } ^ { \prime } ( x _ { 0 } ) h , \quad f _ { G } ^ { \prime } ( x _ { 0 } ) \in L ( X , Y ).$ ; confidence 0.752
197. ; $h _ { j } \in \operatorname{Gl} ( v _ { j } , K )$ ; confidence 1.000
198. ; $r = 2$ ; confidence 0.752
199. ; $R _ { 13 } = ( 1 \otimes _ { k } \tau _ { V , V } ) ( R \otimes _ { k } 1 ) ( 1 \otimes _ { k } \tau _ { V , V } )$ ; confidence 0.752
200. ; $\Delta$ ; confidence 0.752
201. ; $u \in C ( [ 0 , T ] ; X ) \cap C ^ { 1 } ( ( 0 , T ] ; X )$ ; confidence 0.752
202. ; $\alpha | 0 \rangle + \beta | 1 \rangle$ ; confidence 0.752
203. ; $\operatorname{deg}_{x_m}\alpha _ { 1 } \geq d ^ { m - 1 } ( d - 1 )$ ; confidence 0.752
204. ; ${\cal R} : G _ { q } \rightarrow U _ { q } ( {\frak g} )$ ; confidence 1.000
205. ; $\operatorname{L} ^ { \infty }$ ; confidence 1.000
206. ; $\operatorname{index}( A ) = \operatorname { dim } \operatorname { Ker } D _ { A } ^ { 0 } - \operatorname { dim } ( \operatorname { Ker } D _ { A } ^ { 1 } / \operatorname { Ran } D _ { A } ^ { 0 } ) + \operatorname { dim } ( {\cal X} / \operatorname { Ran } D _ { A } ^ { 1 } )$ ; confidence 1.000
207. ; $- ( K _ { X } + B )$ ; confidence 0.752
208. ; $y_1$ ; confidence 1.000
209. ; $L _ { 1 } , \ldots , L _ { k }$ ; confidence 0.752
210. ; $( w \in S )$ ; confidence 0.752
211. ; ${\bf l}_t$ ; confidence 1.000
212. ; $f : X \rightarrow S$ ; confidence 0.752
213. ; $f ( a )$ ; confidence 0.752
214. ; $T / T _ { c } \rightarrow 1$ ; confidence 0.752
215. ; $s _ { j } > 0$ ; confidence 0.751
216. ; $R < R _ { c }$ ; confidence 0.751
217. ; $\operatorname { lim } _ { n \rightarrow \infty } \frac { P ^ { \# } ( n ) } { G ^ { \# } ( n ) } = \lambda.$ ; confidence 0.751
218. ; $\xi _ { 1 }$ ; confidence 0.751
219. ; $\tau _ { 3 } : \otimes ^ { 3 } {\cal E} \rightarrow \otimes ^ { 3 } {\cal E}$ ; confidence 1.000
220. ; $\frak a$ ; confidence 1.000
221. ; $\Delta G _ { n } ( x ) \equiv \mu _ { n } ( x ) = \sum {\bf 1} _ { \{ f _ { i n } = x \} }$ ; confidence 1.000
222. ; $( x , y , z ) \rightarrow \langle x y z \rangle$ ; confidence 1.000
223. ; $\bar{S} = \Sigma ^ {\color{blue} * } - S$ ; confidence 1.000
224. ; $X = \{ \pi ( 1 ) , \ldots , \pi ( | X | ) \}$ ; confidence 0.751
225. ; $\operatorname{P} ( \theta , \mu _ { p _ { j } } )$ ; confidence 1.000
226. ; $D _ { n } ( x , 1 ) = u ^ { n } + u ^ { - n } = e ^ { i n \alpha } + e ^ { - i n \alpha } =$ ; confidence 1.000
227. ; $t$ ; confidence 0.751
228. ; $\operatorname { log } | \phi ( h ) | = \int \operatorname { log } | h | dm$ ; confidence 1.000
229. ; $l ( u ) = \operatorname { sup } \{ t \geq 0 : g_t ( u ) \text { is defined} \}$ ; confidence 1.000
230. ; $z \in T$ ; confidence 0.751
231. ; $T _ { n } f ( z ) = \sum _ { m = 0 } ^ { \infty } \gamma _ { n } ( m ) q ^ { m } ( z ),$ ; confidence 0.751
