Difference between revisions of "User:Maximilian Janisch/latexlist/latex/NoNroff/36"
(AUTOMATIC EDIT of page 36 out of 77 with 300 lines: Updated image/latex database (currently 22833 images latexified; order by Confidence, ascending: False.) |
Rui Martins (talk | contribs) |
||
Line 1: | Line 1: | ||
== List == | == List == | ||
− | 1. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120100/b12010026.png ; $p _ { i } ^ { * } = p _ { i } - \eta \langle \eta , ( p _ { i } - p _ { n + 1 } ) \rangle$ ; confidence 0.870 | + | 1. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120100/b12010026.png ; $p _ { i } ^ { * } = p _ { i } - \eta \langle \eta , ( p _ { i } - p _ { n + 1 } ) \rangle,$ ; confidence 0.870 |
2. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120260/a120260110.png ; $s _ { i } \leq n$ ; confidence 0.870 | 2. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120260/a120260110.png ; $s _ { i } \leq n$ ; confidence 0.870 | ||
Line 8: | Line 8: | ||
4. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130180/d13018035.png ; $\| \hat { f } \| = \| f \| _ { 1 }$ ; confidence 0.870 | 4. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130180/d13018035.png ; $\| \hat { f } \| = \| f \| _ { 1 }$ ; confidence 0.870 | ||
− | 5. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130020/m1300205.png ; $\int _ { R ^ { 3 } } ( F _ { A } , F _ { A } ) + ( D _ { A } \phi , D _ { A } \phi )$ ; confidence 0.870 | + | 5. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130020/m1300205.png ; $\int _ { \mathbf{R} ^ { 3 } } ( F _ { A } , F _ { A } ) + ( D _ { A } \phi , D _ { A } \phi ).$ ; confidence 0.870 |
6. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120290/b1202906.png ; $\hat { R } _ { S } ^ { A }$ ; confidence 0.870 | 6. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120290/b1202906.png ; $\hat { R } _ { S } ^ { A }$ ; confidence 0.870 | ||
− | 7. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130110/v13011086.png ; $Cd = \frac { D } { \rho V ^ { 2 } b }$ ; confidence 0.870 | + | 7. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130110/v13011086.png ; $\operatorname{Cd} = \frac { D } { \rho V ^ { 2 } b },$ ; confidence 0.870 |
− | 8. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130110/d13011049.png ; $ | + | 8. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130110/d13011049.png ; $\gamma_4$ ; confidence 0.870 |
9. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120040/h12004039.png ; $G ( \omega _ { 1 } , c )$ ; confidence 0.870 | 9. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120040/h12004039.png ; $G ( \omega _ { 1 } , c )$ ; confidence 0.870 | ||
− | 10. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130010/d1300102.png ; $h ( x , y ) = \sum _ { k = 1 } ^ { n } f _ { k } ( x ) g _ { k } ( y )$ ; confidence 0.870 | + | 10. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130010/d1300102.png ; $h ( x , y ) = \sum _ { k = 1 } ^ { n } f _ { k } ( x ) g _ { k } ( y ).$ ; confidence 0.870 |
11. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120190/e120190120.png ; $S ( a , d ( a , x ) )$ ; confidence 0.870 | 11. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120190/e120190120.png ; $S ( a , d ( a , x ) )$ ; confidence 0.870 | ||
Line 26: | Line 26: | ||
13. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130120/b13012092.png ; $f \in S$ ; confidence 0.870 | 13. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130120/b13012092.png ; $f \in S$ ; confidence 0.870 | ||
− | 14. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120230/d12023030.png ; $\nabla _ { Z } R = R - Z R Z ^ { * }$ ; confidence 0.870 | + | 14. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120230/d12023030.png ; $\nabla _ { Z } R = R - Z R Z ^ { * }.$ ; confidence 0.870 |
15. https://www.encyclopediaofmath.org/legacyimages/l/l060/l060050/l06005065.png ; $X _ { 0 } x ^ { 0 } + \sum X _ { t } x _ { t } = 0$ ; confidence 0.870 | 15. https://www.encyclopediaofmath.org/legacyimages/l/l060/l060050/l06005065.png ; $X _ { 0 } x ^ { 0 } + \sum X _ { t } x _ { t } = 0$ ; confidence 0.870 | ||
Line 32: | Line 32: | ||
16. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130190/c13019031.png ; $\varphi ( t _ { 0 } , x ) \in L$ ; confidence 0.870 | 16. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130190/c13019031.png ; $\varphi ( t _ { 0 } , x ) \in L$ ; confidence 0.870 | ||
− | 17. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k05584014.png ; $( K _ { - } , - [ , . ] )$ ; confidence 0.869 | + | 17. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k05584014.png ; $( \mathcal{K} _ { - } , - [ . , . ] )$ ; confidence 0.869 |
18. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120020/j120020199.png ; $e ^ { i \vartheta } \mapsto k _ { \vartheta } ( z )$ ; confidence 0.869 | 18. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120020/j120020199.png ; $e ^ { i \vartheta } \mapsto k _ { \vartheta } ( z )$ ; confidence 0.869 | ||
− | 19. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120500/b12050045.png ; $ | + | 19. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120500/b12050045.png ; $\tau_x$ ; confidence 0.869 |
− | 20. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130540/s130540124.png ; $1 + a b \in R ^ { | + | 20. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130540/s130540124.png ; $1 + a b \in R ^ { * }$ ; confidence 0.869 |
21. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120070/t120070155.png ; $j _ { g } 2$ ; confidence 0.869 | 21. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120070/t120070155.png ; $j _ { g } 2$ ; confidence 0.869 | ||
− | 22. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011450/a011450154.png ; $M _ { g }$ ; confidence 0.869 | + | 22. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011450/a011450154.png ; $\mathcal{M} _ { g }$ ; confidence 0.869 |
− | 23. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120160/d12016017.png ; $f _ { 2 | + | 23. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120160/d12016017.png ; $f _ { 2 n + 1 } = f _ { 2 n } - h _ { n }$ ; confidence 0.869 |
− | 24. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120290/d12029061.png ; $| x - \frac { p } { | + | 24. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120290/d12029061.png ; $| x - \frac { p } { q_n } | < f ( q_n )$ ; confidence 0.869 |
25. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130220/b13022064.png ; $u \in W _ { p } ^ { m } ( \Omega )$ ; confidence 0.869 | 25. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130220/b13022064.png ; $u \in W _ { p } ^ { m } ( \Omega )$ ; confidence 0.869 | ||
− | 26. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120060/t120060121.png ; $ | + | 26. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120060/t120060121.png ; $(\text{const})Z ^ { 2 }$ ; confidence 0.869 |
27. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130070/i13007071.png ; $A ( \alpha ^ { \prime } , \alpha , k _ { 0 } )$ ; confidence 0.869 | 27. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130070/i13007071.png ; $A ( \alpha ^ { \prime } , \alpha , k _ { 0 } )$ ; confidence 0.869 | ||
− | 28. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130110/v13011052.png ; $\lambda = \frac { \Gamma } { 2 \pi l ^ { 2 } } ( B ^ { 2 } | + | 28. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130110/v13011052.png ; $\lambda = \frac { \Gamma } { 2 \pi l ^ { 2 } } ( B ^ { 2 } \mp \sqrt { A ^ { 2 } - C ^ { 2 } } ),$ ; confidence 0.869 |
− | 29. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040725.png ; $S _ { P }$ ; confidence 0.869 | + | 29. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040725.png ; $\mathcal{S} _ { P^{\prime} }$ ; confidence 0.869 |
30. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001011.png ; $\xi = I ( \partial _ { r } )$ ; confidence 0.869 | 30. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001011.png ; $\xi = I ( \partial _ { r } )$ ; confidence 0.869 | ||
Line 62: | Line 62: | ||
31. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013076.png ; $P ^ { ( l ) }$ ; confidence 0.869 | 31. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013076.png ; $P ^ { ( l ) }$ ; confidence 0.869 | ||
− | 32. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120050/e1200504.png ; $L \ | + | 32. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120050/e1200504.png ; $L \subseteq \Sigma ^ { * }$ ; confidence 0.869 |
33. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130070/i13007069.png ; $u ( x , y , k _ { 0 } )$ ; confidence 0.869 | 33. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130070/i13007069.png ; $u ( x , y , k _ { 0 } )$ ; confidence 0.869 | ||
Line 72: | Line 72: | ||
36. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120100/a1201006.png ; $y ( t ) = e ^ { - t A } x = S ( t ) x$ ; confidence 0.869 | 36. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120100/a1201006.png ; $y ( t ) = e ^ { - t A } x = S ( t ) x$ ; confidence 0.869 | ||
− | 37. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120060/l12006035.png ; $\equiv ( z - E _ { 0 } - \int _ { 0 } ^ { \infty } \frac { | ( V \phi | \lambda \rangle | ^ { 2 } } { z - \lambda } d \lambda ) ( \phi , G ( z ) \phi ) = 1$ ; confidence 0.869 | + | 37. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120060/l12006035.png ; $\equiv \left( z - E _ { 0 } - \int _ { 0 } ^ { \infty } \frac { | ( V \phi | \lambda \rangle | ^ { 2 } } { z - \lambda } d \lambda ) ( \phi , G ( z ) \phi \right) = 1.$ ; confidence 0.869 |
− | 38. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k05584033.png ; $K _ { \pm }$ ; confidence 0.869 | + | 38. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k05584033.png ; $\mathcal{K} _ { \pm }$ ; confidence 0.869 |
− | 39. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120060/t12006044.png ; $L ^ { 5 / 3 } ( R ^ { 3 } )$ ; confidence 0.869 | + | 39. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120060/t12006044.png ; $L ^ { 5 / 3 } ( \mathbf{R} ^ { 3 } )$ ; confidence 0.869 |
− | 40. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130100/t13010032.png ; $Y = \{ Y : \operatorname { Tor } _ { 1 } ^ { B } ( T , Y ) = 0 \}$ ; confidence 0.869 | + | 40. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130100/t13010032.png ; $\mathcal{Y} = \{ Y : \operatorname { Tor } _ { 1 } ^ { B } ( T , Y ) = 0 \}$ ; confidence 0.869 |
41. https://www.encyclopediaofmath.org/legacyimages/d/d110/d110080/d11008058.png ; $L | K$ ; confidence 0.869 | 41. https://www.encyclopediaofmath.org/legacyimages/d/d110/d110080/d11008058.png ; $L | K$ ; confidence 0.869 | ||
− | 42. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120090/b12009040.png ; $p _ { 1 } ( \xi ) = 1 + \beta _ { 1 } \xi + \beta _ { 2 } \xi ^ { 2 } + \ldots ( \operatorname { Re } p _ { 1 } ( \xi ) > 0 )$ ; confidence 0.869 | + | 42. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120090/b12009040.png ; $p _ { 1 } ( \xi ) = 1 + \beta _ { 1 } \xi + \beta _ { 2 } \xi ^ { 2 } + \ldots ( \operatorname { Re } p _ { 1 } ( \xi ) > 0 ),$ ; confidence 0.869 |
− | 43. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120130/a12013020.png ; $ | + | 43. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120130/a12013020.png ; $X_n$ ; confidence 0.869 |
44. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130020/i13002055.png ; $| y _ { 1 } | \geq \ldots \geq | y _ { m } |$ ; confidence 0.868 | 44. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130020/i13002055.png ; $| y _ { 1 } | \geq \ldots \geq | y _ { m } |$ ; confidence 0.868 | ||
− | 45. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120150/t12015025.png ; $\xi \in A \rightarrow \xi ^ { \# } \in A$ ; confidence 0.868 | + | 45. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120150/t12015025.png ; $\xi \in \mathcal{A} \rightarrow \xi ^ { \# } \in \mathcal{A}$ ; confidence 0.868 |
− | 46. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120040/g12004051.png ; $R ^ { n } \backslash \{ 0 \}$ ; confidence 0.868 | + | 46. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120040/g12004051.png ; $\mathbf{R} ^ { n } \backslash \{ 0 \}$ ; confidence 0.868 |
