Namespaces
Variants
Actions

Difference between revisions of "Limit of star-likeness"

From Encyclopedia of Mathematics
Jump to: navigation, search
(TeX)
m (dots)
Line 2: Line 2:
 
''exact radius of star-likeness, bound of star-likeness''
 
''exact radius of star-likeness, bound of star-likeness''
  
The least upper bound $R_U$ of the radii of discs $|z|\leq r$, where $U$ is some class of functions $w=f(z)+\dots$ that are regular and univalent in $|z|<1$, such that the functions from $U$ on the disc $|z|<1$ map the discs $|z|\leq r$ onto star-like domains (cf. [[Star-like domain|Star-like domain]]) about the point $w=0$. Any number $r$ in the interval $0<r<R_U$ is called a radius of star-likeness of the class $U$.
+
The least upper bound $R_U$ of the radii of discs $|z|\leq r$, where $U$ is some class of functions $w=f(z)+\dotsb$ that are regular and univalent in $|z|<1$, such that the functions from $U$ on the disc $|z|<1$ map the discs $|z|\leq r$ onto star-like domains (cf. [[Star-like domain|Star-like domain]]) about the point $w=0$. Any number $r$ in the interval $0<r<R_U$ is called a radius of star-likeness of the class $U$.
  
 
The limit of star-likeness is usually found by using the following criterion of star-likeness: A disc $|z|<r$ is mapped onto a star-like domain by $w=f(z)$ if and only if on $|z|=r$,
 
The limit of star-likeness is usually found by using the following criterion of star-likeness: A disc $|z|<r$ is mapped onto a star-like domain by $w=f(z)$ if and only if on $|z|=r$,
Line 12: Line 12:
 
$$\left|\arg\frac{zf'(z)}{f(z)}\right|\leq\frac\pi2.$$
 
$$\left|\arg\frac{zf'(z)}{f(z)}\right|\leq\frac\pi2.$$
  
The limit of star-likeness $R_S$ of the class $S$ of all functions $f(z)=z+\dots$ that are regular and univalent in the disc $|z|<1$ is equal to $\tanh(\pi/4)=0.65\dots$.
+
The limit of star-likeness $R_S$ of the class $S$ of all functions $f(z)=z+\dotsb$ that are regular and univalent in the disc $|z|<1$ is equal to $\tanh(\pi/4)=0.65\dots$.
  
 
====References====
 
====References====

Revision as of 14:33, 14 February 2020

exact radius of star-likeness, bound of star-likeness

The least upper bound $R_U$ of the radii of discs $|z|\leq r$, where $U$ is some class of functions $w=f(z)+\dotsb$ that are regular and univalent in $|z|<1$, such that the functions from $U$ on the disc $|z|<1$ map the discs $|z|\leq r$ onto star-like domains (cf. Star-like domain) about the point $w=0$. Any number $r$ in the interval $0<r<R_U$ is called a radius of star-likeness of the class $U$.

The limit of star-likeness is usually found by using the following criterion of star-likeness: A disc $|z|<r$ is mapped onto a star-like domain by $w=f(z)$ if and only if on $|z|=r$,

$$\frac{\partial\arg f(z)}{\partial\phi}=\operatorname{Re}\left[\frac{zf'(z)}{f(z)}\right]\geq0,\quad z=re^{i\phi},$$

or, equivalently,

$$\left|\arg\frac{zf'(z)}{f(z)}\right|\leq\frac\pi2.$$

The limit of star-likeness $R_S$ of the class $S$ of all functions $f(z)=z+\dotsb$ that are regular and univalent in the disc $|z|<1$ is equal to $\tanh(\pi/4)=0.65\dots$.

References

[1] G.M. Goluzin, "Geometric theory of functions of a complex variable" , Transl. Math. Monogr. , 26 , Amer. Math. Soc. (1969) (Translated from Russian)


Comments

References

[a1] P.L. Duren, "Univalent functions" , Springer (1983) pp. Sect. 10.11
How to Cite This Entry:
Limit of star-likeness. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Limit_of_star-likeness&oldid=44663
This article was adapted from an original article by E.G. Goluzina (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article