232. ; $A ( \alpha ^ { \prime } , \alpha_0 , k )$ ; confidence 1.000
233. ; $\sigma _ { 1 } = \frac { 1 } { i } ( A _ { 1 } - A _ { 1 } ^ { * } ) | _ { E } , \sigma _ { 2 } = \frac { 1 } { i } ( A _ { 2 } - A _ { 2 } ^ { * } ) | _ { \cal E } , \gamma = \frac { 1 } { i } ( A _ { 1 } A _ { 2 } ^ { * } - A _ { 2 } A _ { 1 } ^ { * } ) | _ { \cal E } , \tilde { \gamma } = \frac { 1 } { i } ( A _ { 2 } ^ { * } A _ { 1 } - A _ { 1 } ^ { * } A _ { 2 } ) | _ { \cal E }$ ; confidence 1.000
234. ; $f _ { i + 1 / 2 } = f ( u _ { i + 1 / 2 } ^ { n + 1 / 2 } );$ ; confidence 0.751
235. ; $\operatorname{SL} ( 2 , O _ { K } )$ ; confidence 1.000
236. ; $\nu = \operatorname { lim } \sum _ { k = 0 } ^ { n - 1 } \frac { 1 } { n } \delta _ { T ^ { n } x }$ ; confidence 0.751
237. ; ${\frak b} ^ { + }$ ; confidence 1.000
238. ; $\tilde{T} _ { n } ( L ) = \sum L ^ { \prime }$ ; confidence 1.000
239. ; $( t _ { 1 } , \dots , t _ { m } )$ ; confidence 0.751
240. ; $\langle x , y \rangle = - \varepsilon \langle y , x \rangle$ ; confidence 0.751
241. ; $\operatorname{P} \{ X _ { n } \in G \} \rightarrow \operatorname{P} \{ w \in G \}.$ ; confidence 1.000
242. ; $( f _ { i } : X \rightarrow G A _ { i } ) _ { I }$ ; confidence 0.751
243. ; $\operatorname{Hom}_\Lambda ( T , . ) : \cal T \rightarrow Y$ ; confidence 1.000
244. ; $+ \frac { 4 } { 3 } \pi ^ { - 1 / 2 } \int _ { C _ { N } } \phi _ { ; m } \rho _ { ; m } d y.$ ; confidence 0.750
245. ; $k j \in {\bf N} \cup \{ 0 \}$ ; confidence 1.000
246. ; $P ( z ) = A ( z , \dots , z )$ ; confidence 0.750
247. ; $T$ ; confidence 0.750
248. ; $f ( k ) = | f ( k ) | e ^ { - i \delta ( k ) },$ ; confidence 0.750
249. ; $\omega ( \beta ) / \sigma ^ { \prime } ( \beta )$ ; confidence 1.000
250. ; $M ^ { 4 }$ ; confidence 0.750
251. ; $\Sigma \cal V$ ; confidence 1.000
252. ; $G.$ ; confidence 0.750
253. ; $H _ { * } ^ { S }$ ; confidence 1.000
254. ; $\operatorname{SS} _ { e } = \sum _ { i = r + 1 } ^ { n } z _ { i } ^ { 2 }$ ; confidence 1.000
255. ; $g = - \frac { \omega _ { 1 } + i \omega _ { 2 } } { \omega _ { 3 } } = \frac { \omega _ { 3 } } { \omega _ { 1 } - i \omega _ { 2 } } , \eta = g ^ { - 1 } \omega _ { 3 }.$ ; confidence 0.750
256. ; $\Sigma ^ { i _ { 1 } , \ldots , i _ { r } } ( V , W )$ ; confidence 0.750
257. ; $R C \subseteq R N \subseteq Q _ { s } ( R )$ ; confidence 0.750
258. ; $\overset{\rightharpoonup} { x }$ ; confidence 1.000
259. ; $M = G / G_0$ ; confidence 1.000
260. ; $F _ { ,\nu } ^ { \mu \nu } = S ^ { \mu }$ ; confidence 1.000
261. ; $d \zeta = d \zeta _ { 1 } \wedge \ldots \wedge d \zeta _ { n }$ ; confidence 0.749
262. ; $\psi^'$ ; confidence 1.000
263. ; $r_+ ( k ) = O ( 1 / k )$ ; confidence 1.000
264. ; $\theta \approx 0.2784$ ; confidence 1.000