− | 47. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120240/d12024043.png ; $f + 1 / 2 tr$ ; confidence 0.868 | + | 47. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120240/d12024043.png ; $f + 1 / 2 \operatorname{tr}$ ; confidence 0.868 |
48. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120240/a12024038.png ; $C ^ { \infty }$ ; confidence 0.868 | 48. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120240/a12024038.png ; $C ^ { \infty }$ ; confidence 0.868 | ||
− | 49. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120010/q12001025.png ; $X _ { t + s } \sim X _ { s }$ ; confidence 0.868 | + | 49. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120010/q12001025.png ; $\mathcal{X} _ { t + s } \sim \mathcal{X} _ { s }$ ; confidence 0.868 |
− | 50. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130050/i1300501.png ; $q ( x ) \in L _ { 1,1 } : = \{ q : \int _ { - \infty } ^ { \infty } ( 1 + | x | ) | q ( x ) | d x < \infty , q = \overline { q } \}$ ; confidence 0.868 | + | 50. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130050/i1300501.png ; $q ( x ) \in L _ { 1,1 } : = \left\{ q : \int _ { - \infty } ^ { \infty } ( 1 + | x | ) | q ( x ) | d x < \infty , q = \overline { q } \right\}$ ; confidence 0.868 |
51. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055080/k05508016.png ; $( h _ { \mu \nu } )$ ; confidence 0.868 | 51. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055080/k05508016.png ; $( h _ { \mu \nu } )$ ; confidence 0.868 | ||
Line 106: | Line 106: | ||
53. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w1201105.png ; $( a ^ { w } u ) ( x ) =$ ; confidence 0.868 | 53. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w1201105.png ; $( a ^ { w } u ) ( x ) =$ ; confidence 0.868 | ||
− | 54. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130290/b13029046.png ; $R _ { p }$ ; confidence 0.868 | + | 54. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130290/b13029046.png ; $R _ { \mathcal{p} }$ ; confidence 0.868 |
− | 55. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120230/m1202304.png ; $\operatorname { inf } _ { x \in H } ( f ( x ) + ( 2 T ) ^ { - 1 } \| x \| ^ { 2 } )$ ; confidence 0.868 | + | 55. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120230/m1202304.png ; $\operatorname { inf } _ { x \in H } \left( f ( x ) + ( 2 T ) ^ { - 1 } \| x \| ^ { 2 } \right)$ ; confidence 0.868 |
56. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240226.png ; $\zeta _ { r + 1 } = \ldots = \zeta _ { n } = 0$ ; confidence 0.868 | 56. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240226.png ; $\zeta _ { r + 1 } = \ldots = \zeta _ { n } = 0$ ; confidence 0.868 | ||
− | 57. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t130050135.png ; $\sigma _ { T } ( A , H )$ ; confidence 0.868 | + | 57. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t130050135.png ; $\sigma _ { \text{T} } ( A , \mathcal{H} )$ ; confidence 0.868 |
58. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120230/e120230140.png ; $E ^ { k }$ ; confidence 0.868 | 58. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120230/e120230140.png ; $E ^ { k }$ ; confidence 0.868 | ||
Line 120: | Line 120: | ||
60. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120270/b12027073.png ; $U ( . )$ ; confidence 0.868 | 60. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120270/b12027073.png ; $U ( . )$ ; confidence 0.868 | ||
− | 61. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240209.png ; $ | + | 61. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240209.png ; $\Omega$ ; confidence 0.868 |
62. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120160/m12016065.png ; $\Omega _ { p _ { 1 } n _ { 1 } } ( t ^ { \prime } t ^ { \prime } )$ ; confidence 0.868 | 62. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120160/m12016065.png ; $\Omega _ { p _ { 1 } n _ { 1 } } ( t ^ { \prime } t ^ { \prime } )$ ; confidence 0.868 | ||
− | 63. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130010/b13001046.png ; $\ | + | 63. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130010/b13001046.png ; $\Gamma_{i}$ ; confidence 0.868 |
− | 64. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130070/m13007031.png ; $F ( f _ { l } )$ ; confidence 0.868 | + | 64. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130070/m13007031.png ; $\mathcal{F} ( f _ { l } )$ ; confidence 0.868 |
65. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130190/m13019037.png ; $m _ { i j } = \langle f _ { i } , f _ { j } \rangle$ ; confidence 0.868 | 65. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130190/m13019037.png ; $m _ { i j } = \langle f _ { i } , f _ { j } \rangle$ ; confidence 0.868 | ||
Line 152: | Line 152: | ||
76. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130230/m130230157.png ; $\mu ^ { * } K _ { X } = K _ { Y } + \sum _ { k } d _ { k } D _ { k }$ ; confidence 0.867 | 76. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130230/m130230157.png ; $\mu ^ { * } K _ { X } = K _ { Y } + \sum _ { k } d _ { k } D _ { k }$ ; confidence 0.867 | ||
− | 77. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130030/e13003084.png ; $ | + | 77. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130030/e13003084.png ; $GL_n$ ; confidence 0.867 |
78. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130070/c130070222.png ; $k ( C _ { i } )$ ; confidence 0.867 | 78. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130070/c130070222.png ; $k ( C _ { i } )$ ; confidence 0.867 | ||
− | 79. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130060/l13006050.png ; $\Delta _ { k } = \operatorname { sup } \{ | \Delta _ { k } ( s , t ) | : 0 \leq s _ { j } \leq t _ { j } < 1,1 \leq j \leq k \}$ ; confidence 0.867 | + | 79. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130060/l13006050.png ; $\Delta _ { k } = \operatorname { sup } \{ | \Delta _ { k } ( \mathbf{s} , \mathbf{t} ) | : 0 \leq s _ { j } \leq t _ { j } < 1,1 \leq j \leq k \},$ ; confidence 0.867 |
− | 80. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120040/b120040148.png ; $| x | + | 80. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120040/b120040148.png ; $\| x \| _ { \theta } =$ ; confidence 0.867 |
81. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120050/f12005019.png ; $w ^ { n } - 1$ ; confidence 0.867 | 81. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120050/f12005019.png ; $w ^ { n } - 1$ ; confidence 0.867 | ||
− | 82. https://www.encyclopediaofmath.org/legacyimages/h/h046/h046010/h046010144.png ; $ | + | 82. https://www.encyclopediaofmath.org/legacyimages/h/h046/h046010/h046010144.png ; $\geq 5$ ; confidence 0.867 |
83. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057000/l05700011.png ; $M N$ ; confidence 0.867 | 83. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057000/l05700011.png ; $M N$ ; confidence 0.867 | ||
− | 84. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120310/c12031053.png ; $E$ ; confidence 0.867 | + | 84. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120310/c12031053.png ; $\mathsf{E}$ ; confidence 0.867 |
85. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120020/d12002039.png ; $\overline { u } _ { 1 } \in U _ { 1 }$ ; confidence 0.867 | 85. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120020/d12002039.png ; $\overline { u } _ { 1 } \in U _ { 1 }$ ; confidence 0.867 | ||
Line 172: | Line 172: | ||
86. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130070/h13007033.png ; $X _ { i } \mapsto X _ { i } + \alpha _ { i } X _ { n }$ ; confidence 0.867 | 86. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130070/h13007033.png ; $X _ { i } \mapsto X _ { i } + \alpha _ { i } X _ { n }$ ; confidence 0.867 | ||
− | 87. https://www.encyclopediaofmath.org/legacyimages/l/l060/l060020/l06002013.png ; $\operatorname { lim } _ { l \rightarrow 0 } \Pi ( l ) = \frac { \pi } { 2 } , \quad \operatorname { lim } _ { l \rightarrow \infty } \Pi ( l ) = 0$ ; confidence 0.867 | + | 87. https://www.encyclopediaofmath.org/legacyimages/l/l060/l060020/l06002013.png ; $\operatorname { lim } _ { l \rightarrow 0 } \Pi ( l ) = \frac { \pi } { 2 } , \quad \operatorname { lim } _ { l \rightarrow \infty } \Pi ( l ) = 0.$ ; confidence 0.867 |
88. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130620/s130620181.png ; $q ( x ) = q _ { n }$ ; confidence 0.867 | 88. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130620/s130620181.png ; $q ( x ) = q _ { n }$ ; confidence 0.867 | ||
− | 89. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120190/d1201909.png ; $( E ( f ) + \| f \| _ { L _ { 2 } ( \Omega ) } ) ^ { 1 / 2 }$ ; confidence 0.867 | + | 89. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120190/d1201909.png ; $\left( E ( f ) + \| f \| _ { L _ { 2 } ( \Omega ) } \right) ^ { 1 / 2 }.$ ; confidence 0.867 |
− | 90. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035000/e03500092.png ; $H _ { \epsilon } ^ { \prime \prime } ( X ) = \operatorname { inf } \{ H ( U ) : U \in A _ { \epsilon } \}$ ; confidence 0.867 | + | 90. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035000/e03500092.png ; $\mathcal{H} _ { \epsilon } ^ { \prime \prime } ( X ) = \operatorname { inf } \{ H ( \mathcal{U} ) : \mathcal{U} \in \mathcal{A }_ { \epsilon } \},$ ; confidence 0.867 |
− | 91. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120340/s12034019.png ; $( N , \ | + | 91. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120340/s12034019.png ; $( N , \tilde{\omega} ) = ( M , \omega ) \times ( M , - \omega )$ ; confidence 0.867 |
92. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120190/l12019029.png ; $U = - x ^ { * } C x < 0$ ; confidence 0.867 | 92. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120190/l12019029.png ; $U = - x ^ { * } C x < 0$ ; confidence 0.867 | ||
Line 190: | Line 190: | ||
95. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120160/w1201601.png ; $W ( C )$ ; confidence 0.866 | 95. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120160/w1201601.png ; $W ( C )$ ; confidence 0.866 | ||
− | 96. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130040/j13004029.png ; $P _ { | + | 96. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130040/j13004029.png ; $P _ { 3_1 } = 2 v ^ { 2 } - v ^ { 4 } + v ^ { 2 } z ^ { 2 }$ ; confidence 0.866 |
97. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120050/t12005081.png ; $j ^ { s } ( f ) : V \rightarrow J ^ { s } ( V , W )$ ; confidence 0.866 | 97. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120050/t12005081.png ; $j ^ { s } ( f ) : V \rightarrow J ^ { s } ( V , W )$ ; confidence 0.866 | ||
− | 98. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l11004095.png ; $X \subseteq V$ ; confidence 0.866 | + | 98. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l11004095.png ; $\mathcal{X} \subseteq \mathcal{V}$ ; confidence 0.866 |
99. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110010/l11001068.png ; $P + P \subseteq P$ ; confidence 0.866 | 99. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110010/l11001068.png ; $P + P \subseteq P$ ; confidence 0.866 | ||
− | 100. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130060/c13006037.png ; $\operatorname { Aut } ( W ) = \cap _ { i = 1 } ^ { r } \operatorname { Aut } ( A _ { i } )$ ; confidence 0.866 | + | 100. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130060/c13006037.png ; $\operatorname { Aut } ( W ) = \cap _ { i = 1 } ^ { r } \operatorname { Aut } ( A _ { i } ).$ ; confidence 0.866 |
− | 101. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120210/c12021053.png ; $L _ { n } ^ { \prime } = L ( \Lambda _ { n } | P _ { n } ^ { \prime } )$ ; confidence 0.866 | + | 101. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120210/c12021053.png ; $\mathcal{L} _ { n } ^ { \prime } = \mathcal{L} ( \Lambda _ { n } | P _ { n } ^ { \prime } )$ ; confidence 0.866 |
102. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130260/c13026023.png ; $\langle d T , \phi \rangle = ( - 1 ) ^ { p + 1 } \langle T , d \phi \rangle$ ; confidence 0.866 | 102. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130260/c13026023.png ; $\langle d T , \phi \rangle = ( - 1 ) ^ { p + 1 } \langle T , d \phi \rangle$ ; confidence 0.866 | ||
