Namespaces
Variants
Actions

Difference between revisions of "User:Maximilian Janisch/latexlist/latex/NoNroff/72"

From Encyclopedia of Mathematics
Jump to: navigation, search
(AUTOMATIC EDIT of page 72 out of 77 with 300 lines: Updated image/latex database (currently 22833 images latexified; order by Length, ascending: False.)
 
(AUTOMATIC EDIT of page 72 out of 77 with 300 lines: Updated image/latex database (currently 22833 images latexified; order by Confidence, ascending: False.)
Line 1: Line 1:
 
== List ==
 
== List ==
1. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120180/w12018011.png ; $m ( . )$ ; confidence 0.995
+
1. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130070/f13007034.png ; $= \{ x _ { 1 } , \dots , x _ { m } | x _ { i } x ^ { k _ { i } + 1 } = x _ { i + 2 } ; \text { indices } ( \operatorname { mod } m ) \}$ ; confidence 0.208
  
2. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120180/w12018030.png ; $W ( v )$ ; confidence 0.956
+
2. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120270/s12027015.png ; $R _ { x } [ f ]$ ; confidence 0.208
  
3. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010291.png ; $G ( A )$ ; confidence 0.997
+
3. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120120/e12012093.png ; $w _ { i } ^ { ( t + 1 ) } = E ( q _ { i } | y _ { i } , \mu ^ { ( t ) } , \Sigma ^ { ( t ) } ) = \frac { \nu + p } { \nu + d _ { i } ^ { ( t ) } } , i = 1 , \dots , n$ ; confidence 0.208
  
4. https://www.encyclopediaofmath.org/legacyimages/l/l059/l059350/l05935074.png ; $W ( t )$ ; confidence 0.856
+
4. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130060/d13006029.png ; $m _ { E _ { 1 } , E _ { 2 } } ( A ) = c . \sum _ { B , C , A = B \cap C } m _ { E _ { 1 } } ( B ) m _ { E _ { 2 } } ( C )$ ; confidence 0.208
  
5. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120180/w1201809.png ; $V ( A )$ ; confidence 0.337
+
5. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240502.png ; $Z _ { i j }$ ; confidence 0.208
  
6. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012950/a012950134.png ; $2 r - 1$ ; confidence 0.990
+
6. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001098.png ; $k$ ; confidence 0.208
  
7. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120210/w12021031.png ; $m = 35$ ; confidence 1.000
+
7. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110400/a11040054.png ; $6$ ; confidence 0.208
  
8. https://www.encyclopediaofmath.org/legacyimages/q/q076/q076800/q07680060.png ; $r ( t )$ ; confidence 0.998
+
8. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110930/b11093018.png ; $Z _ { D }$ ; confidence 0.208
  
9. https://www.encyclopediaofmath.org/legacyimages/f/f110/f110050/f11005061.png ; $k ( z )$ ; confidence 0.992
+
9. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120020/d120020168.png ; $\gamma ( \pi _ { 1 } ) \leq 0$ ; confidence 0.208
  
10. https://www.encyclopediaofmath.org/legacyimages/x/x120/x120020/x12002041.png ; $B ( L )$ ; confidence 0.992
+
10. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120160/s12016016.png ; $\| . \| _ { k }$ ; confidence 0.208
  
11. https://www.encyclopediaofmath.org/legacyimages/q/q076/q076310/q076310155.png ; $U ( g )$ ; confidence 0.996
+
11. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130100/f1301005.png ; $( ( k _ { N } ) _ { N = 1 } ^ { \infty } , ( l _ { N } ) _ { N = 1 } ^ { \infty } )$ ; confidence 0.208
  
12. https://www.encyclopediaofmath.org/legacyimages/y/y120/y120020/y12002018.png ; $( i L )$ ; confidence 0.994
+
12. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120110/f12011046.png ; $Ke _ { 2 }$ ; confidence 0.208
  
13. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130010/z13001059.png ; $x ( n )$ ; confidence 0.989
+
13. https://www.encyclopediaofmath.org/legacyimages/c/c110/c110250/c11025029.png ; $e ^ { 2 }$ ; confidence 0.208
  
14. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130100/z13010063.png ; $P ( x )$ ; confidence 0.666
+
14. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120070/h12007036.png ; $c : \alpha \rightarrow b$ ; confidence 0.207
  
15. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130030/z13003078.png ; $Cm , N$ ; confidence 0.058
+
15. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130060/g130060120.png ; $: = \{ B = [ b _ { i } , j ] : b _ { i , i } = a _ { i , i } , \text { and } r _ { i } ( B ) = r _ { i } ( A ) , 1 \leq i \leq n \}$ ; confidence 0.207
  
16. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130070/z13007011.png ; $\pm g$ ; confidence 1.000
+
16. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110320/a1103208.png ; $+ h \sum _ { j = 1 } ^ { i - 1 } A _ { j } ( h T ) [ f ( t _ { m } + c _ { j } h , u _ { m + 1 } ^ { ( j ) } ) - T u _ { n j } ^ { ( j ) } + 1 ]$ ; confidence 0.207
  
17. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130070/z13007050.png ; $( Z A )$ ; confidence 0.993
+
17. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120070/w12007075.png ; $h _ { y }$ ; confidence 0.207
  
18. https://www.encyclopediaofmath.org/legacyimages/z/z120/z120020/z12002024.png ; $F m + 1$ ; confidence 0.548
+
18. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120250/d1202502.png ; $f : U \rightarrow R ^ { \kappa }$ ; confidence 0.207
  
19. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130110/z130110148.png ; $N ( s )$ ; confidence 0.637
+
19. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120060/v12006053.png ; $B _ { m } - B _ { N }$ ; confidence 0.207
  
20. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130130/z13013029.png ; $r < r D$ ; confidence 0.568
+
20. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120040/h12004029.png ; $V _ { \xi } \subseteq ^ { * } W$ ; confidence 0.207
  
21. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130010/a1300105.png ; $4$ ; confidence 0.531
+
21. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120130/a12013046.png ; $P _ { \theta } * ( X _ { n } - 1 , d x )$ ; confidence 0.207
  
22. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130010/a1300106.png ; $B$ ; confidence 0.895
+
22. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120030/d1200305.png ; $x _ { n } / x / y _ { n }$ ; confidence 0.207
  
23. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130010/a1300102.png ; $C$ ; confidence 0.838
+
23. https://www.encyclopediaofmath.org/legacyimages/v/v096/v096900/v09690033.png ; $T \rightarrow T | _ { P ^ { \prime } } H$ ; confidence 0.207
  
24. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010139.png ; $3$ ; confidence 1.000
+
24. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120260/a120260117.png ; $( m , X _ { 1 } , \dots , X _ { s } ) ^ { c }$ ; confidence 0.207
  
25. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010117.png ; $D$ ; confidence 0.538
+
25. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120090/b12009031.png ; $\xi = e ^ { i \alpha | n \tau } f$ ; confidence 0.207
  
26. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001030.png ; $5$ ; confidence 0.885
+
26. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130040/z13004017.png ; $| \frac { n } { 2 } | \lfloor \frac { n - 1 } { 2 } \rfloor \lfloor \frac { m } { 2 } \rfloor \lfloor \frac { m - 1 } { 2 } \rfloor$ ; confidence 0.206
  
27. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010141.png ; $7$ ; confidence 0.937
+
27. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120030/m12003090.png ; $\vec { x } _ { j }$ ; confidence 0.206
  
28. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001057.png ; $0$ ; confidence 0.311
+
28. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120130/m12013074.png ; $\frac { d N } { d t } = \lambda N ( 1 - ( \frac { N } { K } ) ^ { x } )$ ; confidence 0.206
  
29. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001098.png ; $k$ ; confidence 0.208
+
29. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120200/d12020015.png ; $p _ { N } ( s ) = \sum _ { m = 1 } ^ { n } a _ { m j } m ^ { - s }$ ; confidence 0.206
  
30. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t1200104.png ; $m$ ; confidence 0.499
+
30. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011600/a01160050.png ; $r$ ; confidence 0.206
  
31. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001014.png ; $5$ ; confidence 0.574
+
31. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130310/a13031033.png ; $\mu _ { n } ( X ) : = \mu ( X ) / \sum _ { R = n } \mu ( Y )$ ; confidence 0.206
  
32. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t1200109.png ; $1$ ; confidence 0.742
+
32. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120040/l12004082.png ; $f _ { l + 1 / 2 } ^ { \operatorname { mac } } = \left\{ \begin{array} { l } { \frac { 1 } { 2 } ( \hat { f } _ { i } ^ { + } + f _ { l + 1 } ^ { n } ) } \\ { \text { or } } \\ { \frac { 1 } { 2 } ( \hat { f } _ { i + 1 } ^ { - } + f _ { l } ^ { n } ) } \end{array} \right.$ ; confidence 0.206
  
33. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001091.png ; $z$ ; confidence 1.000
+
33. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120070/w12007011.png ; $q _ { t }$ ; confidence 0.206
  
34. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010138.png ; $D$ ; confidence 0.661
+
34. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130020/i13002026.png ; $X = I _ { A _ { 1 } } + \ldots + I _ { A _ { n } }$ ; confidence 0.206
  
35. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001085.png ; $0$ ; confidence 0.355
+
35. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120160/f12016027.png ; $C \backslash \sigma _ { TE } ( T )$ ; confidence 0.206
  
36. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001078.png ; $1$ ; confidence 0.998
+
36. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130020/b13002041.png ; $w ^ { * }$ ; confidence 0.206
  
37. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001074.png ; $2$ ; confidence 1.000
+
37. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120100/a12010052.png ; $i ^ { p }$ ; confidence 0.206
  
38. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010020/a0100206.png ; $t$ ; confidence 0.637
+
38. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120260/a120260106.png ; $\hat { y } = ( \hat { y } _ { 1 } , \dots , \hat { y } _ { n } ) \in \hat { A } [ [ X ] ] ^ { n }$ ; confidence 0.205
  
39. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013088.png ; $t$ ; confidence 0.354
+
39. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120010/c12001076.png ; $E _ { i } ^ { * * }$ ; confidence 0.205
  
40. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013059.png ; $i$ ; confidence 0.570
+
40. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120150/m12015028.png ; $\int _ { Y } \int x f _ { X , Y } d X d Y = 1$ ; confidence 0.205
  
41. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013021.png ; $h$ ; confidence 0.644
+
41. https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f11016062.png ; $\Omega [ D ]$ ; confidence 0.205
  
42. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013083.png ; $C$ ; confidence 0.175
+
42. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130080/d13008096.png ; $= \{ z \in D : \operatorname { liminf } _ { W \rightarrow X } [ K _ { D } ( z , w ) - K _ { D } ( z 0 , w ) ] < \frac { 1 } { 2 } \operatorname { log } R \}$ ; confidence 0.205
  
43. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013066.png ; $5$ ; confidence 0.571
+
43. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120100/m12010012.png ; $\Delta _ { x } = \{ 0 , \dots , n \}$ ; confidence 0.205
  
44. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013049.png ; $k$ ; confidence 0.504
+
44. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120100/a12010060.png ; $D ( \Delta ) = H _ { \diamond } ^ { 1 } \cap H ^ { 2 } ( \Omega )$ ; confidence 0.205
  
45. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a1301304.png ; $8$ ; confidence 0.857
+
45. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130070/b13007058.png ; $\sigma : a \mapsto a b , b \mapsto b , \gamma _ { r } : \alpha \mapsto a ^ { r + 1 } b ^ { 2 } a ^ { - r } , r \geq 1$ ; confidence 0.205
  
46. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013016.png ; $8$ ; confidence 0.804
+
46. https://www.encyclopediaofmath.org/legacyimages/c/c027/c027180/c02718026.png ; $C _ { i }$ ; confidence 0.205
  
47. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013085.png ; $L$ ; confidence 0.550
+
47. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130100/w13010040.png ; $= - I ^ { \kappa } a ( b ) \in ( - \infty , 0 ) , \text { for all } 0 < b < \kappa _ { \alpha }$ ; confidence 0.205
  
48. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013090.png ; $N$ ; confidence 0.183
+
48. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120240/s1202401.png ; $h ^ { 5 }$ ; confidence 0.205
  
49. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013047.png ; $i$ ; confidence 0.889
+
49. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010600/a01060019.png ; $H _ { \hat { j } }$ ; confidence 0.205
  
50. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a1301307.png ; $Q$ ; confidence 0.380
+
50. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120020/v12002088.png ; $H ^ { 0 } ( f ^ { - 1 } ( y ) , G ) = G , H ^ { H } ( f ^ { - 1 } ( y ) , G ) = 0$ ; confidence 0.205
  
51. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013073.png ; $Q$ ; confidence 0.095
+
51. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w130080169.png ; $\alpha = 1 , \dots , 1$ ; confidence 0.205
  
52. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013048.png ; $i$ ; confidence 0.474
+
52. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032000/d03200040.png ; $k 2$ ; confidence 0.205
  
53. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420128.png ; $h$ ; confidence 0.307
+
53. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120250/s12025055.png ; $\hat { h } = 1$ ; confidence 0.204
  
54. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013017.png ; $P$ ; confidence 0.462
+
54. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120020/v120020189.png ; $\hat { t } \square ^ { * } : H ^ { n + 1 } ( \overline { D } \square ^ { n + 1 } , S ^ { n } ) \rightarrow H ^ { n + 1 } ( \Gamma _ { \square \square ^ { n + 1 } } , \Gamma _ { S ^ { n } } )$ ; confidence 0.204
  
55. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013074.png ; $T$ ; confidence 0.973
+
55. https://www.encyclopediaofmath.org/legacyimages/m/m063/m063770/m06377012.png ; $x ^ { ( x ) } + a _ { x } - 1 z ^ { ( x - 1 ) } + \ldots + a _ { 0 } x = 0$ ; confidence 0.204
  
56. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010080/a0100803.png ; $x$ ; confidence 0.475
+
56. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120210/m12021017.png ; $K , L \in K ^ { n }$ ; confidence 0.204
  
57. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120220/a12022022.png ; $Y$ ; confidence 0.894
+
57. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110580/a11058063.png ; $\hat { l } _ { \uparrow }$ ; confidence 0.204
  
58. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120220/a12022021.png ; $T$ ; confidence 0.750
+
58. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031670/d03167019.png ; $\xi _ { 4 }$ ; confidence 0.204
  
59. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120220/a12022033.png ; $5$ ; confidence 0.396
+
59. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012060/a01206014.png ; $I _ { \uparrow }$ ; confidence 0.204
  
60. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240135.png ; $A$ ; confidence 0.952
+
60. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120040/c12004054.png ; $CF ( \zeta - z , w ) = \frac { ( n - 1 ) ! } { ( 2 \pi i ) ^ { n } } \frac { \sum _ { k = 1 } ^ { n } ( - 1 ) ^ { k - 1 } w _ { k } d w [ k ] \wedge d \zeta } { \langle w , \zeta - z \rangle ^ { n } }$ ; confidence 0.204
  
61. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a13024051.png ; $3$ ; confidence 0.891
+
61. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520270.png ; $\overline { b } 1$ ; confidence 0.204
  
62. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420127.png ; $D$ ; confidence 0.683
+
62. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130050/l1300505.png ; $a ^ { ( t ) } = ( \alpha _ { t } , \alpha _ { t } + 1 , \ldots , \alpha _ { x } + t - 1 ) ( t \geq 0 )$ ; confidence 0.204
  
63. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240101.png ; $x$ ; confidence 0.751
+
63. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130060/h13006014.png ; $T _ { n } T _ { m } = \sum _ { d } \sum _ { d ( n , m ) } d ^ { k - 1 } T _ { m n / d } 2$ ; confidence 0.203
  
64. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240137.png ; $B$ ; confidence 0.651
+
64. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p12017089.png ; $\vec { a }$ ; confidence 0.203
  
65. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240478.png ; $0$ ; confidence 0.969
+
65. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120020/j12002021.png ; $\int _ { 1 } | \varphi - \varphi _ { 1 } | ^ { 2 } d \vartheta \leq c ^ { 2 } | I |$ ; confidence 0.203
  
66. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420143.png ; $1$ ; confidence 0.989
+
66. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120430/b12043033.png ; $S _ { 0 } . = . \circ \Psi _ { B , B } \circ ( S \otimes S )$ ; confidence 0.203
  
67. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240452.png ; $P$ ; confidence 0.403
+
67. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130010/l1300107.png ; $x = ( x _ { 1 } , \dots , x _ { N } ) \in T ^ { x }$ ; confidence 0.203
  
68. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240545.png ; $2$ ; confidence 0.985
+
68. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120130/b12013077.png ; $A ^ { - \infty } = \cup _ { p > 0 } L _ { w } ^ { p }$ ; confidence 0.203
  
69. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240141.png ; $c$ ; confidence 0.324
+
69. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120270/m12027043.png ; $a _ { j k }$ ; confidence 0.203
  
70. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240106.png ; $t$ ; confidence 0.895
+
70. https://www.encyclopediaofmath.org/legacyimages/n/n066/n066630/n06663045.png ; $H _ { p } ^ { r _ { 1 } , \dots , r _ { i - 1 } , r _ { i } + \epsilon , r _ { i + 1 } , \dots , r _ { n } }$ ; confidence 0.203
  
71. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240444.png ; $N$ ; confidence 0.740
+
71. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130050/h13005025.png ; $\hat { \psi } ( x , k ) \approx \left\{ \begin{array} { l l } { e ^ { - i k x } + b ( k ) } & { e ^ { i k x } } \\ { \alpha ( k ) e ^ { - i k x } } & { \text { as } x } \end{array} \right.$ ; confidence 0.203
  
72. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240500.png ; $2$ ; confidence 0.672
+
72. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120070/c1200707.png ; $C ^ { n } ( C , M ) = \prod _ { \langle \alpha _ { 1 } , \ldots , \alpha _ { N } \rangle } M ( \operatorname { codom } \alpha _ { n } ) , n > 0$ ; confidence 0.202
  
73. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240194.png ; $8$ ; confidence 0.593
+
73. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120100/l12010098.png ; $- E$ ; confidence 0.202
  
74. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240343.png ; $2$ ; confidence 0.473
+
74. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120100/b12010045.png ; $L _ { Y }$ ; confidence 0.202
  
75. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a13024029.png ; $1$ ; confidence 0.458
+
75. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120080/q12008057.png ; $E [ W ] _ { \operatorname { exh } } = \frac { \delta ^ { 2 } } { 2 r } + \frac { P \lambda \dot { b } ^ { ( 2 ) } + r ( P - \rho ) } { 2 ( 1 - \rho ) }$ ; confidence 0.202
  
76. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240110.png ; $x$ ; confidence 0.968
+
76. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120070/h12007015.png ; $a , b \in A _ { M }$ ; confidence 0.202
  
77. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240213.png ; $7$ ; confidence 0.945
+
77. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120160/b12016071.png ; $\{ e _ { i } \} _ { 1 } ^ { n }$ ; confidence 0.202
  
78. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240485.png ; $B$ ; confidence 0.738
+
78. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w12011016.png ; $\hat { u } ( \xi ) = \int e ^ { - 2 i \pi x . \xi } u ( x ) d x$ ; confidence 0.202
  
79. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420169.png ; $K$ ; confidence 0.738
+
79. https://www.encyclopediaofmath.org/legacyimages/q/q130/q130040/q13004027.png ; $\operatorname { l(f } ^ { \prime } ( x ) ) = \operatorname { min } \{ | f ^ { \prime } ( x ) h | : | h | = 1 \}$ ; confidence 0.202
  
80. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240254.png ; $6$ ; confidence 0.612
+
80. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130040/t13004051.png ; $D x ^ { N }$ ; confidence 0.202
  
81. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a13024019.png ; $y$ ; confidence 0.478
+
81. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130050/l1300509.png ; $( \alpha _ { k } ) _ { k } = 0 , \ldots , N - 1$ ; confidence 0.202
  
82. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240209.png ; $S$ ; confidence 0.868
+
82. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120130/l1201305.png ; $\hat { Q }$ ; confidence 0.202
  
83. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240219.png ; $I$ ; confidence 0.738
+
83. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130050/o13005085.png ; $x _ { x } \in \mathfrak { H }$ ; confidence 0.202
  
84. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240231.png ; $a$ ; confidence 0.607
+
84. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130120/b13012058.png ; $\| \alpha \| _ { P M } ^ { * } = \operatorname { sup } _ { n \geq 0 } \frac { 1 } { n + 1 } \sum _ { k = - n } ^ { n } | d _ { k } |$ ; confidence 0.201
  
85. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240494.png ; $k = 1$ ; confidence 0.990
+
85. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120020/w12002025.png ; $\operatorname { l } _ { p } ^ { p } ( P , Q ) = \int _ { 0 } ^ { 1 } | F ^ { - 1 } ( u ) - G ^ { - 1 } ( u ) | ^ { p } d u , p \geq 1$ ; confidence 0.201
  
86. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240496.png ; $s = 2$ ; confidence 0.899
+
86. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120100/l12010043.png ; $L _ { \gamma , n } = L _ { \gamma , n } ^ { c }$ ; confidence 0.201
  
87. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420110.png ; $f$ ; confidence 1.000
+
87. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120260/s1202606.png ; $\int _ { S ^ { \prime } ( R ) } e ^ { i \langle X , \xi \rangle _ { d } } d \mu ( x ) = e ^ { - \| \xi \| _ { 2 } ^ { 2 } / 2 } , \xi \in S ( R )$ ; confidence 0.201
  
88. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240495.png ; $m = 2$ ; confidence 0.996
+
88. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130060/l13006082.png ; $( z _ { k } , \ldots , z _ { k } + r - 1 )$ ; confidence 0.201
  
89. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120030/a12003011.png ; $a , b$ ; confidence 0.915
+
89. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120130/c1201308.png ; $( M ) \leq v , | \text { sec. curv. } M | \leq \kappa$ ; confidence 0.201
  
90. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120040/a12004022.png ; $c > 0$ ; confidence 0.962
+
90. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120150/p12015058.png ; $\sqrt { 2 }$ ; confidence 0.201
  
91. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120040/a12004011.png ; $t > 0$ ; confidence 1.000
+
91. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130030/i13003079.png ; $Ch ( \text { ind } ( P ) ) = ( - 1 ) ^ { n } \pi * ( \text { ind } ( [ a ] ) T ( M | B ) )$ ; confidence 0.201
  
92. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040468.png ; $CPC$ ; confidence 0.846
+
92. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130060/a130060149.png ; $P _ { E } ^ { \# } ( n ) \sim \frac { 1 } { 468 \sqrt { \pi } } 4 ^ { n } n ^ { - 7 / 2 } \text { asn } \rightarrow \infty$ ; confidence 0.201
  
93. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a11042078.png ; $4$ ; confidence 0.978
+
93. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130070/h13007017.png ; $a _ { 11 } f _ { 1 } + \ldots + a _ { i l } f _ { l } = 0 , i = 1 , \ldots , m$ ; confidence 0.201
  
94. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040352.png ; $CPC$ ; confidence 0.705
+
94. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t12020043.png ; $\mathscr { Q } ( k ) = \sum _ { j = 1 } ^ { n } b _ { j } ^ { \prime \prime } ( k ) z _ { j } ^ { k }$ ; confidence 0.201
  
95. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040132.png ; $IPC$ ; confidence 0.900
+
95. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130120/a13012053.png ; $e ^ { k \operatorname { ln } k }$ ; confidence 0.201
  
96. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a13004089.png ; $D$ ; confidence 0.984
+
96. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130180/m13018052.png ; $\mu ( 0 , x ) = - \sum _ { i j } \mu ( 0 , u )$ ; confidence 0.201
  
97. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040542.png ; $i < m$ ; confidence 0.786
+
97. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130060/v13006022.png ; $\hat { E S }$ ; confidence 0.201
  
98. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040285.png ; $\$ 4$ ; confidence 0.460
+
98. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040641.png ; $\langle M e _ { S } _ { P } \mathfrak { M } / \Omega F _ { S } \mathfrak { M } , F _ { S _ { P } } \mathfrak { M } / \Omega F _ { S } _ { P } \mathfrak { M } \rangle$ ; confidence 0.201
  
99. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040288.png ; $CoA$ ; confidence 0.351
+
99. https://www.encyclopediaofmath.org/legacyimages/c/c020/c020080/c02008019.png ; $N$ ; confidence 0.200
  
100. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a13004012.png ; $n = 2$ ; confidence 0.929
+
100. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040655.png ; $S _ { P } , \mathfrak { M } = \operatorname { mng } _ { P } , \mathfrak { N } \circ h$ ; confidence 0.200
  
101. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040263.png ; $- 1 A$ ; confidence 0.469
+
101. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130070/h13007060.png ; $a _ { i 1 } f _ { 1 } + \ldots + a _ { i l } f _ { l } = b _ { i } , i = 1 , \ldots , m$ ; confidence 0.200
  
102. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130050/a130050237.png ; $v < 1$ ; confidence 0.483
+
102. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120220/b12022033.png ; $\rho f ( 1 , u _ { f } , \frac { 1 } { 2 } | u f | ^ { 2 } + \frac { N } { 2 } T _ { f } ) = \int ( 1 , v , \frac { | v ^ { 2 } } { 2 } ) f ( v ) d v$ ; confidence 0.200
  
103. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010240/a01024027.png ; $2$ ; confidence 0.729
+
103. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120240/e12024056.png ; $d _ { p } \quad \square ( E / K ) \leq 2 \text { ord } _ { p } [ E ( K ) : Z y _ { K } ]$ ; confidence 0.200
  
104. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130050/a130050236.png ; $q > 1$ ; confidence 0.980
+
104. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120070/w120070102.png ; $\| e ^ { i \zeta A } \| \leq C ^ { \prime } ( 1 + | \zeta | ) ^ { s ^ { \prime } } e ^ { \gamma | \operatorname { lm } \zeta | }$ ; confidence 0.200
  
105. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130050/a130050268.png ; $k > 0$ ; confidence 0.907
+
105. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130510/s1305108.png ; $= \operatorname { min } 5 =$ ; confidence 0.200
  
106. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130050/a130050295.png ; $k > 1$ ; confidence 0.999
+
106. https://www.encyclopediaofmath.org/legacyimages/n/n066/n066960/n0669604.png ; $\frac { e ^ { - ( x + \lambda ) / 2 } x ^ { ( n - 2 ) / 2 } } { 2 ^ { x / 2 } \Gamma ( 1 / 2 ) } \sum _ { r = 0 } ^ { \infty } \frac { \lambda ^ { r } x ^ { r } } { ( 2 r ) ! } \frac { \Gamma ( r + 1 / 2 ) } { \Gamma ( r + n / 2 ) }$ ; confidence 0.200
  
107. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130050/a130050157.png ; $c > 1$ ; confidence 0.923
+
107. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120510/b12051094.png ; $d = d + ( \alpha - ( y _ { n } ^ { T } - 1 ) ^ { d } / y _ { n - 1 } ^ { T } s _ { n - 1 } ) s _ { n - 1 }$ ; confidence 0.200
  
108. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130050/a130050267.png ; $C > 0$ ; confidence 0.904
+
108. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120050/s12005019.png ; $S _ { 0 } , \ldots , S _ { n - 1 }$ ; confidence 0.200
  
109. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120050/a12005069.png ; $0 , T$ ; confidence 0.403
+
109. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b130200120.png ; $b ^ { t ^ { s } }$ ; confidence 0.200
  
110. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120050/a12005044.png ; $B > 0$ ; confidence 0.994
+
110. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130070/r13007069.png ; $= \sum _ { j , m \atop j , m } K ( z _ { m } , y _ { j } ) c _ { j } \overline { \beta _ { m } }$ ; confidence 0.200
  
111. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120050/a120050110.png ; $M$ ; confidence 0.455
+
111. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130180/m13018075.png ; $\mu ( \overline { \emptyset } , X ) = \sum _ { A : \overline { H } = X } ( - 1 ) ^ { | A | }$ ; confidence 0.200
  
112. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120070/a120070100.png ; $< 2 m$ ; confidence 0.991
+
112. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120020/d12002099.png ; $\hat { c } ^ { 2 }$ ; confidence 0.199
  
113. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420118.png ; $H$ ; confidence 0.998
+
113. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t120200198.png ; $> | z _ { h _ { 1 } } + 1 | \geq \ldots \geq | z _ { k _ { 2 } } | > \delta _ { 2 } \geq$ ; confidence 0.199
  
114. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130060/a130060143.png ; $\pi$ ; confidence 0.434
+
114. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120070/a12007061.png ; $A u \in B ( D _ { A } ( \alpha , \infty ) ) \cap C ^ { \alpha } ( [ 0 , T ] ; X )$ ; confidence 0.199
  
115. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110100/a1101003.png ; $V$ ; confidence 0.987
+
115. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120260/d12026033.png ; $| X _ { N } | = \operatorname { sup } _ { t } | X _ { N } ( t ) |$ ; confidence 0.199
  
116. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130070/a13007030.png ; $c = 7$ ; confidence 0.623
+
116. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040490/f04049012.png ; $\frac { 2 \nu ^ { 2 } \frac { 2 } { 2 } ( \nu _ { 1 } + \nu _ { 2 } - 2 ) } { \nu _ { 1 } ( \nu _ { 2 } - 2 ) ^ { 2 } ( \nu _ { 2 } - 4 ) } \quad \text { for } \nu _ { 2 } > 4$ ; confidence 0.199
  
117. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130070/a13007090.png ; $m < n$ ; confidence 0.999
+
117. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120200/c12020048.png ; $\angle D$ ; confidence 0.199
  
118. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130070/a13007029.png ; $b = 5$ ; confidence 1.000
+
118. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120020/j120020183.png ; $P [ \tau \in \Pi ] = | I | / ( 2 \pi )$ ; confidence 0.199
  
119. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130070/a13007018.png ; $945$ ; confidence 0.998
+
119. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120030/l12003021.png ; $S q ^ { i } x _ { n } = 0$ ; confidence 0.199
  
120. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130070/a130070106.png ; $d | n$ ; confidence 0.379
+
120. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120270/b12027054.png ; $F ^ { ( 0 ) } ( u ) = I _ { [ 0 , \infty ) } ^ { ( 2 ) }$ ; confidence 0.199
  
121. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130070/a130070128.png ; $k > 8$ ; confidence 0.980
+
121. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120310/d12031018.png ; $f ( T ) = \sum _ { n = 0 } ^ { \infty } \alpha _ { n } T ^ { n }$ ; confidence 0.199
  
122. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130070/a13007050.png ; $b > 1$ ; confidence 0.998
+
122. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110470/b11047070.png ; $C ^ { i k }$ ; confidence 0.199
  
123. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130070/a13007045.png ; $d < n$ ; confidence 0.944
+
123. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130510/s13051049.png ; $| V$ ; confidence 0.199
  
124. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130070/a13007028.png ; $a = 2$ ; confidence 0.691
+
124. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110040/a11004045.png ; $a$ ; confidence 0.199
  
125. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130070/a13007025.png ; $b = 3$ ; confidence 1.000
+
125. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120230/e120230155.png ; $\frac { d } { d t } A ( \sigma _ { t } ) | _ { t = 0 } = \frac { d } { d t } \int _ { N } \sigma ^ { k ^ { * } } \phi _ { t } ^ { k ^ { * } } ( L \Delta ) | _ { t = 0 } =$ ; confidence 0.198
  
126. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130070/a13007016.png ; $100$ ; confidence 1.000
+
126. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130040/g13004012.png ; $f : R ^ { m } \rightarrow R ^ { n }$ ; confidence 0.198
  
127. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130070/a13007031.png ; $2.0$ ; confidence 0.129
+
127. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120010/c12001030.png ; $T : C ^ { m + 1 } \rightarrow C ^ { n + 1 }$ ; confidence 0.198
  
128. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130070/a13007026.png ; $c = 5$ ; confidence 0.907
+
128. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120180/b12018033.png ; $\forall x _ { 1 } \ldots \forall x _ { N } ( P _ { X 1 } \ldots x _ { N } \leftrightarrow \varphi ( x _ { 1 } , \ldots , x _ { N } ) )$ ; confidence 0.198
  
129. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130070/a13007032.png ; $d > c$ ; confidence 0.525
+
129. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120150/b12015093.png ; $\operatorname { Var } _ { P _ { 0 } } ( d ^ { * } ) =$ ; confidence 0.198
  
130. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130080/a13008022.png ; $L < R$ ; confidence 0.982
+
130. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040271.png ; $Mod ^ { * } S _ { D }$ ; confidence 0.198
  
131. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130080/a13008080.png ; $n = 3$ ; confidence 0.991
+
131. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130020/f1300207.png ; $T _ { i j }$ ; confidence 0.197
  
132. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130080/a13008098.png ; $k = 2$ ; confidence 0.996
+
132. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120070/e12007026.png ; $( \varphi | _ { k } ^ { V } M ) ( z ) = v ( M ) ( cz + d ) ^ { - k } \varphi ( M z )$ ; confidence 0.197
  
133. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021056.png ; $n = 1$ ; confidence 0.901
+
133. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120140/d12014030.png ; $\alpha \neq 0 \in F _ { q }$ ; confidence 0.197
  
134. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110040/a11004020.png ; $a$ ; confidence 0.856
+
134. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130060/l13006088.png ; $( z _ { k } , \ldots , z _ { k } + r - 1 ) \neq ( 0 , \ldots , 0 )$ ; confidence 0.197
  
135. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130090/a13009029.png ; $k + 1$ ; confidence 0.999
+
135. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130100/c13010021.png ; $f = \sum _ { i = 1 } ^ { n } a _ { i } \chi _ { B _ { i } } , \quad B _ { i } = \cup _ { j = i } ^ { n } A _ { i }$ ; confidence 0.197
  
136. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120100/a12010035.png ; $X = R$ ; confidence 0.378
+
136. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130010/o13001037.png ; $\theta . w : = \sum ^ { 3 } j = 1 \quad \theta _ { j } w _ { j }$ ; confidence 0.197
  
137. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120110/a12011011.png ; $b + 1$ ; confidence 1.000
+
137. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520158.png ; $\alpha _ { j } \in K$ ; confidence 0.197
  
138. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120110/a12011023.png ; $n + 3$ ; confidence 1.000
+
138. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130140/t130140140.png ; $q ( x ) = \sum _ { i \in I } x _ { i } ^ { 2 } + \sum _ { i \prec j } x _ { i } x _ { j } - \sum _ { p \in \operatorname { max } l } ( \sum _ { i \prec p } x _ { i } ) x _ { p }$ ; confidence 0.197
  
139. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120120/a12012059.png ; $x > 0$ ; confidence 0.981
+
139. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120190/e12019037.png ; $l _ { x }$ ; confidence 0.196
  
140. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120120/a12012047.png ; $y = 0$ ; confidence 1.000
+
140. https://www.encyclopediaofmath.org/legacyimages/c/c110/c110480/c11048021.png ; $X \in N$ ; confidence 0.196
  
141. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120120/a12012024.png ; $7$ ; confidence 0.986
+
141. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130070/h13007038.png ; $\Delta f _ { i } = A _ { , r + 1 } f _ { r + 1 } + \ldots + A _ { , l } f _ { l }$ ; confidence 0.196
  
142. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120120/a12012017.png ; $m = n$ ; confidence 0.994
+
142. https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f11016092.png ; $\mathfrak { A } \equiv \ell \mathfrak { B }$ ; confidence 0.196
  
143. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120120/a12012018.png ; $B = 1$ ; confidence 0.582
+
143. https://www.encyclopediaofmath.org/legacyimages/b/b016/b016170/b0161709.png ; $T$ ; confidence 0.196
  
144. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110320/a11032014.png ; $T = 0$ ; confidence 0.794
+
144. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840403.png ; $21 , \dots , 2 x$ ; confidence 0.196
  
145. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120130/a12013012.png ; $1 + n$ ; confidence 0.465
+
145. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120020/b12002049.png ; $\beta _ { n , F }$ ; confidence 0.196
  
146. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010200/a01020080.png ; $6$ ; confidence 0.907
+
146. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010550/a01055030.png ; $g = e$ ; confidence 0.195
  
147. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120130/a1201308.png ; $m$ ; confidence 0.259
+
147. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130480/s13048053.png ; $( E _ { f } ^ { p q } , a _ { \ell } ^ { p q } )$ ; confidence 0.195
  
148. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120150/a12015028.png ; $( g )$ ; confidence 0.907
+
148. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120430/b120430152.png ; $U _ { q } ( g ) = U _ { q } ( n _ { - } ) \times H _ { \bowtie } U _ { q } ( n _ { + } )$ ; confidence 0.195
  
149. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120150/a12015018.png ; $( G )$ ; confidence 0.889
+
149. https://www.encyclopediaofmath.org/legacyimages/t/t094/t094080/t09408034.png ; $\rightarrow \pi _ { n } ( X , B , * ) \rightarrow \pi _ { n } ( X ; A , B , x _ { 0 } ) \stackrel { \partial } { \rightarrow } \ldots$ ; confidence 0.195
  
150. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130120/a13012015.png ; $t > 4$ ; confidence 0.980
+
150. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120030/l12003048.png ; $( ( - ) \otimes _ { F } , H ^ { * } B V ) : U \rightarrow U$ ; confidence 0.195
  
151. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130120/a13012058.png ; $s > 2$ ; confidence 0.758
+
151. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120430/b120430166.png ; $\Delta f = 1 \bigotimes f + x \varnothing \partial _ { q } f +$ ; confidence 0.195
  
152. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130120/a13012049.png ; $d = 2$ ; confidence 0.948
+
152. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120010/q12001095.png ; $d \tilde { \pi } ^ { c } ( X ) = d \tilde { \pi } ( X )$ ; confidence 0.195
  
153. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130120/a13012035.png ; $d > 2$ ; confidence 0.446
+
153. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130180/a13018093.png ; $y = ( L )$ ; confidence 0.194
  
154. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010120/a01012074.png ; $R > 1$ ; confidence 0.952
+
154. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010295.png ; $\underline { \Phi }$ ; confidence 0.194
  
155. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120180/a12018099.png ; $182$ ; confidence 0.121
+
155. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057000/l05700079.png ; $c _ { t }$ ; confidence 0.194
  
156. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120180/a12018083.png ; $t = 1$ ; confidence 0.997
+
156. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120070/q12007084.png ; $\{ f ^ { i x } \}$ ; confidence 0.194
  
157. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120180/a12018046.png ; $n > N$ ; confidence 0.720
+
157. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120130/m12013059.png ; $( N _ { * } ^ { 1 } , \ldots , N _ { * } ^ { n } )$ ; confidence 0.194
  
158. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120180/a12018092.png ; $t = 2$ ; confidence 1.000
+
158. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130120/b13012029.png ; $f _ { k } ( x ) = h ^ { - 1 } \int _ { R } \varphi ( \frac { t } { h } ) f ( x - t ) d t$ ; confidence 0.194
  
159. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130140/a13014017.png ; $r = 1$ ; confidence 0.539
+
159. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120040/g12004055.png ; $\hat { f } ( \xi ) = \int _ { R ^ { n } e } ^ { - i x \xi } f ( x ) d x$ ; confidence 0.194
  
160. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130180/a130180149.png ; $n > 2$ ; confidence 0.997
+
160. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120310/c1203102.png ; $\mathfrak { c } _ { \mathfrak { z } } \in R$ ; confidence 0.194
  
161. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130180/a1301802.png ; $( L )$ ; confidence 0.585
+
161. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120100/l120100108.png ; $K _ { k 1 } ( V )$ ; confidence 0.194
  
162. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130180/a130180139.png ; $( U )$ ; confidence 0.999
+
162. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120080/c1200806.png ; $\hat { I } _ { y }$ ; confidence 0.194
  
163. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130180/a130180141.png ; $( U )$ ; confidence 0.998
+
163. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120210/b12021048.png ; $\overline { D } _ { k } = U ( a ) \otimes U ( p ) \wedge ^ { k } ( a / p )$ ; confidence 0.194
  
164. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120200/a12020030.png ; $N > 2$ ; confidence 0.894
+
164. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120050/t120050119.png ; $\vec { d ^ { 2 } f _ { x } } : K _ { x } \times T V _ { x } \rightarrow Q _ { x }$ ; confidence 0.194
  
165. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010330/a0103303.png ; $r > 0$ ; confidence 0.996
+
165. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130640/s1306404.png ; $T _ { n } ( a ) = ( a _ { j - k } ) _ { j , k = 0 } ^ { n - 1 }$ ; confidence 0.194
  
166. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120200/a1202006.png ; $F [ t$ ; confidence 0.969
+
166. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120010/e12001013.png ; $M \subseteq \text { Mono } ( \mathfrak { A } )$ ; confidence 0.193
  
167. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120200/a12020086.png ; $X + J$ ; confidence 0.112
+
167. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120340/s120340136.png ; $M ( \tilde { x } _ { + } , \tilde { x } _ { - } ) / R$ ; confidence 0.193
  
168. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130190/a13019037.png ; $m = 0$ ; confidence 0.994
+
168. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057020/l05702027.png ; $1 ^ { n }$ ; confidence 0.193
  
169. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130190/a13019017.png ; $\pi$ ; confidence 0.096
+
169. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120090/m12009031.png ; $x \mapsto e ^ { T x }$ ; confidence 0.193
  
170. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130230/a13023012.png ; $U + V$ ; confidence 0.998
+
170. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120240/s12024052.png ; $z _ { i } ^ { n } \sim z _ { i + 1 } ^ { n }$ ; confidence 0.193
  
171. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130230/a13023047.png ; $U + V$ ; confidence 0.999
+
171. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b130200201.png ; $s l _ { 2 } ( R )$ ; confidence 0.193
  
172. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130230/a13023033.png ; $c < 1$ ; confidence 0.851
+
172. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120010/i12001029.png ; $_ { S } \in R ^ { 1 }$ ; confidence 0.193
  
173. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120240/a1202404.png ; $( Z )$ ; confidence 0.403
+
173. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120070/w12007041.png ; $e ^ { i ( p D + q X + t I ) }$ ; confidence 0.193
  
174. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010930/a01093032.png ; $n + 1$ ; confidence 0.999
+
174. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130110/d13011018.png ; $\alpha _ { X } = \left( \begin{array} { l l l l } { 0 } & { 0 } & { 0 } & { 1 } \\ { 0 } & { 0 } & { 1 } & { 0 } \\ { 0 } & { 1 } & { 0 } & { 0 } \\ { 1 } & { 0 } & { 0 } & { 0 } \end{array} \right) = \left( \begin{array} { l l } { 0 } & { \sigma _ { x } } \\ { \sigma _ { x } } & { 0 } \end{array} \right)$ ; confidence 0.193
  
175. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120250/a12025067.png ; $q + 1$ ; confidence 0.936
+
175. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011670/a01167032.png ; $a 1 , \dots , a _ { x }$ ; confidence 0.193
  
176. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120250/a12025063.png ; $7 + 2$ ; confidence 0.637
+
176. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010220/a01022046.png ; $v$ ; confidence 0.193
  
177. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130280/a13028019.png ; $a = 1$ ; confidence 0.584
+
177. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w13008092.png ; $d \Omega _ { n } = d \hat { \Omega } _ { n } - \sum _ { 1 } g ( \oint _ { A _ { j } } d \hat { \Omega _ { n } } ) d \omega _ { j }$ ; confidence 0.193
  
178. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120260/a120260103.png ; $( X )$ ; confidence 0.886
+
178. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120010/e1200103.png ; $A \stackrel { f } { \rightarrow } B = A \stackrel { é } { \rightarrow } f [ A ] \stackrel { m } { \rightarrow } B$ ; confidence 0.193
  
179. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120260/a120260101.png ; $A [ X$ ; confidence 0.994
+
179. https://www.encyclopediaofmath.org/legacyimages/s/s090/s090670/s09067084.png ; $V _ { q } ^ { p }$ ; confidence 0.193
  
180. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120260/a12026087.png ; $i > 1$ ; confidence 0.743
+
180. https://www.encyclopediaofmath.org/legacyimages/t/t094/t094080/t09408031.png ; $\pi _ { n } ( X ; A , B , ^ { * } ) = \pi _ { n - 1 } ( \Omega ( X ; B , * ) , \Omega ( A ; A \cap B , * ) , * )$ ; confidence 0.193
  
181. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120270/a12027099.png ; $K [ G$ ; confidence 0.417
+
181. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120240/a12024032.png ; $\overline { CH } \overline { D } ^ { p } ( X )$ ; confidence 0.193
  
182. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120270/a120270128.png ; $N + Q$ ; confidence 0.880
+
182. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i130090226.png ; $X ^ { \omega } \chi ^ { - 1 } = \{ x \in X : \delta x = \omega \chi ^ { - 1 } ( \delta ) x f o r \delta \in \Delta \}$ ; confidence 0.193
  
183. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120270/a12027060.png ; $E / K$ ; confidence 0.573
+
183. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120020/n12002097.png ; $\operatorname { lim } _ { n \rightarrow \infty } \frac { 1 } { n } \operatorname { log } P [ X _ { 1 } + \ldots + X _ { n } \geq n m ] = \int _ { m _ { 0 } } ^ { m } \frac { x - m } { V _ { F } ( x ) } d x$ ; confidence 0.193
  
184. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120270/a120270115.png ; $Z [ G$ ; confidence 0.720
+
184. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120240/b12024014.png ; $V \subset C ^ { m }$ ; confidence 0.192
  
185. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010550/a01055040.png ; $G = R$ ; confidence 0.996
+
185. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010020/a0100205.png ; $P = \cup _ { n _ { 1 } , \ldots , n _ { k } , \ldots } \cap _ { k = 1 } ^ { \infty } E _ { n _ { 1 } } \square \ldots x _ { k }$ ; confidence 0.192
  
186. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130290/a13029066.png ; $Y$ ; confidence 0.441
+
186. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120160/a120160164.png ; $e$ ; confidence 0.192
  
187. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130310/a130310106.png ; $( T )$ ; confidence 0.735
+
187. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120010/c12001039.png ; $p ^ { m } \backslash X$ ; confidence 0.192
  
188. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130310/a13031074.png ; $( X )$ ; confidence 0.899
+
188. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b130200175.png ; $( e _ { i } ) ^ { k } , v = 0 = ( f _ { i } ) ^ { k } , v$ ; confidence 0.192
  
189. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011390/a01139019.png ; $\pi$ ; confidence 0.677
+
189. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120230/d120230178.png ; $\vec { G } _ { i } \Theta _ { i }$ ; confidence 0.192
  
190. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130310/a13031017.png ; $4.2$ ; confidence 0.904
+
190. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022020/c02202042.png ; $k ]$ ; confidence 0.192
  
191. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130320/a13032017.png ; $N = k$ ; confidence 0.871
+
191. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650300.png ; $x _ { i }$ ; confidence 0.192
  
192. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120210/b120210115.png ; $C , M$ ; confidence 0.459
+
192. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130130/d13013087.png ; $L _ { n } = SU ( 2 ) / Z _ { n }$ ; confidence 0.192
  
193. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110660/b11066034.png ; $B M O$ ; confidence 0.514
+
193. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130280/b13028048.png ; $\lambda _ { N } H \times \Omega ^ { \infty } X$ ; confidence 0.192
  
194. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110660/b1106608.png ; $101$ ; confidence 0.160
+
194. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130130/m13013078.png ; $v _ { 1 } , \dots , v _ { k }$ ; confidence 0.191
  
195. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110660/b11066086.png ; $m > 1$ ; confidence 0.989
+
195. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120360/b1203607.png ; $\{ \in \{ \}$ ; confidence 0.191
  
196. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010120/a01012070.png ; $0,1$ ; confidence 0.999
+
196. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110580/a11058010.png ; $p 2$ ; confidence 0.191
  
197. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130020/b13002085.png ; $J = H$ ; confidence 0.953
+
197. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130090/f13009069.png ; $R _ { S } ( p ; k , n )$ ; confidence 0.191
  
198. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130020/b13002033.png ; $J J W$ ; confidence 0.131
+
198. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120310/b12031066.png ; $S _ { R } ^ { \delta } ( f ) ( x ) = \sum _ { m \backslash | \leq R } ( 1 - \frac { | m | ^ { 2 } } { R ^ { 2 } } ) ^ { \delta } e ^ { 2 \pi i x m } \hat { f } ( m )$ ; confidence 0.191
  
199. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130030/b13003054.png ; $( V )$ ; confidence 0.882
+
199. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120020/t12002031.png ; $( X _ { n } ) _ { n \in Z } ^ { d }$ ; confidence 0.191
  
200. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110080/a11008015.png ; $x = 0$ ; confidence 0.997
+
200. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120100/l12010011.png ; $\left\{ \begin{array} { l l } { \gamma \geq \frac { 1 } { 2 } } & { \text { forn } = 1 } \\ { \gamma > 0 } & { \text { forn } = 2 } \\ { \gamma \geq 0 } & { \text { forn } \geq 3 } \end{array} \right.$ ; confidence 0.191
  
201. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130040/b13004062.png ; $E = X$ ; confidence 0.925
+
201. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011970/a01197039.png ; $\underline { 1 } = 1$ ; confidence 0.191
  
202. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120040/b12004046.png ; $| g |$ ; confidence 0.459
+
202. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120040/c12004070.png ; $\times [ CF ( \zeta - z , w ) - \frac { ( n - 1 ) ! ( | \zeta | ^ { 2 m } - \langle \overline { \zeta } , z | ^ { m } ) ^ { n } } { [ 2 \pi i | \zeta | ^ { 2 m } \{ \overline { \zeta } , \zeta - z \} ] ^ { N } } \sigma _ { 0 } ]$ ; confidence 0.191
  
203. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120040/b1200408.png ; $u > 0$ ; confidence 0.528
+
203. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130410/s1304104.png ; $\langle p , q \rangle _ { s } = \sum _ { l = 0 } ^ { N } \lambda _ { i } \int _ { R } p ^ { ( l ) } q ^ { ( l ) } d \mu _ { l }$ ; confidence 0.190
  
204. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120040/b12004056.png ; $s > 0$ ; confidence 0.991
+
204. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120120/d12012064.png ; $\left. \begin{array} { c c c } { \square } & { c _ { 2 } } & { \square } \\ { \square } & { \square } & { \searrow ^ { \phi _ { 2 } } } \\ { \square ^ { \phi _ { 1 } } } & { \nearrow } & { \vec { \phi _ { 3 } } } \end{array} \right.$ ; confidence 0.190
  
205. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120040/b12004021.png ; $e > 0$ ; confidence 0.828
+
205. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120210/t12021086.png ; $t ( G ) = t ( G / e ) + ( x - 1 ) ^ { r ( G ) - r ( G - \epsilon ) } t ( G - e )$ ; confidence 0.190
  
206. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010080/a01008024.png ; $M$ ; confidence 0.626
+
206. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130040/c13004024.png ; $\psi ^ { ( R ) } ( z ) = ( - 1 ) ^ { N + 1 } n ! \zeta ( n + 1 , z )$ ; confidence 0.190
  
207. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130060/b13006080.png ; $A + E$ ; confidence 0.999
+
207. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130060/o130060188.png ; $( \sigma _ { 2 } \frac { \partial } { \partial t _ { 1 } } - \sigma _ { 1 } \frac { \partial } { \partial t _ { 2 } } + \tilde { \gamma } ) v = 0$ ; confidence 0.190
  
208. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a11001051.png ; $| A |$ ; confidence 0.913
+
208. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120050/w12005056.png ; $h = ( h _ { 1 } , \dots , h _ { w } ) \in N ^ { w } \subset A ^ { w }$ ; confidence 0.190
  
209. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130070/b13007045.png ; $m | k$ ; confidence 0.687
+
209. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010125.png ; $\dot { i } \leq n$ ; confidence 0.190
  
210. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130070/b13007033.png ; $b = 1$ ; confidence 0.973
+
210. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120130/m12013058.png ; $\frac { d N ^ { i } } { d t } = f ^ { i } ( N ^ { 1 } , \ldots , N ^ { n } ) , \quad i = 1 , \dots , n$ ; confidence 0.190
  
211. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130070/b13007011.png ; $m = 1$ ; confidence 0.540
+
211. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120100/e12010046.png ; $w ^ { em } = - \frac { 1 } { 2 } \frac { \partial } { \partial t } ( E ^ { 2 } + B ^ { 2 } ) - \nabla \cdot ( S - v ( P E ) )$ ; confidence 0.190
  
212. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120090/b12009095.png ; $m + n$ ; confidence 0.526
+
212. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h12002040.png ; $( \alpha _ { j } + k ) _ { j , k } \geq 0$ ; confidence 0.190
  
213. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b110220241.png ; $A = z$ ; confidence 0.723
+
213. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130100/f130100154.png ; $\langle G \rangle \leq \| u \| _ { H } ( H ) + \epsilon$ ; confidence 0.190
  
214. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b110220140.png ; $s = m$ ; confidence 0.896
+
214. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120100/a12010013.png ; $e ^ { - t A _ { X } } = \operatorname { lim } _ { n \rightarrow \infty } ( I + \frac { t } { n } A ) ^ { - n } x = S ( t ) x , \forall x \in X$ ; confidence 0.189
  
215. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b110220187.png ; $x / Q$ ; confidence 0.265
+
215. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130290/b13029054.png ; $a _ { 1 } , \dots , a _ { d }$ ; confidence 0.189
  
216. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b110220219.png ; $M M Z$ ; confidence 0.620
+
216. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130290/b13029080.png ; $I ( M ) = \sum _ { i = 0 } ^ { s - 1 } \left( \begin{array} { c } { s - 1 } \\ { i } \end{array} \right) J _ { A } ( H _ { m } ^ { i } ( M ) )$ ; confidence 0.189
  
217. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b110220230.png ; $j = 0$ ; confidence 0.589
+
217. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130040/t13004049.png ; $h : = \operatorname { max } _ { N \in N } \{ \sigma _ { N } - n \}$ ; confidence 0.189
  
218. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b11022081.png ; $i + 1$ ; confidence 0.959
+
218. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040133.png ; $\Lambda _ { D } T$ ; confidence 0.189
  
219. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110260/b11026030.png ; $X = 0$ ; confidence 0.620
+
219. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055780/k05578016.png ; $I _ { V }$ ; confidence 0.189
  
220. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011380/a011380170.png ; $s > 1$ ; confidence 0.832
+
220. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120260/c12026083.png ; $t _ { 8 } + 1 / 2 = t _ { x } + k / 2$ ; confidence 0.189
  
221. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010800/a01080022.png ; $\pi$ ; confidence 0.829
+
221. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130090/w1300909.png ; $| h | _ { H } ^ { 2 }$ ; confidence 0.189
  
222. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011460/a01146063.png ; $p > 1$ ; confidence 0.999
+
222. https://www.encyclopediaofmath.org/legacyimages/n/n066/n066630/n0666306.png ; $r _ { 2 } > 0$ ; confidence 0.188
  
223. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012950/a01295056.png ; $p = 2$ ; confidence 0.991
+
223. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130170/w13017046.png ; $\hat { y } _ { t , r } = \sum _ { j = r } ^ { \infty } K _ { j } \varepsilon _ { t + r - j }$ ; confidence 0.188
  
224. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011490/a011490110.png ; $p > 0$ ; confidence 1.000
+
224. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120110/f120110108.png ; $H _ { K } ^ { X } ( D ^ { X } + i R ^ { X } , \tilde { O } )$ ; confidence 0.188
  
225. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011600/a01160064.png ; $p > 2$ ; confidence 1.000
+
225. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120150/d12015024.png ; $= ( 3 ^ { d } + 1 \frac { 3 ^ { d + 1 } - 1 } { 2 } , 3 ^ { d } \frac { 3 ^ { d + 1 } + 1 } { 2 } , 3 ^ { d } \frac { 3 ^ { d } + 1 } { 2 } , 3 ^ { 2 d } )$ ; confidence 0.188
  
226. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110280/a11028043.png ; $n - 1$ ; confidence 0.983
+
226. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130290/f13029065.png ; $f _ { L } ^ { \rightarrow } ( a ) ( y ) = \vee \{ \alpha ( x ) : f ( x ) = y \}$ ; confidence 0.188
  
227. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110100/b110100276.png ; $112$ ; confidence 0.644
+
227. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120170/c120170170.png ; $\tau ( \sum a _ { i j } z ^ { i } z ^ { j } ) = \sum a _ { i j } \gamma _ { i j }$ ; confidence 0.188
  
228. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130120/b13012069.png ; $k < N$ ; confidence 0.969
+
228. https://www.encyclopediaofmath.org/legacyimages/m/m063/m063770/m06377013.png ; $\dot { x } = A x , \quad x \in R ^ { x }$ ; confidence 0.188
  
229. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010220/a01022023.png ; $p = 1$ ; confidence 0.985
+
229. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120560/b1205605.png ; $h = h ( M ) = \operatorname { inf } _ { \Gamma } \frac { \operatorname { Vol } ( \Gamma ) } { \operatorname { min } \{ \operatorname { Vol } ( M _ { 1 } ) , \text { Vol } ( M _ { 2 } ) \} }$ ; confidence 0.188
  
230. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110790/a11079040.png ; $T > 0$ ; confidence 0.950
+
230. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130020/f13002015.png ; $c ^ { a } ( x ) c ^ { b } ( y ) = - c ^ { b } ( y ) c ^ { a } ( x )$ ; confidence 0.188
  
231. https://www.encyclopediaofmath.org/legacyimages/b/b016/b016360/b0163608.png ; $G / N$ ; confidence 0.964
+
231. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130070/c130070204.png ; $\operatorname { ord } _ { T } ( u d v ) = \operatorname { ord } _ { T } ( u d v / d \tau )$ ; confidence 0.188
  
232. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130170/b13017031.png ; $t < T$ ; confidence 0.864
+
232. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120070/c12007037.png ; $\operatorname { lim } _ { L } \leftarrow ^ { n }$ ; confidence 0.188
  
233. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130170/b13017011.png ; $T > t$ ; confidence 0.522
+
233. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040192.png ; $\mathfrak { A } ^ { * } S = \mathfrak { A }$ ; confidence 0.188
  
234. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130170/b13017034.png ; $t , T$ ; confidence 0.994
+
234. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130020/i13002048.png ; $\sum _ { k = 1 } ^ { m } x _ { k } S _ { k } \leq P ( A _ { 1 } \cup \ldots \cup A _ { n } ) \leq \sum _ { k = 1 } ^ { m } y _ { k } S _ { k }$ ; confidence 0.188
  
235. https://www.encyclopediaofmath.org/legacyimages/a/a013/a013010/a01301062.png ; $h > 0$ ; confidence 0.937
+
235. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040280.png ; $\Gamma \dagger _ { D } \Delta ( \varphi , \psi )$ ; confidence 0.188
  
236. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010580/a01058018.png ; $a > 0$ ; confidence 0.812
+
236. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120080/c12008026.png ; $A _ { 1 } = \left[ \begin{array} { c c c } { A _ { 11 } } & { \dots } & { A _ { 1 m } } \\ { \dots } & { \dots } & { \dots } \\ { A _ { m 1 } } & { \dots } & { A _ { m m } } \end{array} \right] \in C ^ { m n \times m n }$ ; confidence 0.187
  
237. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015660/b01566019.png ; $h = 1$ ; confidence 0.641
+
237. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130060/l13006044.png ; $D _ { k } ^ { * }$ ; confidence 0.187
  
238. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110130/b110130175.png ; $a = 0$ ; confidence 0.782
+
238. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067360/n06736068.png ; $1.1 p$ ; confidence 0.187
  
239. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011460/a01146084.png ; $m > 1$ ; confidence 0.894
+
239. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120040/g12004077.png ; $P ( x , D ) u = ( 2 \pi ) ^ { - n } \int _ { R ^ { n } } e ^ { i x \xi } p ( x , \xi ) \hat { u } ( \xi ) d \xi$ ; confidence 0.187
  
240. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120310/b12031049.png ; $f = 0$ ; confidence 0.999
+
240. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130080/z13008038.png ; $= \frac { ( \alpha + 1 ) _ { k + l } } { ( \alpha + 1 ) _ { k } ( \alpha + 1 ) _ { l } } \sum _ { j = 0 } ^ { \operatorname { min } ( k , l ) } \frac { ( - k ) _ { j } ( - l ) } { ( - k - l - \alpha ) j ! } r ^ { k + l - 2 j }$ ; confidence 0.187
  
241. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120340/b12034065.png ; $1 + 3$ ; confidence 0.998
+
241. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120070/q12007011.png ; $( \Delta \bigotimes \text { id } ) R = R _ { 13 } R _ { 23 } , ( \text { id } \bigotimes \Delta ) R = R _ { 13 } R _ { 12 }$ ; confidence 0.187
  
242. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120360/b12036013.png ; $E$ ; confidence 0.999
+
242. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010100.png ; $O = G / \operatorname { Sp } ( 1 ) . K$ ; confidence 0.187
  
243. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120360/b12036028.png ; $T R F$ ; confidence 0.109
+
243. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030060/d03006013.png ; $+ \frac { 1 } { 2 \alpha } \int _ { x - w t } ^ { x + c t } \psi ( \xi ) d \xi + \frac { 1 } { 2 } [ \phi ( x + a t ) + \phi ( x - a t ) ]$ ; confidence 0.187
  
244. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011480/a01148096.png ; $k - 1$ ; confidence 0.999
+
244. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120340/s120340106.png ; $X - = ( x - , u - )$ ; confidence 0.187
  
245. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130190/b13019012.png ; $a + 7$ ; confidence 0.273
+
245. https://www.encyclopediaofmath.org/legacyimages/z/z120/z120010/z12001084.png ; $\{ \text { ad } e _ { - } ^ { p } _ { - 1 } ^ { k } : 0 < k < m \}$ ; confidence 0.187
  
246. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120370/b12037081.png ; $v , N$ ; confidence 0.603
+
246. https://www.encyclopediaofmath.org/legacyimages/s/s086/s086020/s08602017.png ; $\left.\begin{array} { r l } { \Phi ^ { + } ( t _ { 0 } ) } & { = \frac { 1 } { 2 \pi i } \int _ { \Gamma } \frac { \phi ( t ) d t } { t - t _ { 0 } } + \frac { 1 } { 2 } \phi ( t _ { 0 } ) } \\ { \Phi ^ { - } ( t _ { 0 } ) } & { = \frac { 1 } { 2 \pi i } \int _ { \Gamma } \frac { \phi ( t ) d t } { t - t _ { 0 } } - \frac { 1 } { 2 } \phi ( t _ { 0 } ) } \end{array} \right\}$ ; confidence 0.187
  
247. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011980/a01198064.png ; $i , j$ ; confidence 0.520
+
247. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120100/e12010045.png ; $G ^ { em } = G ^ { em } \cdot f$ ; confidence 0.187
  
248. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b130200132.png ; $6 - i$ ; confidence 0.310
+
248. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120080/q12008066.png ; $\left[ \begin{array} { l } { 1 } \\ { 1 } \end{array} \right]$ ; confidence 0.187
  
249. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b12040046.png ; $F = C$ ; confidence 0.856
+
249. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130260/a13026019.png ; $a _ { m p } r \equiv a _ { m p ^ { r - 1 } } ( \operatorname { mod } p ^ { 3 r } )$ ; confidence 0.187
  
250. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011930/a01193049.png ; $G / H$ ; confidence 0.815
+
250. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120040/l12004081.png ; $( u _ { i } ^ { n } + \hat { u } _ { i } ^ { + } ) / 2$ ; confidence 0.187
  
251. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b12040018.png ; $112$ ; confidence 0.322
+
251. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120070/e120070105.png ; $\hat { H } ^ { 1 } = \hat { H } ^ { 1 } ( \Gamma , k , v ; P ( k ) )$ ; confidence 0.187
  
252. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b12040063.png ; $G / B$ ; confidence 0.903
+
252. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130070/e13007042.png ; $\vec { c } _ { i } ^ { \prime }$ ; confidence 0.187
  
253. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012270/a01227050.png ; $x , y$ ; confidence 0.415
+
253. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120100/n12010059.png ; $\| Y _ { m } \| _ { G } ^ { 2 } = \sum _ { i , j = 1 } ^ { k } g j \langle y _ { m } + i - 1 , y _ { m } + j - 1 \rangle$ ; confidence 0.187
  
254. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120430/b12043038.png ; $k [ x$ ; confidence 0.713
+
254. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130080/t13008013.png ; $+ ( 1 - \mu _ { x } + t ^ { + } d t ) e ^ { - \delta d t } V _ { t + d t } + o ( d t )$ ; confidence 0.187
  
255. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130220/b13022073.png ; $p > N$ ; confidence 0.995
+
255. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120240/d12024092.png ; $gl ( n , C )$ ; confidence 0.187
  
256. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130220/b13022065.png ; $m - 1$ ; confidence 0.999
+
256. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120130/l120130103.png ; $Z [ X _ { 1 } , \dots , X _ { N } ]$ ; confidence 0.187
  
257. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130220/b130220106.png ; $Q m l$ ; confidence 0.051
+
257. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m13014085.png ; $\frac { \pi ^ { n } } { n \operatorname { vol } ( D ) } \int _ { \partial D } f ( \zeta ) \nu ( \zeta - a ) = f ( a )$ ; confidence 0.186
  
258. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120440/b120440129.png ; $( b )$ ; confidence 0.638
+
258. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130070/r130070137.png ; $= ( F ( . ) , ( h ( \ldots , y ) , ( h ( , x ) , h ( \ldots , x ) ) _ { H } ) _ { H } ) _ { H } =$ ; confidence 0.186
  
259. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110370/a11037055.png ; $k > 1$ ; confidence 0.997
+
259. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120050/s120050115.png ; $\alpha _ { 1 } , \dots , \alpha _ { n }$ ; confidence 0.186
  
260. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130260/b13026059.png ; $f = g$ ; confidence 0.997
+
260. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120070/c12007036.png ; $H ^ { n } ( C , M ) = \operatorname { lim } _ { L } \leftarrow ^ { n } M$ ; confidence 0.186
  
261. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110380/b11038091.png ; $n = 0$ ; confidence 0.975
+
261. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180211.png ; $\tau _ { V }$ ; confidence 0.186
  
262. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120510/b12051082.png ; $100$ ; confidence 0.209
+
262. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120040/i1200404.png ; $f ( z ) = \frac { 1 } { ( 2 \pi i ) ^ { N } } \int _ { b _ { 0 } P } \frac { f ( \zeta ) d \zeta _ { 1 } \ldots d \zeta _ { N } } { ( \zeta _ { 1 } - z _ { 1 } ) \ldots ( \zeta _ { N } - z _ { N } ) } , z \in P$ ; confidence 0.186
  
263. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110610/a110610226.png ; $N = 1$ ; confidence 0.779
+
263. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130130/p13013084.png ; $\hat { S } _ { n }$ ; confidence 0.186
  
264. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110580/b11058037.png ; $( f )$ ; confidence 0.837
+
264. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120120/e120120132.png ; $\frac { \partial ^ { 2 } } { \partial \theta _ { . } \partial \theta } Q ( \theta | \theta ^ { * } ) = \theta ^ { * }$ ; confidence 0.186
  
265. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110040/a11004095.png ; $d > 1$ ; confidence 0.441
+
265. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i130090106.png ; $p ^ { é } R$ ; confidence 0.185
  
266. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130290/b1302906.png ; $N = s$ ; confidence 0.552
+
266. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w130080119.png ; $d S _ { A }$ ; confidence 0.185
  
267. https://www.encyclopediaofmath.org/legacyimages/b/b111/b111040/b11104014.png ; $p = 3$ ; confidence 0.997
+
267. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130010/l13001017.png ; $N B$ ; confidence 0.185
  
268. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130300/b130300113.png ; $A$ ; confidence 0.535
+
268. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130100/f1301008.png ; $( l _ { N } ) _ { N = 1 } ^ { \infty } 1$ ; confidence 0.185
  
269. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011620/a01162016.png ; $m > 2$ ; confidence 0.874
+
269. https://www.encyclopediaofmath.org/legacyimages/x/x120/x120010/x12001085.png ; $Q ^ { * } G _ { \text { inn } } = Q \otimes _ { C } C ^ { \dagger } [ G _ { \text { inn } } ]$ ; confidence 0.185
  
270. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120010/c120010131.png ; $\pi$ ; confidence 0.857
+
270. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120230/d120230147.png ; $D = \operatorname { diag } \{ d _ { 0 } , \dots , d _ { n - 1 } \}$ ; confidence 0.185
  
271. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120030/c1200305.png ; $a < b$ ; confidence 0.960
+
271. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120320/s12032031.png ; $[ \alpha , b ] = a b - ( - 1 ) ^ { p ( \alpha ) p ( b ) } b a$ ; confidence 0.185
  
272. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120070/c12007043.png ; $11 m$ ; confidence 0.380
+
272. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120010/c12001098.png ; $\rho _ { j \overline { k } } = \partial ^ { 2 } \rho / \partial z _ { j } \partial z _ { k }$ ; confidence 0.185
  
273. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120070/c12007089.png ; $K = z$ ; confidence 0.825
+
273. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032660/d0326606.png ; $x _ { 1 } , \dots , x _ { 1 }$ ; confidence 0.185
  
274. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120070/c12007017.png ; $n > 0$ ; confidence 1.000
+
274. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120290/b12029016.png ; $\hat { R } _ { R _ { S } ^ { A } } ^ { A } = \hat { R } _ { S } ^ { A } \text { on } R ^ { n }$ ; confidence 0.185
  
275. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120080/c12008071.png ; $E , A$ ; confidence 0.998
+
275. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120070/g12007029.png ; $\operatorname { lif } ( R ^ { M } )$ ; confidence 0.185
  
276. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120080/c12008020.png ; $m > n$ ; confidence 0.994
+
276. https://www.encyclopediaofmath.org/legacyimages/n/n066/n066630/n06663058.png ; $H _ { p } ^ { \gamma } ( R ^ { \gamma } )$ ; confidence 0.185
  
277. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130050/c13005045.png ; $( G )$ ; confidence 0.943
+
277. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120070/q12007063.png ; $\delta : s | _ { 2 } \rightarrow s | _ { 2 } \otimes s \dot { l } _ { 2 }$ ; confidence 0.185
  
278. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130070/c13007028.png ; $n - 2$ ; confidence 0.994
+
278. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130030/e13003025.png ; $\Omega ^ { \bullet } ( \tilde { M } _ { C } ) \rightleftarrows \operatorname { Hom } _ { K _ { \infty } } ( \Lambda ^ { \bullet } ( \mathfrak { g } / \mathfrak { k } ) , C _ { \infty } ( \Gamma \backslash G ( R ) \otimes M _ { C } ) )$ ; confidence 0.185
  
279. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130070/c13007085.png ; $d > 1$ ; confidence 0.762
+
279. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110320/a1103207.png ; $u _ { m + 1 } ^ { ( i ) } = R _ { 0 } ^ { ( i ) } ( c _ { i } h T ) u _ { m } +$ ; confidence 0.185
  
280. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130070/c13007067.png ; $e > d$ ; confidence 0.307
+
280. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130140/t13014041.png ; $E _ { g }$ ; confidence 0.184
  
281. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012200/a01220092.png ; $\pi$ ; confidence 0.550
+
281. https://www.encyclopediaofmath.org/legacyimages/c/c024/c024850/c024850208.png ; $X _ { \alpha }$ ; confidence 0.184
  
282. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110520/b11052012.png ; $d = 1$ ; confidence 0.848
+
282. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110100/b110100380.png ; $0.2$ ; confidence 0.184
  
283. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130070/c13007045.png ; $n - 3$ ; confidence 0.996
+
283. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130230/m13023092.png ; $E \rightarrow Y \backslash \phi ( E )$ ; confidence 0.184
  
284. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130070/c13007078.png ; $n - a$ ; confidence 0.691
+
284. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130100/f1301006.png ; $( k _ { n } ) _ { n = 1 } ^ { \infty }$ ; confidence 0.184
  
285. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130090/c13009028.png ; $i , j$ ; confidence 0.263
+
285. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120030/c12003024.png ; $g : I \rightarrow R ^ { m }$ ; confidence 0.184
  
286. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120130/c1201307.png ; $M < d$ ; confidence 0.634
+
286. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130340/s13034019.png ; $S _ { S } ( M )$ ; confidence 0.184
  
287. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022110/c02211028.png ; $k > m$ ; confidence 0.972
+
287. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120150/d12015043.png ; $Q [ \zeta _ { \dot { e } } ]$ ; confidence 0.184
  
288. https://www.encyclopediaofmath.org/legacyimages/a/a013/a013670/a0136703.png ; $N > 0$ ; confidence 0.878
+
288. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130060/a130060127.png ; $T ^ { \# } ( n ) \sim C _ { 0 } g _ { 0 } ^ { n } n ^ { - 5 / 2 } \text { asn } \rightarrow \infty$ ; confidence 0.184
  
289. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012010/a01201092.png ; $k > 0$ ; confidence 0.949
+
289. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b110220136.png ; $r _ { D } \otimes R : H _ { M } ^ { i + 1 } ( X , Q ( i + 1 - m ) ) _ { Z } \otimes R \rightarrow H _ { D } ^ { i + 1 } ( X _ { / R } , R ( i + 1 - m ) )$ ; confidence 0.184
  
290. https://www.encyclopediaofmath.org/legacyimages/c/c020/c020540/c020540283.png ; $K = R$ ; confidence 0.707
+
290. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130110/d13011010.png ; $\alpha _ { y }$ ; confidence 0.184
  
291. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110850/b11085083.png ; $K = C$ ; confidence 0.975
+
291. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130260/m13026050.png ; $x \rightarrow \| \alpha x \| + \| \alpha x \|$ ; confidence 0.184
  
292. https://www.encyclopediaofmath.org/legacyimages/a/a013/a013490/a0134906.png ; $k > 0$ ; confidence 0.998
+
292. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120030/l12003010.png ; $f ^ { * } \in \text { Homalg } ( H ^ { * } ( Y , F _ { p } ) , H ^ { * } ( X , F _ { p } ) )$ ; confidence 0.183
  
293. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120170/c120170163.png ; $k < m$ ; confidence 0.964
+
293. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130290/a13029045.png ; $HF _ { * } ^ { \text { inst } } ( Y , P _ { Y } ) \cong HF _ { * } ^ { \text { symp } } ( M ( P ) , L _ { 0 } , L _ { 1 } )$ ; confidence 0.183
  
294. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120170/c12017076.png ; $2,2$ ; confidence 0.855
+
294. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120010/c12001062.png ; $p ^ { n }$ ; confidence 0.183
  
295. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130160/c13016052.png ; $i ( n$ ; confidence 0.399
+
295. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120500/b12050026.png ; $l ( t , x ) = \operatorname { lim } _ { \epsilon \rightarrow 0 } \frac { 1 } { 2 \varepsilon } \int _ { 0 } ^ { t } 1 ( x - \varepsilon , x + \varepsilon ) ( W _ { s } ) d s$ ; confidence 0.183
  
296. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130160/c13016069.png ; $S ( n$ ; confidence 0.726
+
296. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120260/a12026072.png ; $j$ ; confidence 0.183
  
297. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130160/c13016023.png ; $S A T$ ; confidence 0.639
+
297. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013090.png ; $N$ ; confidence 0.183
  
298. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130160/c130160162.png ; $B P P$ ; confidence 0.586
+
298. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120250/s1202506.png ; $h _ { n } = \int _ { a } ^ { b } x ^ { n } h ( x ) d x$ ; confidence 0.183
  
299. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130160/c13016093.png ; $CO C$ ; confidence 0.309
+
299. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130090/w13009078.png ; $\{ \varphi _ { n _ { 1 } , n _ { 2 } , \ldots } : n _ { j } \geq 0 , n _ { 1 } + n _ { 2 } + \ldots = n , n \geq 0 \}$ ; confidence 0.183
  
300. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130160/c130160129.png ; $B < A$ ; confidence 0.981
+
300. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w130080100.png ; $\partial d S / \partial \alpha j = d \omega j$ ; confidence 0.183

Revision as of 00:10, 13 February 2020

List

1. f13007034.png ; $= \{ x _ { 1 } , \dots , x _ { m } | x _ { i } x ^ { k _ { i } + 1 } = x _ { i + 2 } ; \text { indices } ( \operatorname { mod } m ) \}$ ; confidence 0.208

2. s12027015.png ; $R _ { x } [ f ]$ ; confidence 0.208

3. e12012093.png ; $w _ { i } ^ { ( t + 1 ) } = E ( q _ { i } | y _ { i } , \mu ^ { ( t ) } , \Sigma ^ { ( t ) } ) = \frac { \nu + p } { \nu + d _ { i } ^ { ( t ) } } , i = 1 , \dots , n$ ; confidence 0.208

4. d13006029.png ; $m _ { E _ { 1 } , E _ { 2 } } ( A ) = c . \sum _ { B , C , A = B \cap C } m _ { E _ { 1 } } ( B ) m _ { E _ { 2 } } ( C )$ ; confidence 0.208

5. a130240502.png ; $Z _ { i j }$ ; confidence 0.208

6. t12001098.png ; $k$ ; confidence 0.208

7. a11040054.png ; $6$ ; confidence 0.208

8. b11093018.png ; $Z _ { D }$ ; confidence 0.208

9. d120020168.png ; $\gamma ( \pi _ { 1 } ) \leq 0$ ; confidence 0.208

10. s12016016.png ; $\| . \| _ { k }$ ; confidence 0.208

11. f1301005.png ; $( ( k _ { N } ) _ { N = 1 } ^ { \infty } , ( l _ { N } ) _ { N = 1 } ^ { \infty } )$ ; confidence 0.208

12. f12011046.png ; $Ke _ { 2 }$ ; confidence 0.208

13. c11025029.png ; $e ^ { 2 }$ ; confidence 0.208

14. h12007036.png ; $c : \alpha \rightarrow b$ ; confidence 0.207

15. g130060120.png ; $: = \{ B = [ b _ { i } , j ] : b _ { i , i } = a _ { i , i } , \text { and } r _ { i } ( B ) = r _ { i } ( A ) , 1 \leq i \leq n \}$ ; confidence 0.207

16. a1103208.png ; $+ h \sum _ { j = 1 } ^ { i - 1 } A _ { j } ( h T ) [ f ( t _ { m } + c _ { j } h , u _ { m + 1 } ^ { ( j ) } ) - T u _ { n j } ^ { ( j ) } + 1 ]$ ; confidence 0.207

