Namespaces
Variants
Actions

Difference between revisions of "Abel-Poisson summation method"

From Encyclopedia of Mathematics
Jump to: navigation, search
m (Ulf Rehmann moved page Abel–Poisson summation method to Abel-Poisson summation method: Make accessible under "search")
m (label)
 
Line 8: Line 8:
 
$$f(\rho,\phi)=\frac{a_0}{2}+\sum_{k=1}^\infty(a_k\cos k\phi+b_k\sin k\phi)\rho^k,$$
 
$$f(\rho,\phi)=\frac{a_0}{2}+\sum_{k=1}^\infty(a_k\cos k\phi+b_k\sin k\phi)\rho^k,$$
  
$$f(\rho,\phi)=\frac1\pi\int\limits_{-\pi}^\pi f(\phi+t)\frac{1-\rho^2}{2(1-2\rho\cos t+\rho^2)}dt.\tag{*}$$
+
$$f(\rho,\phi)=\frac1\pi\int\limits_{-\pi}^\pi f(\phi+t)\frac{1-\rho^2}{2(1-2\rho\cos t+\rho^2)}\,dt.\label{*}\tag{*}$$
  
If $f\in C(0,2\pi)$, then the integral on the right-hand side is a harmonic function for $|z|\equiv|\rho e^{i\phi}|<1$, which is, as has been shown by S. Poisson, a solution of the Dirichlet problem for the disc. The [[Abel summation method|Abel summation method]] applied to Fourier series was therefore named the Abel–Poisson summation method, and the integral \ref{*} was named the [[Poisson integral|Poisson integral]].
+
If $f\in C(0,2\pi)$, then the integral on the right-hand side is a harmonic function for $|z|\equiv|\rho e^{i\phi}|<1$, which is, as has been shown by S. Poisson, a solution of the Dirichlet problem for the disc. The [[Abel summation method|Abel summation method]] applied to Fourier series was therefore named the Abel–Poisson summation method, and the integral \eqref{*} was named the [[Poisson integral|Poisson integral]].
  
 
If $(\rho,\phi)$ are polar coordinates of a point inside the disc of radius one, then one can consider the limit of $f(\rho,\phi)$ as the point $M(\rho,\phi)$ approaches a point on the bounding circle not by a radial or by a tangential but rather along an arbitrary path. In this situation the Schwarz theorem applies: If $f$ belongs to $L[0,2\pi]$ and is continuous at a point $\phi_0$, then
 
If $(\rho,\phi)$ are polar coordinates of a point inside the disc of radius one, then one can consider the limit of $f(\rho,\phi)$ as the point $M(\rho,\phi)$ approaches a point on the bounding circle not by a radial or by a tangential but rather along an arbitrary path. In this situation the Schwarz theorem applies: If $f$ belongs to $L[0,2\pi]$ and is continuous at a point $\phi_0$, then

Latest revision as of 17:35, 14 February 2020

One of the methods for summing Fourier series. The Fourier series of a function $f\in L[0,2\pi]$ is summable by the Abel–Poisson method at a point $\phi$ to a number $S$ if

$$\lim_{\rho\to1-0}f(\rho,\phi)=S,$$

where

$$f(\rho,\phi)=\frac{a_0}{2}+\sum_{k=1}^\infty(a_k\cos k\phi+b_k\sin k\phi)\rho^k,$$

$$f(\rho,\phi)=\frac1\pi\int\limits_{-\pi}^\pi f(\phi+t)\frac{1-\rho^2}{2(1-2\rho\cos t+\rho^2)}\,dt.\label{*}\tag{*}$$

If $f\in C(0,2\pi)$, then the integral on the right-hand side is a harmonic function for $|z|\equiv|\rho e^{i\phi}|<1$, which is, as has been shown by S. Poisson, a solution of the Dirichlet problem for the disc. The Abel summation method applied to Fourier series was therefore named the Abel–Poisson summation method, and the integral \eqref{*} was named the Poisson integral.

If $(\rho,\phi)$ are polar coordinates of a point inside the disc of radius one, then one can consider the limit of $f(\rho,\phi)$ as the point $M(\rho,\phi)$ approaches a point on the bounding circle not by a radial or by a tangential but rather along an arbitrary path. In this situation the Schwarz theorem applies: If $f$ belongs to $L[0,2\pi]$ and is continuous at a point $\phi_0$, then

$$\lim_{(\rho,\phi)\to(1,\phi_0)}f(\rho,\phi)=f(\phi_0)$$

irrespective of the path along which the point $M(\rho,\phi)$ approaches the point $P(1,\phi_0)$ as long as that path remains within the disc with radius one.

References

[1] N.K. [N.K. Bari] Bary, "A treatise on trigonometric series" , Pergamon (1964) (Translated from Russian)


Comments

A theorem related to Schwarz' theorem stated above is Fatou's theorem: If $f\in L[0,2\pi]$, then for almost all $\phi_0$

$$\lim_{(\rho,\phi)\to(1,\phi_0)}f(\rho,\phi)=f(\phi_0)$$

as $M(\rho,\phi)$ approaches $P(1,\phi_0)$ non-tangentially inside the disc, cf. [a2], pp. 129-130.

References

[a1] A. Zygmund, "Trigonometric series" , 1–2 , Cambridge Univ. Press (1988)
[a2] M. Tsuji, "Potential theory in modern function theory" , Maruzen (1975)
How to Cite This Entry:
Abel-Poisson summation method. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Abel-Poisson_summation_method&oldid=44768
This article was adapted from an original article by A.A. Zakharov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article