− | 103. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130010/r1300108.png ; $b _ { 1 } f _ { 1 } + \ldots + b _ { m } f _ { m } = f ^ { \mu }$ ; confidence 0.866 | + | 103. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130010/r1300108.png ; $b _ { 1 } f _ { 1 } + \ldots + b _ { m } f _ { m } = f ^ { \mu },$ ; confidence 0.866 |
104. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a11042095.png ; $C ^ { * }$ ; confidence 0.866 | 104. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a11042095.png ; $C ^ { * }$ ; confidence 0.866 | ||
Line 210: | Line 210: | ||
105. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130130/d1301309.png ; $z = r \operatorname { cos } \theta$ ; confidence 0.866 | 105. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130130/d1301309.png ; $z = r \operatorname { cos } \theta$ ; confidence 0.866 | ||
− | 106. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120230/s1202309.png ; $O ( r )$ ; confidence 0.866 | + | 106. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120230/s1202309.png ; $\mathcal{O} ( r )$ ; confidence 0.866 |
107. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120240/s12024057.png ; $x _ { i } ^ { n + 1 }$ ; confidence 0.866 | 107. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120240/s12024057.png ; $x _ { i } ^ { n + 1 }$ ; confidence 0.866 | ||
Line 216: | Line 216: | ||
108. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120080/f120080179.png ; $P M _ { q } ( G )$ ; confidence 0.866 | 108. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120080/f120080179.png ; $P M _ { q } ( G )$ ; confidence 0.866 | ||
− | 109. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130100/p13010061.png ; $\pi _ { k } ( C ^ { n } \backslash K ) = 0,1 \leq k \leq n - 1$ ; confidence 0.866 | + | 109. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130100/p13010061.png ; $\pi _ { k } ( \mathbf{C} ^ { n } \backslash K ) = 0,1 \leq k \leq n - 1.$ ; confidence 0.866 |
110. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130180/m130180105.png ; $V - \operatorname { dim } U$ ; confidence 0.866 | 110. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130180/m130180105.png ; $V - \operatorname { dim } U$ ; confidence 0.866 | ||
Line 222: | Line 222: | ||
111. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130090/h13009061.png ; $\langle b , t : t ^ { - 1 } b ^ { 2 } t = b ^ { 3 } \rangle$ ; confidence 0.866 | 111. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130090/h13009061.png ; $\langle b , t : t ^ { - 1 } b ^ { 2 } t = b ^ { 3 } \rangle$ ; confidence 0.866 | ||
− | 112. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120050/l12005014.png ; $f \in L _ { 2 } ( R _ { + } )$ ; confidence 0.866 | + | 112. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120050/l12005014.png ; $f \in L _ { 2 } ( \mathbf{R} _ { + } )$ ; confidence 0.866 |
− | 113. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120020/n12002018.png ; $\theta \mapsto k ^ { \prime } \mu ( \theta ) , \Theta ( \mu ) \rightarrow E$ ; confidence 0.866 | + | 113. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120020/n12002018.png ; $\theta \mapsto k ^ { \prime } \mu ( \theta ) , \Theta ( \mu ) \rightarrow E,$ ; confidence 0.866 |
114. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130440/s13044020.png ; $E ^ { - k } ( D X )$ ; confidence 0.866 | 114. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130440/s13044020.png ; $E ^ { - k } ( D X )$ ; confidence 0.866 | ||
Line 232: | Line 232: | ||
116. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120080/k12008023.png ; $Q ( \partial / \partial x )$ ; confidence 0.865 | 116. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120080/k12008023.png ; $Q ( \partial / \partial x )$ ; confidence 0.865 | ||
− | 117. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120070/e12007059.png ; $f \in \{ \Gamma , k + 2 , v \}$ ; confidence 0.865 | + | 117. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120070/e12007059.png ; $f \in \{ \Gamma , k + 2 , \mathbf{v} \}$ ; confidence 0.865 |
118. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130080/r13008069.png ; $\{ p _ { 1 } , \dots , p _ { n } \} \in E$ ; confidence 0.865 | 118. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130080/r13008069.png ; $\{ p _ { 1 } , \dots , p _ { n } \} \in E$ ; confidence 0.865 | ||
Line 240: | Line 240: | ||
120. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130100/f130100153.png ; $\operatorname { Res } _ { H } v = u$ ; confidence 0.865 | 120. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130100/f130100153.png ; $\operatorname { Res } _ { H } v = u$ ; confidence 0.865 | ||
− | 121. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120430/b12043050.png ; $[ m ] q$ ; confidence 0.865 | + | 121. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120430/b12043050.png ; $[ m ]_{ q}$ ; confidence 0.865 |
− | 122. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120240/a12024026.png ; $\delta | + | 122. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120240/a12024026.png ; $\delta _{Z}$ ; confidence 0.865 |
− | 123. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031790/d03179089.png ; $k | + | 123. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031790/d03179089.png ; $k \leq r$ ; confidence 0.865 |
124. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130040/j13004072.png ; $P _ { L } ( v , z ) = \sum _ { i = e } ^ { E } a _ { i } ( z ) v ^ { i }$ ; confidence 0.865 | 124. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130040/j13004072.png ; $P _ { L } ( v , z ) = \sum _ { i = e } ^ { E } a _ { i } ( z ) v ^ { i }$ ; confidence 0.865 | ||
Line 256: | Line 256: | ||
128. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130190/b13019037.png ; $x = M _ { 2 }$ ; confidence 0.865 | 128. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130190/b13019037.png ; $x = M _ { 2 }$ ; confidence 0.865 | ||
− | 129. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120110/m12011066.png ; $ | + | 129. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120110/m12011066.png ; $H_{ *} ( \overline { M } )$ ; confidence 0.865 |
− | 130. https://www.encyclopediaofmath.org/legacyimages/x/x120/x120020/x1200208.png ; $ | + | 130. https://www.encyclopediaofmath.org/legacyimages/x/x120/x120020/x1200208.png ; $\hat{\delta}$ ; confidence 0.865 |
− | 131. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130040/s13004042.png ; $ | + | 131. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130040/s13004042.png ; $X_{g}$ ; confidence 0.865 |
− | 132. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130090/f13009028.png ; $U _ { n + 1 } ( x , y ) = \sum _ { j = 0 } ^ { [ n / 2 ] } \frac { ( n - j ) ! } { j ! ( n - 2 j ) ! } x ^ { n - 2 j } y ^ { j }$ ; confidence 0.865 | + | 132. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130090/f13009028.png ; $U _ { n + 1 } ( x , y ) = \sum _ { j = 0 } ^ { [ n / 2 ] } \frac { ( n - j ) ! } { j ! ( n - 2 j ) ! } x ^ { n - 2 j } y ^ { j },$ ; confidence 0.865 |
133. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120070/t120070141.png ; $- ( x , \omega ( x ) ) > 0$ ; confidence 0.865 | 133. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120070/t120070141.png ; $- ( x , \omega ( x ) ) > 0$ ; confidence 0.865 | ||
− | 134. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130110/z13011026.png ; $ | + | 134. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130110/z13011026.png ; $f_{ ( 1 , n )} \geq \ldots \geq f _{( \mu _ { n } , n )}$ ; confidence 0.865 |
− | 135. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130060/o13006042.png ; $A _ { k } = \left( \begin{array} { c c } { A _ { k } ^ { \prime } } & { 0 } \\ { i \Phi ^ { \prime \prime } \sigma _ { k } \Phi ^ { \prime } } & { A _ { k } ^ { \prime \prime } } \end{array} \right) ( k = 1,2 )$ ; confidence 0.865 | + | 135. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130060/o13006042.png ; $A _ { k } = \left( \begin{array} { c c } { A _ { k } ^ { \prime } } & { 0 } \\ { i \Phi ^ { \prime \prime } \sigma _ { k } \Phi ^ { \prime } } & { A _ { k } ^ { \prime \prime } } \end{array} \right) ( k = 1,2 ),$ ; confidence 0.865 |
− | 136. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023530/c023530203.png ; $X | + | 136. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023530/c023530203.png ; $\operatorname{dim} X \leq n$ ; confidence 0.865 |
− | 137. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120510/b12051060.png ; $s = x _ { + } - x _ { c } , \quad y = \nabla f ( x _ { + } ) - \nabla f ( x _ { c } )$ ; confidence 0.865 | + | 137. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120510/b12051060.png ; $s = x _ { + } - x _ { c } , \quad y = \nabla f ( x _ { + } ) - \nabla f ( x _ { c } ).$ ; confidence 0.865 |
− | 138. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240369.png ; $M _ { H } M _ { E } ^ { - 1 }$ ; confidence 0.865 | + | 138. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240369.png ; $\mathbf{M} _ { \mathcal{H} } \mathbf{M} _ { \mathsf{E} } ^ { - 1 }$ ; confidence 0.865 |
− | 139. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120250/a12025071.png ; $PG ( n , q )$ ; confidence 0.865 | + | 139. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120250/a12025071.png ; $\operatorname{PG} ( n , q )$ ; confidence 0.865 |
− | 140. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120070/c12007020.png ; $d ^ { | + | 140. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120070/c12007020.png ; $d ^ { n }$ ; confidence 0.865 |
− | 141. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055070/k05507080.png ; $SU ( N )$ ; confidence 0.865 | + | 141. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055070/k05507080.png ; $\operatorname{SU} ( N )$ ; confidence 0.865 |
− | 142. https://www.encyclopediaofmath.org/legacyimages/r/r082/r082320/r08232033.png ; $\sigma _ { | + | 142. https://www.encyclopediaofmath.org/legacyimages/r/r082/r082320/r08232033.png ; $\sigma _ { n } ( \rho )$ ; confidence 0.865 |
143. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120020/j120020142.png ; $X _ { \infty } = \operatorname { lim } _ { t \rightarrow \infty } X _ { t }$ ; confidence 0.864 | 143. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120020/j120020142.png ; $X _ { \infty } = \operatorname { lim } _ { t \rightarrow \infty } X _ { t }$ ; confidence 0.864 | ||
− | 144. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130370/s13037016.png ; $d ( x , y ) = \operatorname { inf } _ { \lambda \in \Lambda } \operatorname { max } \{ \| \lambda \| , \operatorname { sup } _ { 0 \leq t \leq 1 } | x ( t ) - y ( \lambda ( t ) ) | \}$ ; confidence 0.864 | + | 144. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130370/s13037016.png ; $d ( x , y ) = \operatorname { inf } _ { \lambda \in \Lambda } \operatorname { max } \left\{ \| \lambda \| , \operatorname { sup } _ { 0 \leq t \leq 1 } | x ( t ) - y ( \lambda ( t ) ) | \right\}.$ ; confidence 0.864 |
145. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120140/b12014057.png ; $2 t$ ; confidence 0.864 | 145. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120140/b12014057.png ; $2 t$ ; confidence 0.864 | ||
− | 146. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130090/a13009014.png ; $H ^ { 1 } ( X , Z _ { 2 } ) = 0$ ; confidence 0.864 | + | 146. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130090/a13009014.png ; $H ^ { 1 } ( X , \mathbf{Z} _ { 2 } ) = 0$ ; confidence 0.864 |
− | 147. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120050/t1200506.png ; $C ^ { \infty }$ ; confidence 0.864 | + | 147. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120050/t1200506.png ; $\mathcal{C} ^ { \infty }$ ; confidence 0.864 |
148. https://www.encyclopediaofmath.org/legacyimages/b/b016/b016990/b01699071.png ; $M$ ; confidence 0.864 | 148. https://www.encyclopediaofmath.org/legacyimages/b/b016/b016990/b01699071.png ; $M$ ; confidence 0.864 | ||