265. ; ${\cal A} u = \sum _ { j = 1 } ^ { m } a _ { j } ( x ) \frac { \partial u } { \partial x _ { j } } + c ( x ) u$ ; confidence 0.749
266. ; $T _ { \text{vert} } ^ { * } Y : = T ^ { * } Y / \pi ^ { * } ( T ^ { * } B )$ ; confidence 1.000
267. ; $\Lambda ( \lambda _ { 1 } , \dots , \lambda _ { n } )$ ; confidence 0.749
268. ; $\operatorname{Gal}( N / K )$ ; confidence 1.000
269. ; $x \in \Sigma ^ { i , j } ( f )$ ; confidence 0.749
270. ; $v _ { i } \in V$ ; confidence 0.749
271. ; $Y _ { t } = B _ { \operatorname { min } ( t , 1 )}$ ; confidence 1.000
272. ; $K _ { 1 } \# - K _ { 2 }$ ; confidence 0.749
273. ; $\{ x _ { n } \} \subset D ( A )$ ; confidence 0.748
274. ; $f ( 0 , k ) : = f ( k )$ ; confidence 0.748
275. ; $v _ { x x } = \lambda v$ ; confidence 0.748
276. ; $a ( x , \xi )$ ; confidence 1.000
277. ; ${\cal G} _ { 1 }$ ; confidence 1.000
278. ; $( M \backslash a , M , M / a )$ ; confidence 0.748
279. ; $\Sigma \Omega X \rightarrow X$ ; confidence 0.748
280. ; $u ^ { \prime } \in C ^ { \alpha } ( [ 0 , T ] ; X ) \cap B ( D _ { A } ( \alpha , \infty ) ),$ ; confidence 0.748
281. ; $[ a \square b ^ { * } , x \square y ^ { * } ] = \{ a b x \} \square y ^ { * } - x \square \{ y a b \}$ ; confidence 0.748
282. ; $p ( x ) = \sqrt { 1 - x ^ { 2 } } / \rho _ { m } ( x )$ ; confidence 0.748
283. ; $f | _ { K } \in A | _ { K }$ ; confidence 0.748
284. ; $\operatorname{ker} \delta _ { A , B } = \{ X \in B ( H ) : \delta _ { A , B } ( X ) = 0 \}$ ; confidence 1.000
285. ; $\alpha \in K$ ; confidence 0.748
286. ; $l\geq 0$ ; confidence 1.000
287. ; $= - \prod _ { j = 0 } ^ { n - 1 } ( I - w _ { j } v _ { j } ^ { T } ) B _ { 0 } ^ { - 1 } F ( x _ { n } ).$ ; confidence 0.747
288. ; $a \geq 0$ ; confidence 0.747
289. ; $\sigma _ { T } ( A , {\cal X} ) = \{ \lambda \in C ^ { n } : K ( A - \lambda , {\cal X} ) \text{ is not exact}\}.$ ; confidence 1.000
290. ; $M \subset X$ ; confidence 0.747
291. ; $D ^ { * }$ ; confidence 0.747
292. ; $\overline { B } = S ^ { - 1 } B = ( \overline { b } _ { 1 } , \dots , \overline { b } _ { m } )$ ; confidence 0.747
293. ; $\gamma \rightarrow \int _ { \gamma } \omega$ ; confidence 0.747
294. ; $l_ { \infty }$ ; confidence 1.000
295. ; $A \{ X _ { 1 } , \dots , X _ { s _ { i } } \}$ ; confidence 0.747
296. ; $\| G | ^ { 1 / 2 } x \|$ ; confidence 0.747
297. ; $g ( x ) = \sum _ { y : y \geq x } f ( y ) \Leftrightarrow f ( x ) = \sum _ { y : y \geq x } \mu ( x , y ) g ( y ).$ ; confidence 0.747
298. ; $\operatorname{rank} ( \Phi ) = n _ { 1 }$ ; confidence 1.000
299. ; $\psi _ { i - 1 } ( A _ { i } ^ { n } )$ ; confidence 0.747
300. ; $\lambda = ( \lambda _ { 1 } , \dots , \lambda _ { l } )$ ; confidence 0.747
Maximilian Janisch/latexlist/latex/NoNroff/43. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Maximilian_Janisch/latexlist/latex/NoNroff/43&oldid=45583