Namespaces
Variants
Actions

Difference between revisions of "Voronoi summation method"

From Encyclopedia of Mathematics
Jump to: navigation, search
(TeX)
m (dots)
 
Line 2: Line 2:
 
A [[Matrix summation method|matrix summation method]] of sequences. It is defined by a numerical sequence $\{p_n\}$ and denoted by the symbol $(W,p_n)$. A sequence $\{s_n\}$ is summable by the method $(W,p_n)$ to a number $S$ if
 
A [[Matrix summation method|matrix summation method]] of sequences. It is defined by a numerical sequence $\{p_n\}$ and denoted by the symbol $(W,p_n)$. A sequence $\{s_n\}$ is summable by the method $(W,p_n)$ to a number $S$ if
  
$$\frac{s_0p_n+s_1p_{n-1}+\ldots+s_np_0}{p_0+\ldots+p_n}\to S$$
+
$$\frac{s_0p_n+s_1p_{n-1}+\dotsb+s_np_0}{p_0+\dotsb+p_n}\to S$$
  
In particular, if $p_0=1$, $p_k=0$, $k\geq1$, the summability of a sequence by the $(W,p_n)$-method to a number $S$ means that the sequence converges to $S$. For $p_k=1$, $k\geq0$, one obtains the Cesàro summation method (cf. [[Cesàro summation methods|Cesàro summation methods]]). For $p_0>0$, $p_k\geq1$, $k\geq1$, the $(W,p_n)$-method is regular (cf. [[Regular summation methods|Regular summation methods]]) if and only if $p_n/(p_0+\ldots+p_n)\to0$. Any two regular methods $(W,p_n')$ and $(W,p_n'')$ are compatible (cf. [[Compatibility of summation methods|Compatibility of summation methods]]).
+
In particular, if $p_0=1$, $p_k=0$, $k\geq1$, the summability of a sequence by the $(W,p_n)$-method to a number $S$ means that the sequence converges to $S$. For $p_k=1$, $k\geq0$, one obtains the Cesàro summation method (cf. [[Cesàro summation methods|Cesàro summation methods]]). For $p_0>0$, $p_k\geq1$, $k\geq1$, the $(W,p_n)$-method is regular (cf. [[Regular summation methods|Regular summation methods]]) if and only if $p_n/(p_0+\dotsb+p_n)\to0$. Any two regular methods $(W,p_n')$ and $(W,p_n'')$ are compatible (cf. [[Compatibility of summation methods|Compatibility of summation methods]]).
  
 
The Voronoi summation method was first introduced by G.F. Voronoi [[#References|[1]]] and was rediscovered by N.E. Nörlund in 1919. The method is therefore sometimes referred to in western literature as the Nörlund method and the symbol given to it is $(N,p_n)$ or $N(p_n)$.
 
The Voronoi summation method was first introduced by G.F. Voronoi [[#References|[1]]] and was rediscovered by N.E. Nörlund in 1919. The method is therefore sometimes referred to in western literature as the Nörlund method and the symbol given to it is $(N,p_n)$ or $N(p_n)$.

Latest revision as of 13:40, 14 February 2020

A matrix summation method of sequences. It is defined by a numerical sequence $\{p_n\}$ and denoted by the symbol $(W,p_n)$. A sequence $\{s_n\}$ is summable by the method $(W,p_n)$ to a number $S$ if

$$\frac{s_0p_n+s_1p_{n-1}+\dotsb+s_np_0}{p_0+\dotsb+p_n}\to S$$

In particular, if $p_0=1$, $p_k=0$, $k\geq1$, the summability of a sequence by the $(W,p_n)$-method to a number $S$ means that the sequence converges to $S$. For $p_k=1$, $k\geq0$, one obtains the Cesàro summation method (cf. Cesàro summation methods). For $p_0>0$, $p_k\geq1$, $k\geq1$, the $(W,p_n)$-method is regular (cf. Regular summation methods) if and only if $p_n/(p_0+\dotsb+p_n)\to0$. Any two regular methods $(W,p_n')$ and $(W,p_n'')$ are compatible (cf. Compatibility of summation methods).

The Voronoi summation method was first introduced by G.F. Voronoi [1] and was rediscovered by N.E. Nörlund in 1919. The method is therefore sometimes referred to in western literature as the Nörlund method and the symbol given to it is $(N,p_n)$ or $N(p_n)$.

References

[1] G.F. [G.F. Voronoi] Woronoi, "Extension of the notion of the limit of the sum of terms of an infinite series" Ann. of Math. (2) , 33 (1932) pp. 422–428 ((With notes by J.D. Tamarkin.))
[2] G.H. Hardy, "Divergent series" , Clarendon Press (1949)


Comments

References

[a1] C.N. Moore, "Summable series and convergence factors" , Dover, reprint (1966)
How to Cite This Entry:
Voronoi summation method. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Voronoi_summation_method&oldid=44631
This article was adapted from an original article by F.I. Kharshiladze (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article