− | 149. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120160/d12016051.png ; $\ | + | 149. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120160/d12016051.png ; $\pi_{ 0} ( S )$ ; confidence 0.864 |
150. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130170/b13017031.png ; $t < T$ ; confidence 0.864 | 150. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130170/b13017031.png ; $t < T$ ; confidence 0.864 | ||
− | 151. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120360/b12036012.png ; $P ( | + | 151. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120360/b12036012.png ; $\mathsf{P} ( E_l )$ ; confidence 0.864 |
152. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240240.png ; $\sigma ^ { 2 }$ ; confidence 0.864 | 152. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240240.png ; $\sigma ^ { 2 }$ ; confidence 0.864 | ||
− | 153. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130510/s130510139.png ; $L \subset Z ^ { 0 }$ ; confidence 0.864 | + | 153. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130510/s130510139.png ; $L \subset \mathbf{Z} ^ { 0 }$ ; confidence 0.864 |
154. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120130/p12013022.png ; $S$ ; confidence 0.864 | 154. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120130/p12013022.png ; $S$ ; confidence 0.864 | ||
− | 155. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130070/i1300702.png ; $u = e ^ { i k \alpha x } + v , \alpha \in S ^ { 2 }$ ; confidence 0.864 | + | 155. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130070/i1300702.png ; $u = e ^ { i k \alpha x } + v , \alpha \in S ^ { 2 },$ ; confidence 0.864 |
− | 156. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130540/s13054048.png ; $ | + | 156. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130540/s13054048.png ; $a + b = 1$ ; confidence 0.864 |
− | 157. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120060/l12006058.png ; $W ( \zeta ) = | ( V \phi | \zeta \rangle | ^ { 2 }$ ; confidence 0.864 | + | 157. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120060/l12006058.png ; $W ( \zeta ) = | ( V \phi \ | \ \zeta \rangle | ^ { 2 }$ ; confidence 0.864 |
− | 158. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120120/l12012084.png ; $O _ { K } = Z$ ; confidence 0.864 | + | 158. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120120/l12012084.png ; $O _ { K } = \mathbf{Z}$ ; confidence 0.864 |
− | 159. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120130/t12013073.png ; $\tau _ { | + | 159. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120130/t12013073.png ; $\tau _ { n } ( t ) = \tau _ { 0 } ( t + n w )$ ; confidence 0.864 |
− | 160. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130250/m13025070.png ; $M _ { 4 } ( R ^ { n } ) = \{$ ; confidence 0.864 | + | 160. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130250/m13025070.png ; $\mathcal{M} _ { 4 } ( \mathbf{R} ^ { n } ) = \{$ ; confidence 0.864 |
− | 161. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120040/s120040115.png ; $\sum _ { \lambda } s _ { \lambda } ( x ) s _ { \lambda } ( y ) = \prod _ { i , j = 1 } ^ { l } \frac { 1 } { 1 - x _ { i } y _ { j } }$ ; confidence 0.864 | + | 161. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120040/s120040115.png ; $\sum _ { \lambda } s _ { \lambda } ( \mathbf{x} ) s _ { \lambda } ( \mathbf{y} ) = \prod _ { i , j = 1 } ^ { l } \frac { 1 } { 1 - x _ { i } y _ { j } }$ ; confidence 0.864 |
− | 162. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130060/g13006035.png ; $x \neq | + | 162. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130060/g13006035.png ; $ \mathbf{x} \neq \mathbf{O}$ ; confidence 0.864 |
− | 163. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180278.png ; $\in \otimes ^ { p } E$ ; confidence 0.864 | + | 163. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180278.png ; $\in \otimes ^ { p } \mathcal{E}$ ; confidence 0.864 |
164. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130010/l13001016.png ; $S _ { N B }$ ; confidence 0.864 | 164. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130010/l13001016.png ; $S _ { N B }$ ; confidence 0.864 | ||
Line 338: | Line 338: | ||
169. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120110/f120110150.png ; $K \cap S _ { \infty } ^ { n - 1 }$ ; confidence 0.863 | 169. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120110/f120110150.png ; $K \cap S _ { \infty } ^ { n - 1 }$ ; confidence 0.863 | ||
− | 170. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130040/j13004020.png ; $( L )$ ; confidence 0.863 | + | 170. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130040/j13004020.png ; $\operatorname { com}( L )$ ; confidence 0.863 |
171. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120250/s12025022.png ; $P _ { n } ( x ) = T _ { n } ( x )$ ; confidence 0.863 | 171. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120250/s12025022.png ; $P _ { n } ( x ) = T _ { n } ( x )$ ; confidence 0.863 | ||
− | 172. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240544.png ; $ | + | 172. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240544.png ; $\mathbf{Z}0$ ; confidence 0.863 |
− | 173. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130010/b13001055.png ; $\{ U _ { | + | 173. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130010/b13001055.png ; $\{ U _ { s } \}$ ; confidence 0.863 |
174. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120120/p12012014.png ; $M$ ; confidence 0.863 | 174. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120120/p12012014.png ; $M$ ; confidence 0.863 | ||
− | 175. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120040/c12004069.png ; $f ( z ) = \operatorname { lim } _ { m \rightarrow \infty } \int _ { \Gamma } f ( \zeta ) | + | 175. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120040/c12004069.png ; $f ( z ) = \operatorname { lim } _ { m \rightarrow \infty } \int _ { \Gamma } f ( \zeta ) \times$ ; confidence 0.863 |
176. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120150/p12015033.png ; $\beta$ ; confidence 0.863 | 176. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120150/p12015033.png ; $\beta$ ; confidence 0.863 | ||
− | 177. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130010/o13001028.png ; $\operatorname { Im } A ( \alpha , \alpha , k ) = \frac { k } { 4 \pi } \int _ { S ^ { 2 } } | f ( \alpha , \beta , k ) | ^ { 2 } d \beta : = \frac { k \sigma ( \alpha ) } { 4 \pi }$ ; confidence 0.863 | + | 177. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130010/o13001028.png ; $\operatorname { Im } A ( \alpha , \alpha , k ) = \frac { k } { 4 \pi } \int _ { S ^ { 2 } } | f ( \alpha , \beta , k ) | ^ { 2 } d \beta : = \frac { k \sigma ( \alpha ) } { 4 \pi },$ ; confidence 0.863 |
178. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120220/a12022013.png ; $T : X \rightarrow Y$ ; confidence 0.863 | 178. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120220/a12022013.png ; $T : X \rightarrow Y$ ; confidence 0.863 | ||
Line 358: | Line 358: | ||
179. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120050/a12005085.png ; $0 \leq t _ { 1 } \leq \ldots \leq t _ { k } \leq T$ ; confidence 0.863 | 179. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120050/a12005085.png ; $0 \leq t _ { 1 } \leq \ldots \leq t _ { k } \leq T$ ; confidence 0.863 | ||
− | 180. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120110/k12011023.png ; $GL ( \infty )$ ; confidence 0.863 | + | 180. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120110/k12011023.png ; $\operatorname{GL} ( \infty )$ ; confidence 0.863 |
181. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120140/d12014020.png ; $T _ { N } ( x ) = \operatorname { cos } ( n \operatorname { arccos } x )$ ; confidence 0.863 | 181. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120140/d12014020.png ; $T _ { N } ( x ) = \operatorname { cos } ( n \operatorname { arccos } x )$ ; confidence 0.863 | ||
− | 182. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130070/r13007011.png ; $( f ( . ) , K ( , y ) ) = f ( y )$ ; confidence 0.863 | + | 182. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130070/r13007011.png ; $( f ( . ) , K (. , y ) ) = f ( y )$ ; confidence 0.863 |
− | 183. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130180/a130180129.png ; $\mathfrak { P } ( U ) = \langle P ( U ) , \cap , \cup , - \rangle$ ; confidence 0.863 | + | 183. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130180/a130180129.png ; $\mathfrak { P } ( U ) = \langle \mathcal{P} ( U ) , \cap , \cup , - \rangle$ ; confidence 0.863 |
− | 184. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130150/c1301503.png ; $D ( \Omega )$ ; confidence 0.863 | + | 184. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130150/c1301503.png ; $\mathcal{D} ( \Omega )$ ; confidence 0.863 |
185. https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f110160186.png ; $P ( T , \omega ) = \{ P ( T , l ) : l \geq 0 \}$ ; confidence 0.863 | 185. https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f110160186.png ; $P ( T , \omega ) = \{ P ( T , l ) : l \geq 0 \}$ ; confidence 0.863 | ||
Line 372: | Line 372: | ||
186. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012550/a01255063.png ; $a ^ { * } ( f )$ ; confidence 0.863 | 186. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012550/a01255063.png ; $a ^ { * } ( f )$ ; confidence 0.863 | ||
− | 187. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120340/b12034036.png ; $1 - \sqrt [ \frac { 2 } { 3 } ] { n } < B _ { n } ( D )$ ; confidence 0.863 | + | 187. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120340/b12034036.png ; $1 - \sqrt [ \frac { 2 } { 3 } ] { n } < B _ { n } ( D ).$ ; confidence 0.863 |
188. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120120/h120120144.png ; $\hat { \pi } : \overline { B } ( H ( Y ) ) \rightarrow Y$ ; confidence 0.863 | 188. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120120/h120120144.png ; $\hat { \pi } : \overline { B } ( H ( Y ) ) \rightarrow Y$ ; confidence 0.863 | ||
Line 384: | Line 384: | ||
192. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011930/a01193025.png ; $V _ { + }$ ; confidence 0.862 | 192. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011930/a01193025.png ; $V _ { + }$ ; confidence 0.862 | ||
− | 193. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120160/a12016074.png ; $\frac { c _ { 1 } } { 1 - \lambda }$ ; confidence 0.862 | + | 193. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120160/a12016074.png ; $\frac { c _ { 1 } } { 1 - \lambda }.$ ; confidence 0.862 |
194. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022110/c0221109.png ; $\approx \alpha$ ; confidence 0.862 | 194. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022110/c0221109.png ; $\approx \alpha$ ; confidence 0.862 | ||
Line 390: | Line 390: | ||
195. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120310/b12031013.png ; $M _ { R } ^ { \delta }$ ; confidence 0.862 | 195. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120310/b12031013.png ; $M _ { R } ^ { \delta }$ ; confidence 0.862 | ||
− | 196. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130100/c1301009.png ; $( C ) \int _ { A } f d m = \int _ { 0 } ^ { + \infty } m ( A \ | + | 196. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130100/c1301009.png ; $( C ) \int _ { A } f d m = \int _ { 0 } ^ { + \infty } m ( A \bigcap F _ { \alpha } ) d \alpha,$ ; confidence 0.862 |
197. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011840/a01184028.png ; $K ( x , y )$ ; confidence 0.862 | 197. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011840/a01184028.png ; $K ( x , y )$ ; confidence 0.862 | ||
− | 198. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130070/b13007078.png ; $m | = | n$ ; confidence 0.862 | + | 198. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130070/b13007078.png ; $|m | = | n|$ ; confidence 0.862 |
