Difference between revisions of "Dirichlet discontinuous multiplier"
From Encyclopedia of Mathematics
(TeX) |
m (spacing) |
||
Line 2: | Line 2: | ||
The integral | The integral | ||
− | $$\int\limits_0^\infty\frac{\sin\alpha x}{x}\cos\beta | + | $$\int\limits_0^\infty\frac{\sin\alpha x}{x}\cos\beta x\,dx=\begin{cases}\frac\pi2&\text{if }\beta<\alpha,\\\frac\pi4&\text{if }\beta=\alpha,\\0&\text{if }\beta>\alpha,\end{cases}$$ |
which is a discontinuous function of the parameters $\alpha>0$ and $\beta>0$. Used by P.G.L. Dirichlet in his studies on the attraction of ellipsoids [[#References|[1]]]. The integral was encountered earlier in the work of J. Fourier, S. Poisson and A. Legendre. | which is a discontinuous function of the parameters $\alpha>0$ and $\beta>0$. Used by P.G.L. Dirichlet in his studies on the attraction of ellipsoids [[#References|[1]]]. The integral was encountered earlier in the work of J. Fourier, S. Poisson and A. Legendre. |
Latest revision as of 14:14, 14 February 2020
The integral
$$\int\limits_0^\infty\frac{\sin\alpha x}{x}\cos\beta x\,dx=\begin{cases}\frac\pi2&\text{if }\beta<\alpha,\\\frac\pi4&\text{if }\beta=\alpha,\\0&\text{if }\beta>\alpha,\end{cases}$$
which is a discontinuous function of the parameters $\alpha>0$ and $\beta>0$. Used by P.G.L. Dirichlet in his studies on the attraction of ellipsoids [1]. The integral was encountered earlier in the work of J. Fourier, S. Poisson and A. Legendre.
References
[1] | P.G.L. Dirichlet, "Werke" , 1 , Chelsea, reprint (1969) |
[2] | G.M. Fichtenholz, "Differential und Integralrechnung" , 2–3 , Deutsch. Verlag Wissenschaft. (1964) |
How to Cite This Entry:
Dirichlet discontinuous multiplier. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Dirichlet_discontinuous_multiplier&oldid=44644
Dirichlet discontinuous multiplier. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Dirichlet_discontinuous_multiplier&oldid=44644
This article was adapted from an original article by T.P. Lukashenko (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article