− | 199. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130060/o13006027.png ; $E = \overline { ( A _ { 1 } - A _ { 1 } ^ { * } ) H + ( A _ { 2 } - A _ { 2 } ^ { * } ) H , } \Phi = P _ { E }$ ; confidence 0.862 | + | 199. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130060/o13006027.png ; $\mathcal{E} = \overline { ( A _ { 1 } - A _ { 1 } ^ { * } ) \mathcal{H} + ( A _ { 2 } - A _ { 2 } ^ { * } ) \mathcal{H} , } \Phi = P _ { \mathcal{E} },$ ; confidence 0.862 |
− | 200. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120040/g120040181.png ; $G ^ { s } ( T ^ { n } ; T )$ ; confidence 0.862 | + | 200. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120040/g120040181.png ; $G ^ { s } ( \mathcal{T} ^ { n } ; T )$ ; confidence 0.862 |
− | 201. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130040/l1300409.png ; $[ x y [ u v w ] ] = [ [ x y u ] v w ] + [ u [ x y v ] w ] + [ u v [ x y w ] ]$ ; confidence 0.862 | + | 201. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130040/l1300409.png ; $[ x y [ u v w ] ] = [ [ x y u ] v w ] + [ u [ x y v ] w ] + [ u v [ x y w ] ],$ ; confidence 0.862 |
− | 202. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130370/s1303704.png ; $x ( t + ) = \operatorname { lim } _ { s \downarrow t } x ( s )$ ; confidence 0.862 | + | 202. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130370/s1303704.png ; $x ( t + ) = \operatorname { lim } _ { s \downarrow t } x ( s ) \ \text{exits},$ ; confidence 0.862 |
− | 203. https://www.encyclopediaofmath.org/legacyimages/l/l059/l059080/l05908065.png ; $k _ { | + | 203. https://www.encyclopediaofmath.org/legacyimages/l/l059/l059080/l05908065.png ; $k _ { \nu }$ ; confidence 0.862 |
− | 204. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120040/c12004027.png ; $f ( z ) = \operatorname { lim } _ { m \rightarrow \infty } \frac { 1 } { 2 \pi i } \int _ { \Gamma } f ( \zeta ) ( \frac { z } { \zeta } ) ^ { m } \frac { d \zeta } { \zeta - z }$ ; confidence 0.862 | + | 204. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120040/c12004027.png ; $f ( z ) = \operatorname { lim } _ { m \rightarrow \infty } \frac { 1 } { 2 \pi i } \int _ { \Gamma } f ( \zeta ) \left( \frac { z } { \zeta } \right) ^ { m } \frac { d \zeta } { \zeta - z }.$ ; confidence 0.862 |
− | 205. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130120/w1301209.png ; $A \in CL ( X )$ ; confidence 0.862 | + | 205. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130120/w1301209.png ; $A \in \operatorname{CL} ( X )$ ; confidence 0.862 |
− | 206. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130010/z1300109.png ; $Z ( | + | 206. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130010/z1300109.png ; $Z ( a ^ { n } ) = \sum _ { j = 0 } ^ { \infty } a ^ { j } z ^ { - j } = \frac { z } { z - a } \text { for } | z | > 1.$ ; confidence 0.862 |
207. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120070/c12007030.png ; $M \rightarrow c M$ ; confidence 0.862 | 207. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120070/c12007030.png ; $M \rightarrow c M$ ; confidence 0.862 | ||
− | 208. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130230/m13023018.png ; $ | + | 208. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130230/m13023018.png ; $Z _ { 1 }$ ; confidence 0.862 |
209. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130050/i13005055.png ; $q ( x ) \in L _ { 1,1 }$ ; confidence 0.862 | 209. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130050/i13005055.png ; $q ( x ) \in L _ { 1,1 }$ ; confidence 0.862 | ||
− | 210. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130150/t13015038.png ; $[ T _ { f _ { 1 } } , T _ { f _ { 2 } } ] \notin K ( H ^ { 2 } ( S ) )$ ; confidence 0.862 | + | 210. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130150/t13015038.png ; $[ T _ { f _ { 1 } } , T _ { f _ { 2 } } ] \notin \mathcal{K} ( H ^ { 2 } ( S ) ),$ ; confidence 0.862 |
211. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120080/f120080139.png ; $G = \operatorname { Sp } ( 1 , n )$ ; confidence 0.862 | 211. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120080/f120080139.png ; $G = \operatorname { Sp } ( 1 , n )$ ; confidence 0.862 | ||
Line 426: | Line 426: | ||
213. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012970/a012970236.png ; $f \in X$ ; confidence 0.862 | 213. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012970/a012970236.png ; $f \in X$ ; confidence 0.862 | ||
− | 214. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120420/b120420154.png ; $D ( C )$ ; confidence 0.862 | + | 214. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120420/b120420154.png ; $D ( \mathcal{C} )$ ; confidence 0.862 |
− | 215. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120060/t12006083.png ; $H = - \sum _ { i = 1 } ^ { N } [ \Delta _ { i } + V ( x _ { i } ) ] + \sum _ { 1 \leq i < j \leq N } | x _ { i } - x _ { j } | ^ { - 1 } + U$ ; confidence 0.862 | + | 215. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120060/t12006083.png ; $H = - \sum _ { i = 1 } ^ { N } [ \Delta _ { i } + V ( x _ { i } ) ] + \sum _ { 1 \leq i < j \leq N } | x _ { i } - x _ { j } | ^ { - 1 } + U,$ ; confidence 0.862 |
216. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130120/r13012012.png ; $x _ { 1 } \prec y _ { 1 }$ ; confidence 0.862 | 216. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130120/r13012012.png ; $x _ { 1 } \prec y _ { 1 }$ ; confidence 0.862 | ||
− | 217. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120340/b12034035.png ; $B _ { | + | 217. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120340/b12034035.png ; $B _ { n } ( D ) = K _ { n }$ ; confidence 0.862 |
218. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130250/m13025045.png ; $F ( \varphi v )$ ; confidence 0.862 | 218. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130250/m13025045.png ; $F ( \varphi v )$ ; confidence 0.862 | ||
Line 440: | Line 440: | ||
220. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120520/b12052062.png ; $B _ { 0 } = I$ ; confidence 0.861 | 220. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120520/b12052062.png ; $B _ { 0 } = I$ ; confidence 0.861 | ||
− | 221. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130070/a13007055.png ; $A _ { \alpha } ( x ) = \operatorname { card } \{ n \leq x :$ ; confidence 0.861 | + | 221. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130070/a13007055.png ; $A _ { \alpha } ( x ) = \operatorname { card } \{ n \leq x \ \text{primitive} \ \alpha \ \square \ \text{abundant} \} :$ ; confidence 0.861 |
222. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130020/m13002011.png ; $F _ { A }$ ; confidence 0.861 | 222. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130020/m13002011.png ; $F _ { A }$ ; confidence 0.861 | ||
Line 446: | Line 446: | ||
223. https://www.encyclopediaofmath.org/legacyimages/r/r110/r110110/r11011032.png ; $\{ x \in X : x \varphi \neq x \}$ ; confidence 0.861 | 223. https://www.encyclopediaofmath.org/legacyimages/r/r110/r110110/r11011032.png ; $\{ x \in X : x \varphi \neq x \}$ ; confidence 0.861 | ||
− | 224. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840302.png ; $\overline { D } \subset \{ z : | z | < 1 \}$ ; confidence 0.861 | + | 224. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840302.png ; $\overline { \mathcal{D} } \subset \{ z : | z | < 1 \}$ ; confidence 0.861 |
225. https://www.encyclopediaofmath.org/legacyimages/d/d110/d110080/d11008038.png ; $w ^ { H } | v ^ { H }$ ; confidence 0.861 | 225. https://www.encyclopediaofmath.org/legacyimages/d/d110/d110080/d11008038.png ; $w ^ { H } | v ^ { H }$ ; confidence 0.861 | ||
− | 226. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120060/l12006061.png ; $\operatorname { Im } h ^ { I I } ( z ) = \operatorname { Im } z ( \int _ { 0 } ^ { \infty } \frac { | ( V \phi | \lambda \rangle | ^ { 2 } } { | z - \lambda | ^ { 2 } } d \lambda ) + 2 \pi \operatorname { Re } W ( z )$ ; confidence 0.861 | + | 226. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120060/l12006061.png ; $\operatorname { Im } h ^ { I I } ( z ) = \operatorname { Im } z \left( \int _ { 0 } ^ { \infty } \frac { | ( V \phi | \lambda \rangle | ^ { 2 } } { | z - \lambda | ^ { 2 } } d \lambda \right) + 2 \pi \operatorname { Re } W ( z );$ ; confidence 0.861 |
227. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130300/b13030047.png ; $| B ( m , 6 ) | = 2 ^ { \alpha } 3 ^ { C _ { \beta } ^ { 1 } + C _ { \beta } ^ { 2 } + C _ { \beta } ^ { 3 } }$ ; confidence 0.861 | 227. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130300/b13030047.png ; $| B ( m , 6 ) | = 2 ^ { \alpha } 3 ^ { C _ { \beta } ^ { 1 } + C _ { \beta } ^ { 2 } + C _ { \beta } ^ { 3 } }$ ; confidence 0.861 | ||
Line 462: | Line 462: | ||
231. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110030/l11003012.png ; $d P / d \mu$ ; confidence 0.861 | 231. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110030/l11003012.png ; $d P / d \mu$ ; confidence 0.861 | ||
− | 232. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120430/b12043037.png ; $A _ { q }$ ; confidence 0.861 | + | 232. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120430/b12043037.png ; $\mathcal{A} _ { q }$ ; confidence 0.861 |
− | 233. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130060/b13006091.png ; $| ( \mu I - A ) ^ { - 1 } \| = \| V ( \mu I - A ) ^ { - 1 } V ^ { - 1 } \| \leq$ ; confidence 0.861 | + | 233. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130060/b13006091.png ; $\| ( \mu I - A ) ^ { - 1 } \| = \| V ( \mu I - A ) ^ { - 1 } V ^ { - 1 } \| \leq$ ; confidence 0.861 |
234. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b12040081.png ; $h ^ { * } \mapsto - h ^ { * }$ ; confidence 0.861 | 234. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b12040081.png ; $h ^ { * } \mapsto - h ^ { * }$ ; confidence 0.861 | ||
− | 235. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120150/m12015060.png ; $S > 0 , n \geq p$ ; confidence 0.861 | + | 235. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120150/m12015060.png ; $S > 0 , n \geq p.$ ; confidence 0.861 |
236. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035000/e035000138.png ; $\{ T x : \| x \| \leq 1 \} \subset H$ ; confidence 0.861 | 236. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035000/e035000138.png ; $\{ T x : \| x \| \leq 1 \} \subset H$ ; confidence 0.861 | ||
Line 474: | Line 474: | ||
237. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130030/b13003014.png ; $Q _ { x } y = \{ x y x \} / 2$ ; confidence 0.861 | 237. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130030/b13003014.png ; $Q _ { x } y = \{ x y x \} / 2$ ; confidence 0.861 | ||
− | 238. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120020/n12002042.png ; $m \mapsto P ( \psi _ { \mu } ( m ) , \mu ) = P ( m , F ) , M _ { F } \rightarrow F$ ; confidence 0.860 | + | 238. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120020/n12002042.png ; $m \mapsto P ( \psi _ { \mu } ( m ) , \mu ) = P ( m , F ) , M _ { F } \rightarrow F,$ ; confidence 0.860 |
− | 239. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130190/b13019066.png ; $v = [ a , q ]$ ; confidence 0.860 | + | 239. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130190/b13019066.png ; $\mathbf{v} = [ a , q ]$ ; confidence 0.860 |
− | 240. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b110220250.png ; $r _ { D } : H _ { M } ^ { i } ( X , Q ( j ) ) \rightarrow H _ { H } ^ { i } ( X , Q ( j ) )$ ; confidence 0.860 | + | 240. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b110220250.png ; $r _ { \mathcal{D} } : H _ { \mathcal{M} } ^ { i } ( X , \mathbf{Q} ( j ) ) \rightarrow H _ { \mathcal{H} } ^ { i } ( X , \mathbf{Q} ( j ) )$ ; confidence 0.860 |
− | 241. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130040/g13004096.png ; $\operatorname { lim } _ { i \rightarrow \infty } c _ { i } \int \phi ( \frac { y - x } { r _ { i } } ) d \mu ( y ) = \int \phi ( y ) d \nu$ ; confidence 0.860 | + | 241. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130040/g13004096.png ; $\operatorname { lim } _ { i \rightarrow \infty } c _ { i } \int \phi \left( \frac { y - x } { r _ { i } } \right) d \mu ( y ) = \int \phi ( y ) d \nu.$ ; confidence 0.860 |
− | 242. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130090/b1300907.png ; $E ( u ) = \int _ { R } ( u ^ { 2 } + u _ { | + | 242. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130090/b1300907.png ; $E ( u ) = \int _ { \mathbf{R} } ( u ^ { 2 } + u _ { x } ^ { 2 } ) d x$ ; confidence 0.860 |
243. https://www.encyclopediaofmath.org/legacyimages/c/c026/c026980/c02698053.png ; $E _ { 8 }$ ; confidence 0.860 | 243. https://www.encyclopediaofmath.org/legacyimages/c/c026/c026980/c02698053.png ; $E _ { 8 }$ ; confidence 0.860 | ||
− | 244. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120210/b120210140.png ; $ | + | 244. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120210/b120210140.png ; $c _{w_{ 1 } , w _ { 2 } } \in \{ \pm 1 \}$ ; confidence 0.860 |
245. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120260/a12026026.png ; $K \otimes _ { A } A ^ { \prime }$ ; confidence 0.860 | 245. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120260/a12026026.png ; $K \otimes _ { A } A ^ { \prime }$ ; confidence 0.860 | ||
− | 246. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180476.png ; $\pi _ { 0 } ^ { * } g$ ; confidence 0.860 | + | 246. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180476.png ; $\pi _ { 0 } ^ { * } \hat{g}$ ; confidence 0.860 |
− | 247. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120090/f12009060.png ; $O \{ 0 \}$ ; confidence 0.860 | + | 247. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120090/f12009060.png ; $\mathcal{O}_{ \{ 0 \}}$ ; confidence 0.860 |
248. https://www.encyclopediaofmath.org/legacyimages/d/d033/d033120/d03312014.png ; $\pi 1$ ; confidence 0.860 | 248. https://www.encyclopediaofmath.org/legacyimages/d/d033/d033120/d03312014.png ; $\pi 1$ ; confidence 0.860 | ||
Line 500: | Line 500: | ||
250. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120070/t120070153.png ; $a _ { 3 } ( g )$ ; confidence 0.860 | 250. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120070/t120070153.png ; $a _ { 3 } ( g )$ ; confidence 0.860 | ||
− | 251. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120010/w12001024.png ; $\operatorname { deg } ( z ^ { | + | 251. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120010/w12001024.png ; $\operatorname { deg } ( z ^ { n } f ( D ) ) = n$ ; confidence 0.859 |
− | 252. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120070/w12007060.png ; $S ^ { \prime } ( R ^ { 2 n } )$ ; confidence 0.859 | + | 252. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120070/w12007060.png ; $\mathcal{S} ^ { \prime } ( \mathbf{R} ^ { 2 n } )$ ; confidence 0.859 |
− | 253. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120100/a12010075.png ; $R$ ; confidence 0.859 | + | 253. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120100/a12010075.png ; $ \mathbf{R}$ ; confidence 0.859 |
− | 254. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130120/b13012032.png ; $t | < 1$ ; confidence 0.859 | + | 254. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130120/b13012032.png ; $|t | < 1$ ; confidence 0.859 |
255. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011640/a011640110.png ; $q = 0$ ; confidence 0.859 | 255. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011640/a011640110.png ; $q = 0$ ; confidence 0.859 | ||
− | 256. https://www.encyclopediaofmath.org/legacyimages/l/l059/l059610/l0596102.png ; $p = ( p _ { 1 } , \dots , p _ { N } )$ ; confidence 0.859 | + | 256. https://www.encyclopediaofmath.org/legacyimages/l/l059/l059610/l0596102.png ; $p = ( \mathbf{p} _ { 1 } , \dots , \mathbf{p} _ { N } )$ ; confidence 0.859 |
− | 257. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130160/c130160178.png ; $P \neq NP$ ; confidence 0.859 | + | 257. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130160/c130160178.png ; $P \neq \text{NP}$ ; confidence 0.859 |
258. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120070/e120070125.png ; $\mu ( g , f ) = \alpha ( g ) + \beta ( f )$ ; confidence 0.859 | 258. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120070/e120070125.png ; $\mu ( g , f ) = \alpha ( g ) + \beta ( f )$ ; confidence 0.859 | ||
Line 518: | Line 518: | ||
259. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130260/b13026070.png ; $y \notin g \circ f ( \partial \Omega )$ ; confidence 0.859 | 259. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130260/b13026070.png ; $y \notin g \circ f ( \partial \Omega )$ ; confidence 0.859 | ||
− | 260. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130130/f13013025.png ; $( G , F ) \rightarrow \operatorname { Hom } ( G , X )$ ; confidence 0.859 | + | 260. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130130/f13013025.png ; $\operatorname { Hom }( G , F ) \rightarrow \operatorname { Hom } ( G , X )$ ; confidence 0.859 |
− | 261. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120040/b12004066.png ; $ | + | 261. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120040/b12004066.png ; $q_{X} < \infty$ ; confidence 0.859 |
− | 262. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120160/m12016039.png ; $X = ( X _ { 1 } , X _ { 2 } ) , M = ( M _ { 1 } , M _ { 2 } ) , \Phi = \left( \begin{array} { c c } { \Phi _ { 11 } } & { \Phi _ { 12 } } \\ { \Phi _ { 21 } } & { \Phi _ { 22 } } \end{array} \right)$ ; confidence 0.859 | + | 262. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120160/m12016039.png ; $X = ( X _ { 1 } , X _ { 2 } ) , M = ( M _ { 1 } , M _ { 2 } ) , \Phi = \left( \begin{array} { c c } { \Phi _ { 11 } } & { \Phi _ { 12 } } \\ { \Phi _ { 21 } } & { \Phi _ { 22 } } \end{array} \right),$ ; confidence 0.859 |
263. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120040/i12004082.png ; $h _ { \zeta } ( z ) = \langle s , \zeta - z \rangle ^ { - 1 }$ ; confidence 0.859 | 263. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120040/i12004082.png ; $h _ { \zeta } ( z ) = \langle s , \zeta - z \rangle ^ { - 1 }$ ; confidence 0.859 | ||
− | 264. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120320/b12032066.png ; $= F ( s , t ) \| \frac { r } { F ( s , t ) } x + \frac { 1 } { F ( s , t ) } ( s y + t z ) \| =$ ; confidence 0.859 | + | 264. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120320/b12032066.png ; $= F ( s , t ) \left\| \frac { r } { F ( s , t ) } x + \frac { 1 } { F ( s , t ) } ( s y + t z ) \right\| =$ ; confidence 0.859 |
265. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010810/a010810104.png ; $U ^ { * }$ ; confidence 0.859 | 265. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010810/a010810104.png ; $U ^ { * }$ ; confidence 0.859 | ||
− | 266. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240341.png ; $Z , \Gamma , F$ ; confidence 0.859 | + | 266. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240341.png ; $\mathbf{Z} , \Gamma , \mathbf{F}$ ; confidence 0.859 |
267. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120150/l12015029.png ; $[ x , y ] _ { d } = [ d x , y ]$ ; confidence 0.859 | 267. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120150/l12015029.png ; $[ x , y ] _ { d } = [ d x , y ]$ ; confidence 0.859 | ||
− | 268. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130010/i13001079.png ; $\lambda ( L ( G _ { 1 } ) ) \leq d _ { \lambda } ( L ( G _ { 2 } ) )$ ; confidence 0.859 | + | 268. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130010/i13001079.png ; $d_{\lambda} ( L ( G _ { 1 } ) ) \leq d _ { \lambda } ( L ( G _ { 2 } ) )$ ; confidence 0.859 |
269. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w120090161.png ; $g ^ { T }$ ; confidence 0.859 | 269. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w120090161.png ; $g ^ { T }$ ; confidence 0.859 | ||
− | 270. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120250/m12025016.png ; $f _ { \# } : \pi _ { k } ( X , * ) \rightarrow \pi _ { k } ( Y , * )$ ; confidence 0.859 | + | 270. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120250/m12025016.png ; $f _ { \# } : \check{\pi} _ { k } ( X , * ) \rightarrow \check{\pi} _ { k } ( Y , * )$ ; confidence 0.859 |
− | 271. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130110/v13011044.png ; $[ z = \gamma _ { j } e ^ { i m \theta } , \gamma = \alpha + i \beta ] , 0 < \theta < \pi$ ; confidence 0.859 | + | 271. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130110/v13011044.png ; $[ z = \gamma _ { j } e ^ { i m \theta } , \gamma = \alpha + i \beta ] , 0 < \theta < \pi,$ ; confidence 0.859 |
− | 272. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m130140121.png ; $q _ { p s , i l } = d _ { t s } ^ { p } \overline { d } _ { l s } ^ { p }$ ; confidence 0.858 | + | 272. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m130140121.png ; $q _ { p s , i l } = d _ { t s } ^ { p } \overline { d } _ { l s } ^ { p }.$ ; confidence 0.858 |
− | 273. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120040/e1200402.png ; $g ( ; t )$ ; confidence 0.858 | + | 273. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120040/e1200402.png ; $g ( . ; t )$ ; confidence 0.858 |
− | 274. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120010/w12001069.png ; $g l _ { N } )$ ; confidence 0.858 | + | 274. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120010/w12001069.png ; $W(g l _ { N } )$ ; confidence 0.858 |
− | 275. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120120/h12012074.png ; $( Y , | + | 275. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120120/h12012074.png ; $( Y , d_Y )$ ; confidence 0.858 |
276. https://www.encyclopediaofmath.org/legacyimages/a/a014/a014070/a0140709.png ; $R _ { 3 }$ ; confidence 0.858 | 276. https://www.encyclopediaofmath.org/legacyimages/a/a014/a014070/a0140709.png ; $R _ { 3 }$ ; confidence 0.858 | ||
Line 558: | Line 558: | ||
279. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130180/a13018057.png ; $n \in \omega$ ; confidence 0.858 | 279. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130180/a13018057.png ; $n \in \omega$ ; confidence 0.858 | ||
− | 280. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120260/e120260106.png ; $P ( \theta , \mu _ { p } )$ ; confidence 0.858 | + | 280. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120260/e120260106.png ; $\mathsf{P} ( \theta , \mu _ { p } )$ ; confidence 0.858 |
− | 281. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120110/e12011061.png ; $\nabla A + \frac { 1 } { c } \frac { \partial \phi } { \partial t } = 0$ ; confidence 0.858 | + | 281. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120110/e12011061.png ; $\nabla . \mathbf{A} + \frac { 1 } { c } \frac { \partial \phi } { \partial t } = 0.$ ; confidence 0.858 |
− | 282. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130020/e13002010.png ; $\ | + | 282. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130020/e13002010.png ; $\varphi_{j}$ ; confidence 0.858 |
283. https://www.encyclopediaofmath.org/legacyimages/b/b017/b017800/b01780053.png ; $n = p$ ; confidence 0.858 | 283. https://www.encyclopediaofmath.org/legacyimages/b/b017/b017800/b01780053.png ; $n = p$ ; confidence 0.858 | ||
Line 570: | Line 570: | ||
285. https://www.encyclopediaofmath.org/legacyimages/d/d033/d033890/d03389020.png ; $X Y$ ; confidence 0.858 | 285. https://www.encyclopediaofmath.org/legacyimages/d/d033/d033890/d03389020.png ; $X Y$ ; confidence 0.858 | ||
− | 286. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120020/v1200206.png ; $f * : H * ( X ) \rightarrow | + | 286. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120020/v1200206.png ; $f _{*} : H * ( X ) \rightarrow H_{ *} ( Y )$ ; confidence 0.858 |
287. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120100/i12010017.png ; $\{ \pm i C , 0 , \ldots , 0 \}$ ; confidence 0.858 | 287. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120100/i12010017.png ; $\{ \pm i C , 0 , \ldots , 0 \}$ ; confidence 0.858 | ||
− | 288. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240391.png ; $( M _ { H } M _ { E } ^ { - 1 } ) >$ ; confidence 0.858 | + | 288. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240391.png ; $\operatornmae{tr}( \mathbf{M} _ { H } \mathcal{M} _ { \mathsf{E} } ^ { - 1 } ) > \text{const}$ ; confidence 0.858 |
− | 289. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120070/e120070132.png ; $H ^ { 1 } ( \Gamma , k , v ; P ( k ) )$ ; confidence 0.858 | + | 289. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120070/e120070132.png ; $H ^ { 1 } ( \Gamma , k , \mathbf{v} ; P ( k ) )$ ; confidence 0.858 |
− | 290. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120210/c12021019.png ; $\| P _ { n } - P _ { n } ^ { \prime } \| = 2 \operatorname { sup } \{ | P _ { n } ( A ) - P _ { n } ^ { \prime } ( A ) | : A \in A _ { n } \}$ ; confidence 0.858 | + | 290. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120210/c12021019.png ; $\| P _ { n } - P _ { n } ^ { \prime } \| = 2 \operatorname { sup } \{ | P _ { n } ( A ) - P _ { n } ^ { \prime } ( A ) | : A \in \mathcal{A} _ { n } \},$ ; confidence 0.858 |
− | 291. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130340/s13034031.png ; $S _ { 4 } ( M ) = R L / ( b _ { 0 } L _ { 0 } + b _ { 1 } L _ { 1 } + b _ { 2 } L _ { 2 } + b _ { 3 } L _ { 3 } )$ ; confidence 0.858 | + | 291. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130340/s13034031.png ; $\mathcal{S} _ { 4 } ( M ) = R \mathcal{L} / ( b _ { 0 } L _ { 0 } + b _ { 1 } L _ { 1 } + b _ { 2 } L _ { 2 } + b _ { 3 } L _ { 3 } )$ ; confidence 0.858 |
− | 292. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130010/k13001026.png ; $Z [ A ^ { \pm 1 } , \alpha ]$ ; confidence 0.858 | + | 292. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130010/k13001026.png ; $\mathbf{Z} [ A ^ { \pm 1 } , \alpha ]$ ; confidence 0.858 |
293. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c12018029.png ; $p - q$ ; confidence 0.857 | 293. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c12018029.png ; $p - q$ ; confidence 0.857 | ||
Line 588: | Line 588: | ||
294. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240384.png ; $q \geq 2$ ; confidence 0.857 | 294. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240384.png ; $q \geq 2$ ; confidence 0.857 | ||
− | 295. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120010/c120010131.png ; $\pi$ ; confidence 0.857 | + | 295. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120010/c120010131.png ; $\tilde{\pi}$ ; confidence 0.857 |
296. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130100/b13010046.png ; $T _ { \varphi }$ ; confidence 0.857 | 296. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130100/b13010046.png ; $T _ { \varphi }$ ; confidence 0.857 | ||
− | 297. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120120/h12012013.png ; $d | + | 297. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120120/h12012013.png ; $d _X$ ; confidence 0.857 |
298. https://www.encyclopediaofmath.org/legacyimages/o/o120/o120010/o12001029.png ; $\Lambda _ { 1 } = U C ( \theta _ { r } ) L / \kappa$ ; confidence 0.857 | 298. https://www.encyclopediaofmath.org/legacyimages/o/o120/o120010/o12001029.png ; $\Lambda _ { 1 } = U C ( \theta _ { r } ) L / \kappa$ ; confidence 0.857 |
Revision as of 20:11, 23 April 2020
List
1. ; $p _ { i } ^ { * } = p _ { i } - \eta \langle \eta , ( p _ { i } - p _ { n + 1 } ) \rangle,$ ; confidence 0.870
2. ; $s _ { i } \leq n$ ; confidence 0.870
3. ; $f \in C ^ { \delta } ( [ 0 , T ] ; X )$ ; confidence 0.870
4. ; $\| \hat { f } \| = \| f \| _ { 1 }$ ; confidence 0.870
5. ; $\int _ { \mathbf{R} ^ { 3 } } ( F _ { A } , F _ { A } ) + ( D _ { A } \phi , D _ { A } \phi ).$ ; confidence 0.870
6. ; $\hat { R } _ { S } ^ { A }$ ; confidence 0.870
7. ; $\operatorname{Cd} = \frac { D } { \rho V ^ { 2 } b },$ ; confidence 0.870
8. ; $\gamma_4$ ; confidence 0.870
9. ; $G ( \omega _ { 1 } , c )$ ; confidence 0.870
10. ; $h ( x , y ) = \sum _ { k = 1 } ^ { n } f _ { k } ( x ) g _ { k } ( y ).$ ; confidence 0.870
11. ; $S ( a , d ( a , x ) )$ ; confidence 0.870
12. ; $S \supset T$ ; confidence 0.870
13. ; $f \in S$ ; confidence 0.870
14. ; $\nabla _ { Z } R = R - Z R Z ^ { * }.$ ; confidence 0.870
15. ; $X _ { 0 } x ^ { 0 } + \sum X _ { t } x _ { t } = 0$ ; confidence 0.870
16. ; $\varphi ( t _ { 0 } , x ) \in L$ ; confidence 0.870
17. ; $( \mathcal{K} _ { - } , - [ . , . ] )$ ; confidence 0.869
18. ; $e ^ { i \vartheta } \mapsto k _ { \vartheta } ( z )$ ; confidence 0.869
19. ; $\tau_x$ ; confidence 0.869
20. ; $1 + a b \in R ^ { * }$ ; confidence 0.869
21. ; $j _ { g } 2$ ; confidence 0.869
22. ; $\mathcal{M} _ { g }$ ; confidence 0.869
23. ; $f _ { 2 n + 1 } = f _ { 2 n } - h _ { n }$ ; confidence 0.869
24. ; $| x - \frac { p } { q_n } | < f ( q_n )$ ; confidence 0.869
25. ; $u \in W _ { p } ^ { m } ( \Omega )$ ; confidence 0.869
26. ; $(\text{const})Z ^ { 2 }$ ; confidence 0.869
27. ; $A ( \alpha ^ { \prime } , \alpha , k _ { 0 } )$ ; confidence 0.869
28. ; $\lambda = \frac { \Gamma } { 2 \pi l ^ { 2 } } ( B ^ { 2 } \mp \sqrt { A ^ { 2 } - C ^ { 2 } } ),$ ; confidence 0.869
29. ; $\mathcal{S} _ { P^{\prime} }$ ; confidence 0.869
30. ; $\xi = I ( \partial _ { r } )$ ; confidence 0.869
31. ; $P ^ { ( l ) }$ ; confidence 0.869
32. ; $L \subseteq \Sigma ^ { * }$ ; confidence 0.869
33. ; $u ( x , y , k _ { 0 } )$ ; confidence 0.869
34. ; $t = t _ { 3 }$ ; confidence 0.869
35. ; $A u \in C ( ( 0 , T ] ; X )$ ; confidence 0.869
36. ; $y ( t ) = e ^ { - t A } x = S ( t ) x$ ; confidence 0.869
37. ; $\equiv \left( z - E _ { 0 } - \int _ { 0 } ^ { \infty } \frac { | ( V \phi | \lambda \rangle | ^ { 2 } } { z - \lambda } d \lambda ) ( \phi , G ( z ) \phi \right) = 1.$ ; confidence 0.869
38. ; $\mathcal{K} _ { \pm }$ ; confidence 0.869
39. ; $L ^ { 5 / 3 } ( \mathbf{R} ^ { 3 } )$ ; confidence 0.869
40. ; $\mathcal{Y} = \{ Y : \operatorname { Tor } _ { 1 } ^ { B } ( T , Y ) = 0 \}$ ; confidence 0.869
41. ; $L | K$ ; confidence 0.869
42. ; $p _ { 1 } ( \xi ) = 1 + \beta _ { 1 } \xi + \beta _ { 2 } \xi ^ { 2 } + \ldots ( \operatorname { Re } p _ { 1 } ( \xi ) > 0 ),$ ; confidence 0.869
43. ; $X_n$ ; confidence 0.869
44. ; $| y _ { 1 } | \geq \ldots \geq | y _ { m } |$ ; confidence 0.868
45. ; $\xi \in \mathcal{A} \rightarrow \xi ^ { \# } \in \mathcal{A}$ ; confidence 0.868
46. ; $\mathbf{R} ^ { n } \backslash \{ 0 \}$ ; confidence 0.868
47. ; $f + 1 / 2 \operatorname{tr}$ ; confidence 0.868
48. ; $C ^ { \infty }$ ; confidence 0.868
49. ; $\mathcal{X} _ { t + s } \sim \mathcal{X} _ { s }$ ; confidence 0.868
50. ; $q ( x ) \in L _ { 1,1 } : = \left\{ q : \int _ { - \infty } ^ { \infty } ( 1 + | x | ) | q ( x ) | d x < \infty , q = \overline { q } \right\}$ ; confidence 0.868
51. ; $( h _ { \mu \nu } )$ ; confidence 0.868
52. ; $i : H ^ { 1 } ( D ) \rightarrow L ^ { 2 } ( D )$ ; confidence 0.868
53. ; $( a ^ { w } u ) ( x ) =$ ; confidence 0.868
54. ; $R _ { \mathcal{p} }$ ; confidence 0.868
55. ; $\operatorname { inf } _ { x \in H } \left( f ( x ) + ( 2 T ) ^ { - 1 } \| x \| ^ { 2 } \right)$ ; confidence 0.868
56. ; $\zeta _ { r + 1 } = \ldots = \zeta _ { n } = 0$ ; confidence 0.868
57. ; $\sigma _ { \text{T} } ( A , \mathcal{H} )$ ; confidence 0.868
58. ; $E ^ { k }$ ; confidence 0.868
59. ; $P L C W$ ; confidence 0.868
60. ; $U ( . )$ ; confidence 0.868
61. ; $\Omega$ ; confidence 0.868
62. ; $\Omega _ { p _ { 1 } n _ { 1 } } ( t ^ { \prime } t ^ { \prime } )$ ; confidence 0.868
63. ; $\Gamma_{i}$ ; confidence 0.868
64. ; $\mathcal{F} ( f _ { l } )$ ; confidence 0.868
65. ; $m _ { i j } = \langle f _ { i } , f _ { j } \rangle$ ; confidence 0.868
66. ; $S ( C )$ ; confidence 0.868
67. ; $I \cap P \neq \emptyset$ ; confidence 0.868
68. ; $p = ( p _ { 1 } , \dots , p _ { k } )$ ; confidence 0.868
69. ; $S _ { \alpha } ( y ) = y + \alpha$ ; confidence 0.868
70. ; $y ( 0 ) = y _ { 0 }$ ; confidence 0.868
71. ; $[ \gamma _ { \omega } ] = 2 \pi c _ { 1 } ( M )$ ; confidence 0.868
72. ; $\partial C ^ { 2 } \times I$ ; confidence 0.867
73. ; $P e ^ { - i H t } P$ ; confidence 0.867
74. ; $c _ { L } \in H ^ { 1 } ( G ( \overline { K } / K ( L ) ) ; A )$ ; confidence 0.867
75. ; $| R _ { i } - S _ { i } |$ ; confidence 0.867
76. ; $\mu ^ { * } K _ { X } = K _ { Y } + \sum _ { k } d _ { k } D _ { k }$ ; confidence 0.867
77. ; $GL_n$ ; confidence 0.867
78. ; $k ( C _ { i } )$ ; confidence 0.867
79. ; $\Delta _ { k } = \operatorname { sup } \{ | \Delta _ { k } ( \mathbf{s} , \mathbf{t} ) | : 0 \leq s _ { j } \leq t _ { j } < 1,1 \leq j \leq k \},$ ; confidence 0.867
80. ; $\| x \| _ { \theta } =$ ; confidence 0.867
81. ; $w ^ { n } - 1$ ; confidence 0.867
82. ; $\geq 5$ ; confidence 0.867
83. ; $M N$ ; confidence 0.867
84. ; $\mathsf{E}$ ; confidence 0.867
85. ; $\overline { u } _ { 1 } \in U _ { 1 }$ ; confidence 0.867
86. ; $X _ { i } \mapsto X _ { i } + \alpha _ { i } X _ { n }$ ; confidence 0.867
87. ; $\operatorname { lim } _ { l \rightarrow 0 } \Pi ( l ) = \frac { \pi } { 2 } , \quad \operatorname { lim } _ { l \rightarrow \infty } \Pi ( l ) = 0.$ ; confidence 0.867
88. ; $q ( x ) = q _ { n }$ ; confidence 0.867
89. ; $\left( E ( f ) + \| f \| _ { L _ { 2 } ( \Omega ) } \right) ^ { 1 / 2 }.$ ; confidence 0.867
90. ; $\mathcal{H} _ { \epsilon } ^ { \prime \prime } ( X ) = \operatorname { inf } \{ H ( \mathcal{U} ) : \mathcal{U} \in \mathcal{A }_ { \epsilon } \},$ ; confidence 0.867
91. ; $( N , \tilde{\omega} ) = ( M , \omega ) \times ( M , - \omega )$ ; confidence 0.867
92. ; $U = - x ^ { * } C x < 0$ ; confidence 0.867
93. ; $x \in J ^ { \prime }$ ; confidence 0.867
94. ; $\epsilon _ { 1 } \neq 0$ ; confidence 0.867
95. ; $W ( C )$ ; confidence 0.866
96. ; $P _ { 3_1 } = 2 v ^ { 2 } - v ^ { 4 } + v ^ { 2 } z ^ { 2 }$ ; confidence 0.866
97. ; $j ^ { s } ( f ) : V \rightarrow J ^ { s } ( V , W )$ ; confidence 0.866
98. ; $\mathcal{X} \subseteq \mathcal{V}$ ; confidence 0.866
99. ; $P + P \subseteq P$ ; confidence 0.866
100. ; $\operatorname { Aut } ( W ) = \cap _ { i = 1 } ^ { r } \operatorname { Aut } ( A _ { i } ).$ ; confidence 0.866
101. ; $\mathcal{L} _ { n } ^ { \prime } = \mathcal{L} ( \Lambda _ { n } | P _ { n } ^ { \prime } )$ ; confidence 0.866
102. ; $\langle d T , \phi \rangle = ( - 1 ) ^ { p + 1 } \langle T , d \phi \rangle$ ; confidence 0.866
103. ; $b _ { 1 } f _ { 1 } + \ldots + b _ { m } f _ { m } = f ^ { \mu },$ ; confidence 0.866
104. ; $C ^ { * }$ ; confidence 0.866
105. ; $z = r \operatorname { cos } \theta$ ; confidence 0.866
106. ; $\mathcal{O} ( r )$ ; confidence 0.866
107. ; $x _ { i } ^ { n + 1 }$ ; confidence 0.866
108. ; $P M _ { q } ( G )$ ; confidence 0.866
109. ; $\pi _ { k } ( \mathbf{C} ^ { n } \backslash K ) = 0,1 \leq k \leq n - 1.$ ; confidence 0.866
110. ; $V - \operatorname { dim } U$ ; confidence 0.866
111. ; $\langle b , t : t ^ { - 1 } b ^ { 2 } t = b ^ { 3 } \rangle$ ; confidence 0.866
112. ; $f \in L _ { 2 } ( \mathbf{R} _ { + } )$ ; confidence 0.866
113. ; $\theta \mapsto k ^ { \prime } \mu ( \theta ) , \Theta ( \mu ) \rightarrow E,$ ; confidence 0.866
114. ; $E ^ { - k } ( D X )$ ; confidence 0.866
115. ; $\{ x y z \} = - \{ y x z \}$ ; confidence 0.866
116. ; $Q ( \partial / \partial x )$ ; confidence 0.865
117. ; $f \in \{ \Gamma , k + 2 , \mathbf{v} \}$ ; confidence 0.865
118. ; $\{ p _ { 1 } , \dots , p _ { n } \} \in E$ ; confidence 0.865
119. ; $[ T x , T x ] > [ x , x ]$ ; confidence 0.865
120. ; $\operatorname { Res } _ { H } v = u$ ; confidence 0.865
121. ; $[ m ]_{ q}$ ; confidence 0.865
122. ; $\delta _{Z}$ ; confidence 0.865
123. ; $k \leq r$ ; confidence 0.865
124. ; $P _ { L } ( v , z ) = \sum _ { i = e } ^ { E } a _ { i } ( z ) v ^ { i }$ ; confidence 0.865
125. ; $q _ { 2 } - q _ { 1 } : = p ( x )$ ; confidence 0.865
126. ; $p = o ( 1 )$ ; confidence 0.865
127. ; $W ^ { m }$ ; confidence 0.865
128. ; $x = M _ { 2 }$ ; confidence 0.865
129. ; $H_{ *} ( \overline { M } )$ ; confidence 0.865
130. ; $\hat{\delta}$ ; confidence 0.865
131. ; $X_{g}$ ; confidence 0.865
132. ; $U _ { n + 1 } ( x , y ) = \sum _ { j = 0 } ^ { [ n / 2 ] } \frac { ( n - j ) ! } { j ! ( n - 2 j ) ! } x ^ { n - 2 j } y ^ { j },$ ; confidence 0.865
133. ; $- ( x , \omega ( x ) ) > 0$ ; confidence 0.865
134. ; $f_{ ( 1 , n )} \geq \ldots \geq f _{( \mu _ { n } , n )}$ ; confidence 0.865
135. ; $A _ { k } = \left( \begin{array} { c c } { A _ { k } ^ { \prime } } & { 0 } \\ { i \Phi ^ { \prime \prime } \sigma _ { k } \Phi ^ { \prime } } & { A _ { k } ^ { \prime \prime } } \end{array} \right) ( k = 1,2 ),$ ; confidence 0.865
136. ; $\operatorname{dim} X \leq n$ ; confidence 0.865
137. ; $s = x _ { + } - x _ { c } , \quad y = \nabla f ( x _ { + } ) - \nabla f ( x _ { c } ).$ ; confidence 0.865
138. ; $\mathbf{M} _ { \mathcal{H} } \mathbf{M} _ { \mathsf{E} } ^ { - 1 }$ ; confidence 0.865
139. ; $\operatorname{PG} ( n , q )$ ; confidence 0.865
140. ; $d ^ { n }$ ; confidence 0.865
141. ; $\operatorname{SU} ( N )$ ; confidence 0.865
142. ; $\sigma _ { n } ( \rho )$ ; confidence 0.865
143. ; $X _ { \infty } = \operatorname { lim } _ { t \rightarrow \infty } X _ { t }$ ; confidence 0.864
144. ; $d ( x , y ) = \operatorname { inf } _ { \lambda \in \Lambda } \operatorname { max } \left\{ \| \lambda \| , \operatorname { sup } _ { 0 \leq t \leq 1 } | x ( t ) - y ( \lambda ( t ) ) | \right\}.$ ; confidence 0.864
145. ; $2 t$ ; confidence 0.864
146. ; $H ^ { 1 } ( X , \mathbf{Z} _ { 2 } ) = 0$ ; confidence 0.864
147. ; $\mathcal{C} ^ { \infty }$ ; confidence 0.864
148. ; $M$ ; confidence 0.864
149. ; $\pi_{ 0} ( S )$ ; confidence 0.864
150. ; $t < T$ ; confidence 0.864
151. ; $\mathsf{P} ( E_l )$ ; confidence 0.864
152. ; $\sigma ^ { 2 }$ ; confidence 0.864
153. ; $L \subset \mathbf{Z} ^ { 0 }$ ; confidence 0.864
154. ; $S$ ; confidence 0.864
155. ; $u = e ^ { i k \alpha x } + v , \alpha \in S ^ { 2 },$ ; confidence 0.864
156. ; $a + b = 1$ ; confidence 0.864
157. ; $W ( \zeta ) = | ( V \phi \ | \ \zeta \rangle | ^ { 2 }$ ; confidence 0.864
158. ; $O _ { K } = \mathbf{Z}$ ; confidence 0.864
159. ; $\tau _ { n } ( t ) = \tau _ { 0 } ( t + n w )$ ; confidence 0.864
160. ; $\mathcal{M} _ { 4 } ( \mathbf{R} ^ { n } ) = \{$ ; confidence 0.864
161. ; $\sum _ { \lambda } s _ { \lambda } ( \mathbf{x} ) s _ { \lambda } ( \mathbf{y} ) = \prod _ { i , j = 1 } ^ { l } \frac { 1 } { 1 - x _ { i } y _ { j } }$ ; confidence 0.864
162. ; $ \mathbf{x} \neq \mathbf{O}$ ; confidence 0.864
163. ; $\in \otimes ^ { p } \mathcal{E}$ ; confidence 0.864
164. ; $S _ { N B }$ ; confidence 0.864
165. ; $U : X _ { P } \rightarrow Y _ { Q }$ ; confidence 0.863
166. ; $\{ s _ { j } ( T ) \} _ { j \geq 0 }$ ; confidence 0.863
167. ; $A W ^ { * }$ ; confidence 0.863
168. ; $a : E _ { 1 } \rightarrow E _ { 2 }$ ; confidence 0.863
169. ; $K \cap S _ { \infty } ^ { n - 1 }$ ; confidence 0.863
170. ; $\operatorname { com}( L )$ ; confidence 0.863
171. ; $P _ { n } ( x ) = T _ { n } ( x )$ ; confidence 0.863
172. ; $\mathbf{Z}0$ ; confidence 0.863
173. ; $\{ U _ { s } \}$ ; confidence 0.863
174. ; $M$ ; confidence 0.863
175. ; $f ( z ) = \operatorname { lim } _ { m \rightarrow \infty } \int _ { \Gamma } f ( \zeta ) \times$ ; confidence 0.863
176. ; $\beta$ ; confidence 0.863
177. ; $\operatorname { Im } A ( \alpha , \alpha , k ) = \frac { k } { 4 \pi } \int _ { S ^ { 2 } } | f ( \alpha , \beta , k ) | ^ { 2 } d \beta : = \frac { k \sigma ( \alpha ) } { 4 \pi },$ ; confidence 0.863
178. ; $T : X \rightarrow Y$ ; confidence 0.863
179. ; $0 \leq t _ { 1 } \leq \ldots \leq t _ { k } \leq T$ ; confidence 0.863
180. ; $\operatorname{GL} ( \infty )$ ; confidence 0.863
181. ; $T _ { N } ( x ) = \operatorname { cos } ( n \operatorname { arccos } x )$ ; confidence 0.863
182. ; $( f ( . ) , K (. , y ) ) = f ( y )$ ; confidence 0.863
183. ; $\mathfrak { P } ( U ) = \langle \mathcal{P} ( U ) , \cap , \cup , - \rangle$ ; confidence 0.863
184. ; $\mathcal{D} ( \Omega )$ ; confidence 0.863
185. ; $P ( T , \omega ) = \{ P ( T , l ) : l \geq 0 \}$ ; confidence 0.863
186. ; $a ^ { * } ( f )$ ; confidence 0.863
187. ; $1 - \sqrt [ \frac { 2 } { 3 } ] { n } < B _ { n } ( D ).$ ; confidence 0.863
188. ; $\hat { \pi } : \overline { B } ( H ( Y ) ) \rightarrow Y$ ; confidence 0.863
189. ; $n _ { 1 } + n _ { 2 } + \ldots = n$ ; confidence 0.863
190. ; $\pi h ( a )$ ; confidence 0.862
191. ; $a ( i k _ { j } ) = 0$ ; confidence 0.862
192. ; $V _ { + }$ ; confidence 0.862
193. ; $\frac { c _ { 1 } } { 1 - \lambda }.$ ; confidence 0.862
194. ; $\approx \alpha$ ; confidence 0.862
195. ; $M _ { R } ^ { \delta }$ ; confidence 0.862
196. ; $( C ) \int _ { A } f d m = \int _ { 0 } ^ { + \infty } m ( A \bigcap F _ { \alpha } ) d \alpha,$ ; confidence 0.862
197. ; $K ( x , y )$ ; confidence 0.862
198. ; $|m | = | n|$ ; confidence 0.862
199. ; $\mathcal{E} = \overline { ( A _ { 1 } - A _ { 1 } ^ { * } ) \mathcal{H} + ( A _ { 2 } - A _ { 2 } ^ { * } ) \mathcal{H} , } \Phi = P _ { \mathcal{E} },$ ; confidence 0.862
200. ; $G ^ { s } ( \mathcal{T} ^ { n } ; T )$ ; confidence 0.862
201. ; $[ x y [ u v w ] ] = [ [ x y u ] v w ] + [ u [ x y v ] w ] + [ u v [ x y w ] ],$ ; confidence 0.862
202. ; $x ( t + ) = \operatorname { lim } _ { s \downarrow t } x ( s ) \ \text{exits},$ ; confidence 0.862
203. ; $k _ { \nu }$ ; confidence 0.862
204. ; $f ( z ) = \operatorname { lim } _ { m \rightarrow \infty } \frac { 1 } { 2 \pi i } \int _ { \Gamma } f ( \zeta ) \left( \frac { z } { \zeta } \right) ^ { m } \frac { d \zeta } { \zeta - z }.$ ; confidence 0.862
205. ; $A \in \operatorname{CL} ( X )$ ; confidence 0.862
206. ; $Z ( a ^ { n } ) = \sum _ { j = 0 } ^ { \infty } a ^ { j } z ^ { - j } = \frac { z } { z - a } \text { for } | z | > 1.$ ; confidence 0.862
207. ; $M \rightarrow c M$ ; confidence 0.862
208. ; $Z _ { 1 }$ ; confidence 0.862
209. ; $q ( x ) \in L _ { 1,1 }$ ; confidence 0.862
210. ; $[ T _ { f _ { 1 } } , T _ { f _ { 2 } } ] \notin \mathcal{K} ( H ^ { 2 } ( S ) ),$ ; confidence 0.862
211. ; $G = \operatorname { Sp } ( 1 , n )$ ; confidence 0.862
212. ; $\{ f _ { n _ { k } } \} _ { k }$ ; confidence 0.862
213. ; $f \in X$ ; confidence 0.862
214. ; $D ( \mathcal{C} )$ ; confidence 0.862
215. ; $H = - \sum _ { i = 1 } ^ { N } [ \Delta _ { i } + V ( x _ { i } ) ] + \sum _ { 1 \leq i < j \leq N } | x _ { i } - x _ { j } | ^ { - 1 } + U,$ ; confidence 0.862
216. ; $x _ { 1 } \prec y _ { 1 }$ ; confidence 0.862
217. ; $B _ { n } ( D ) = K _ { n }$ ; confidence 0.862
218. ; $F ( \varphi v )$ ; confidence 0.862
219. ; $\| \alpha _ { i j } \| = \pm 1$ ; confidence 0.862
220. ; $B _ { 0 } = I$ ; confidence 0.861
221. ; $A _ { \alpha } ( x ) = \operatorname { card } \{ n \leq x \ \text{primitive} \ \alpha \ \square \ \text{abundant} \} :$ ; confidence 0.861
222. ; $F _ { A }$ ; confidence 0.861
223. ; $\{ x \in X : x \varphi \neq x \}$ ; confidence 0.861
224. ; $\overline { \mathcal{D} } \subset \{ z : | z | < 1 \}$ ; confidence 0.861
225. ; $w ^ { H } | v ^ { H }$ ; confidence 0.861
226. ; $\operatorname { Im } h ^ { I I } ( z ) = \operatorname { Im } z \left( \int _ { 0 } ^ { \infty } \frac { | ( V \phi | \lambda \rangle | ^ { 2 } } { | z - \lambda | ^ { 2 } } d \lambda \right) + 2 \pi \operatorname { Re } W ( z );$ ; confidence 0.861
227. ; $| B ( m , 6 ) | = 2 ^ { \alpha } 3 ^ { C _ { \beta } ^ { 1 } + C _ { \beta } ^ { 2 } + C _ { \beta } ^ { 3 } }$ ; confidence 0.861
228. ; $f \hat { \tau } = \tau$ ; confidence 0.861
229. ; $\operatorname { Im } \lambda > 0$ ; confidence 0.861
230. ; $x x ^ { * } = u u ^ { * } + v v ^ { * }$ ; confidence 0.861
231. ; $d P / d \mu$ ; confidence 0.861
232. ; $\mathcal{A} _ { q }$ ; confidence 0.861
233. ; $\| ( \mu I - A ) ^ { - 1 } \| = \| V ( \mu I - A ) ^ { - 1 } V ^ { - 1 } \| \leq$ ; confidence 0.861
234. ; $h ^ { * } \mapsto - h ^ { * }$ ; confidence 0.861
235. ; $S > 0 , n \geq p.$ ; confidence 0.861
236. ; $\{ T x : \| x \| \leq 1 \} \subset H$ ; confidence 0.861
237. ; $Q _ { x } y = \{ x y x \} / 2$ ; confidence 0.861
238. ; $m \mapsto P ( \psi _ { \mu } ( m ) , \mu ) = P ( m , F ) , M _ { F } \rightarrow F,$ ; confidence 0.860
239. ; $\mathbf{v} = [ a , q ]$ ; confidence 0.860
240. ; $r _ { \mathcal{D} } : H _ { \mathcal{M} } ^ { i } ( X , \mathbf{Q} ( j ) ) \rightarrow H _ { \mathcal{H} } ^ { i } ( X , \mathbf{Q} ( j ) )$ ; confidence 0.860
241. ; $\operatorname { lim } _ { i \rightarrow \infty } c _ { i } \int \phi \left( \frac { y - x } { r _ { i } } \right) d \mu ( y ) = \int \phi ( y ) d \nu.$ ; confidence 0.860
242. ; $E ( u ) = \int _ { \mathbf{R} } ( u ^ { 2 } + u _ { x } ^ { 2 } ) d x$ ; confidence 0.860
243. ; $E _ { 8 }$ ; confidence 0.860
244. ; $c _{w_{ 1 } , w _ { 2 } } \in \{ \pm 1 \}$ ; confidence 0.860
245. ; $K \otimes _ { A } A ^ { \prime }$ ; confidence 0.860
246. ; $\pi _ { 0 } ^ { * } \hat{g}$ ; confidence 0.860
247. ; $\mathcal{O}_{ \{ 0 \}}$ ; confidence 0.860
248. ; $\pi 1$ ; confidence 0.860
249. ; $\tau = e ^ { - t }$ ; confidence 0.860
250. ; $a _ { 3 } ( g )$ ; confidence 0.860
251. ; $\operatorname { deg } ( z ^ { n } f ( D ) ) = n$ ; confidence 0.859
252. ; $\mathcal{S} ^ { \prime } ( \mathbf{R} ^ { 2 n } )$ ; confidence 0.859
253. ; $ \mathbf{R}$ ; confidence 0.859
254. ; $|t | < 1$ ; confidence 0.859
255. ; $q = 0$ ; confidence 0.859
256. ; $p = ( \mathbf{p} _ { 1 } , \dots , \mathbf{p} _ { N } )$ ; confidence 0.859
257. ; $P \neq \text{NP}$ ; confidence 0.859
258. ; $\mu ( g , f ) = \alpha ( g ) + \beta ( f )$ ; confidence 0.859
259. ; $y \notin g \circ f ( \partial \Omega )$ ; confidence 0.859
260. ; $\operatorname { Hom }( G , F ) \rightarrow \operatorname { Hom } ( G , X )$ ; confidence 0.859
261. ; $q_{X} < \infty$ ; confidence 0.859
262. ; $X = ( X _ { 1 } , X _ { 2 } ) , M = ( M _ { 1 } , M _ { 2 } ) , \Phi = \left( \begin{array} { c c } { \Phi _ { 11 } } & { \Phi _ { 12 } } \\ { \Phi _ { 21 } } & { \Phi _ { 22 } } \end{array} \right),$ ; confidence 0.859
263. ; $h _ { \zeta } ( z ) = \langle s , \zeta - z \rangle ^ { - 1 }$ ; confidence 0.859
264. ; $= F ( s , t ) \left\| \frac { r } { F ( s , t ) } x + \frac { 1 } { F ( s , t ) } ( s y + t z ) \right\| =$ ; confidence 0.859
265. ; $U ^ { * }$ ; confidence 0.859
266. ; $\mathbf{Z} , \Gamma , \mathbf{F}$ ; confidence 0.859
267. ; $[ x , y ] _ { d } = [ d x , y ]$ ; confidence 0.859
268. ; $d_{\lambda} ( L ( G _ { 1 } ) ) \leq d _ { \lambda } ( L ( G _ { 2 } ) )$ ; confidence 0.859
269. ; $g ^ { T }$ ; confidence 0.859
270. ; $f _ { \# } : \check{\pi} _ { k } ( X , * ) \rightarrow \check{\pi} _ { k } ( Y , * )$ ; confidence 0.859
271. ; $[ z = \gamma _ { j } e ^ { i m \theta } , \gamma = \alpha + i \beta ] , 0 < \theta < \pi,$ ; confidence 0.859
272. ; $q _ { p s , i l } = d _ { t s } ^ { p } \overline { d } _ { l s } ^ { p }.$ ; confidence 0.858
273. ; $g ( . ; t )$ ; confidence 0.858
274. ; $W(g l _ { N } )$ ; confidence 0.858
275. ; $( Y , d_Y )$ ; confidence 0.858
276. ; $R _ { 3 }$ ; confidence 0.858
277. ; $y ^ { n } ( ( x / y ) ^ { n } - 1 ) = z ^ { n }$ ; confidence 0.858
278. ; $\Omega ^ { 1 } \wedge \ldots \wedge \Omega ^ { m } \neq 0$ ; confidence 0.858
279. ; $n \in \omega$ ; confidence 0.858
280. ; $\mathsf{P} ( \theta , \mu _ { p } )$ ; confidence 0.858
281. ; $\nabla . \mathbf{A} + \frac { 1 } { c } \frac { \partial \phi } { \partial t } = 0.$ ; confidence 0.858
282. ; $\varphi_{j}$ ; confidence 0.858
283. ; $n = p$ ; confidence 0.858
284. ; $\chi _ { T } ( G ) \leq \Delta ( G ) + C$ ; confidence 0.858
285. ; $X Y$ ; confidence 0.858
286. ; $f _{*} : H * ( X ) \rightarrow H_{ *} ( Y )$ ; confidence 0.858
287. ; $\{ \pm i C , 0 , \ldots , 0 \}$ ; confidence 0.858
288. ; $\operatornmae{tr}( \mathbf{M} _ { H } \mathcal{M} _ { \mathsf{E} } ^ { - 1 } ) > \text{const}$ ; confidence 0.858
289. ; $H ^ { 1 } ( \Gamma , k , \mathbf{v} ; P ( k ) )$ ; confidence 0.858
290. ; $\| P _ { n } - P _ { n } ^ { \prime } \| = 2 \operatorname { sup } \{ | P _ { n } ( A ) - P _ { n } ^ { \prime } ( A ) | : A \in \mathcal{A} _ { n } \},$ ; confidence 0.858
291. ; $\mathcal{S} _ { 4 } ( M ) = R \mathcal{L} / ( b _ { 0 } L _ { 0 } + b _ { 1 } L _ { 1 } + b _ { 2 } L _ { 2 } + b _ { 3 } L _ { 3 } )$ ; confidence 0.858
292. ; $\mathbf{Z} [ A ^ { \pm 1 } , \alpha ]$ ; confidence 0.858
293. ; $p - q$ ; confidence 0.857
294. ; $q \geq 2$ ; confidence 0.857
295. ; $\tilde{\pi}$ ; confidence 0.857
296. ; $T _ { \varphi }$ ; confidence 0.857
297. ; $d _X$ ; confidence 0.857
298. ; $\Lambda _ { 1 } = U C ( \theta _ { r } ) L / \kappa$ ; confidence 0.857
299. ; $Z ( l )$ ; confidence 0.857
300. ; $n - F _ { n _ { 1 } }$ ; confidence 0.857
Maximilian Janisch/latexlist/latex/NoNroff/36. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Maximilian_Janisch/latexlist/latex/NoNroff/36&oldid=45477