17. w12007075.png ; $h _ { y }$ ; confidence 0.207

18. d1202502.png ; $f : U \rightarrow R ^ { \kappa }$ ; confidence 0.207

19. v12006053.png ; $B _ { m } - B _ { N }$ ; confidence 0.207

20. h12004029.png ; $V _ { \xi } \subseteq ^ { * } W$ ; confidence 0.207

21. a12013046.png ; $P _ { \theta } * ( X _ { n } - 1 , d x )$ ; confidence 0.207

22. d1200305.png ; $x _ { n } / x / y _ { n }$ ; confidence 0.207

23. v09690033.png ; $T \rightarrow T | _ { P ^ { \prime } } H$ ; confidence 0.207

24. a120260117.png ; $( m , X _ { 1 } , \dots , X _ { s } ) ^ { c }$ ; confidence 0.207

25. b12009031.png ; $\xi = e ^ { i \alpha | n \tau } f$ ; confidence 0.207

26. z13004017.png ; $| \frac { n } { 2 } | \lfloor \frac { n - 1 } { 2 } \rfloor \lfloor \frac { m } { 2 } \rfloor \lfloor \frac { m - 1 } { 2 } \rfloor$ ; confidence 0.206

27. m12003090.png ; $\vec { x } _ { j }$ ; confidence 0.206

28. m12013074.png ; $\frac { d N } { d t } = \lambda N ( 1 - ( \frac { N } { K } ) ^ { x } )$ ; confidence 0.206

29. d12020015.png ; $p _ { N } ( s ) = \sum _ { m = 1 } ^ { n } a _ { m j } m ^ { - s }$ ; confidence 0.206

30. a01160050.png ; $r$ ; confidence 0.206

31. a13031033.png ; $\mu _ { n } ( X ) : = \mu ( X ) / \sum _ { R = n } \mu ( Y )$ ; confidence 0.206

32. l12004082.png ; $f _ { l + 1 / 2 } ^ { \operatorname { mac } } = \left\{ \begin{array} { l } { \frac { 1 } { 2 } ( \hat { f } _ { i } ^ { + } + f _ { l + 1 } ^ { n } ) } \\ { \text { or } } \\ { \frac { 1 } { 2 } ( \hat { f } _ { i + 1 } ^ { - } + f _ { l } ^ { n } ) } \end{array} \right.$ ; confidence 0.206

33. w12007011.png ; $q _ { t }$ ; confidence 0.206

34. i13002026.png ; $X = I _ { A _ { 1 } } + \ldots + I _ { A _ { n } }$ ; confidence 0.206

35. f12016027.png ; $C \backslash \sigma _ { TE } ( T )$ ; confidence 0.206

36. b13002041.png ; $w ^ { * }$ ; confidence 0.206

37. a12010052.png ; $i ^ { p }$ ; confidence 0.206

38. a120260106.png ; $\hat { y } = ( \hat { y } _ { 1 } , \dots , \hat { y } _ { n } ) \in \hat { A } [ [ X ] ] ^ { n }$ ; confidence 0.205

39. c12001076.png ; $E _ { i } ^ { * * }$ ; confidence 0.205

40. m12015028.png ; $\int _ { Y } \int x f _ { X , Y } d X d Y = 1$ ; confidence 0.205

41. f11016062.png ; $\Omega [ D ]$ ; confidence 0.205

42. d13008096.png ; $= \{ z \in D : \operatorname { liminf } _ { W \rightarrow X } [ K _ { D } ( z , w ) - K _ { D } ( z 0 , w ) ] < \frac { 1 } { 2 } \operatorname { log } R \}$ ; confidence 0.205

43. m12010012.png ; $\Delta _ { x } = \{ 0 , \dots , n \}$ ; confidence 0.205

44. a12010060.png ; $D ( \Delta ) = H _ { \diamond } ^ { 1 } \cap H ^ { 2 } ( \Omega )$ ; confidence 0.205

45. b13007058.png ; $\sigma : a \mapsto a b , b \mapsto b , \gamma _ { r } : \alpha \mapsto a ^ { r + 1 } b ^ { 2 } a ^ { - r } , r \geq 1$ ; confidence 0.205

46. c02718026.png ; $C _ { i }$ ; confidence 0.205

47. w13010040.png ; $= - I ^ { \kappa } a ( b ) \in ( - \infty , 0 ) , \text { for all } 0 < b < \kappa _ { \alpha }$ ; confidence 0.205

48. s1202401.png ; $h ^ { 5 }$ ; confidence 0.205

49. a01060019.png ; $H _ { \hat { j } }$ ; confidence 0.205

50. v12002088.png ; $H ^ { 0 } ( f ^ { - 1 } ( y ) , G ) = G , H ^ { H } ( f ^ { - 1 } ( y ) , G ) = 0$ ; confidence 0.205

51. w130080169.png ; $\alpha = 1 , \dots , 1$ ; confidence 0.205

52. d03200040.png ; $k 2$ ; confidence 0.205

53. s12025055.png ; $\hat { h } = 1$ ; confidence 0.204

54. v120020189.png ; $\hat { t } \square ^ { * } : H ^ { n + 1 } ( \overline { D } \square ^ { n + 1 } , S ^ { n } ) \rightarrow H ^ { n + 1 } ( \Gamma _ { \square \square ^ { n + 1 } } , \Gamma _ { S ^ { n } } )$ ; confidence 0.204

55. m06377012.png ; $x ^ { ( x ) } + a _ { x } - 1 z ^ { ( x - 1 ) } + \ldots + a _ { 0 } x = 0$ ; confidence 0.204

56. m12021017.png ; $K , L \in K ^ { n }$ ; confidence 0.204

57. a11058063.png ; $\hat { l } _ { \uparrow }$ ; confidence 0.204

58. d03167019.png ; $\xi _ { 4 }$ ; confidence 0.204

59. a01206014.png ; $I _ { \uparrow }$ ; confidence 0.204

60. c12004054.png ; $CF ( \zeta - z , w ) = \frac { ( n - 1 ) ! } { ( 2 \pi i ) ^ { n } } \frac { \sum _ { k = 1 } ^ { n } ( - 1 ) ^ { k - 1 } w _ { k } d w [ k ] \wedge d \zeta } { \langle w , \zeta - z \rangle ^ { n } }$ ; confidence 0.204

61. n067520270.png ; $\overline { b } 1$ ; confidence 0.204

62. l1300505.png ; $a ^ { ( t ) } = ( \alpha _ { t } , \alpha _ { t } + 1 , \ldots , \alpha _ { x } + t - 1 ) ( t \geq 0 )$ ; confidence 0.204

63. h13006014.png ; $T _ { n } T _ { m } = \sum _ { d } \sum _ { d ( n , m ) } d ^ { k - 1 } T _ { m n / d } 2$ ; confidence 0.203

64. p12017089.png ; $\vec { a }$ ; confidence 0.203

65. j12002021.png ; $\int _ { 1 } | \varphi - \varphi _ { 1 } | ^ { 2 } d \vartheta \leq c ^ { 2 } | I |$ ; confidence 0.203

66. b12043033.png ; $S _ { 0 } . = . \circ \Psi _ { B , B } \circ ( S \otimes S )$ ; confidence 0.203

67. l1300107.png ; $x = ( x _ { 1 } , \dots , x _ { N } ) \in T ^ { x }$ ; confidence 0.203

68. b12013077.png ; $A ^ { - \infty } = \cup _ { p > 0 } L _ { w } ^ { p }$ ; confidence 0.203

69. m12027043.png ; $a _ { j k }$ ; confidence 0.203

70. n06663045.png ; $H _ { p } ^ { r _ { 1 } , \dots , r _ { i - 1 } , r _ { i } + \epsilon , r _ { i + 1 } , \dots , r _ { n } }$ ; confidence 0.203

71. h13005025.png ; $\hat { \psi } ( x , k ) \approx \left\{ \begin{array} { l l } { e ^ { - i k x } + b ( k ) } & { e ^ { i k x } } \\ { \alpha ( k ) e ^ { - i k x } } & { \text { as } x } \end{array} \right.$ ; confidence 0.203

72. c1200707.png ; $C ^ { n } ( C , M ) = \prod _ { \langle \alpha _ { 1 } , \ldots , \alpha _ { N } \rangle } M ( \operatorname { codom } \alpha _ { n } ) , n > 0$ ; confidence 0.202

73. l12010098.png ; $- E$ ; confidence 0.202

74. b12010045.png ; $L _ { Y }$ ; confidence 0.202

75. q12008057.png ; $E [ W ] _ { \operatorname { exh } } = \frac { \delta ^ { 2 } } { 2 r } + \frac { P \lambda \dot { b } ^ { ( 2 ) } + r ( P - \rho ) } { 2 ( 1 - \rho ) }$ ; confidence 0.202

76. h12007015.png ; $a , b \in A _ { M }$ ; confidence 0.202

77. b12016071.png ; $\{ e _ { i } \} _ { 1 } ^ { n }$ ; confidence 0.202

78. w12011016.png ; $\hat { u } ( \xi ) = \int e ^ { - 2 i \pi x . \xi } u ( x ) d x$ ; confidence 0.202

79. q13004027.png ; $\operatorname { l(f } ^ { \prime } ( x ) ) = \operatorname { min } \{ | f ^ { \prime } ( x ) h | : | h | = 1 \}$ ; confidence 0.202

80. t13004051.png ; $D x ^ { N }$ ; confidence 0.202

81. l1300509.png ; $( \alpha _ { k } ) _ { k } = 0 , \ldots , N - 1$ ; confidence 0.202

82. l1201305.png ; $\hat { Q }$ ; confidence 0.202

83. o13005085.png ; $x _ { x } \in \mathfrak { H }$ ; confidence 0.202

84. b13012058.png ; $\| \alpha \| _ { P M } ^ { * } = \operatorname { sup } _ { n \geq 0 } \frac { 1 } { n + 1 } \sum _ { k = - n } ^ { n } | d _ { k } |$ ; confidence 0.201

85. w12002025.png ; $\operatorname { l } _ { p } ^ { p } ( P , Q ) = \int _ { 0 } ^ { 1 } | F ^ { - 1 } ( u ) - G ^ { - 1 } ( u ) | ^ { p } d u , p \geq 1$ ; confidence 0.201

86. l12010043.png ; $L _ { \gamma , n } = L _ { \gamma , n } ^ { c }$ ; confidence 0.201

87. s1202606.png ; $\int _ { S ^ { \prime } ( R ) } e ^ { i \langle X , \xi \rangle _ { d } } d \mu ( x ) = e ^ { - \| \xi \| _ { 2 } ^ { 2 } / 2 } , \xi \in S ( R )$ ; confidence 0.201

88. l13006082.png ; $( z _ { k } , \ldots , z _ { k } + r - 1 )$ ; confidence 0.201

89. c1201308.png ; $( M ) \leq v , | \text { sec. curv. } M | \leq \kappa$ ; confidence 0.201

90. p12015058.png ; $\sqrt { 2 }$ ; confidence 0.201

91. i13003079.png ; $Ch ( \text { ind } ( P ) ) = ( - 1 ) ^ { n } \pi * ( \text { ind } ( [ a ] ) T ( M | B ) )$ ; confidence 0.201

92. a130060149.png ; $P _ { E } ^ { \# } ( n ) \sim \frac { 1 } { 468 \sqrt { \pi } } 4 ^ { n } n ^ { - 7 / 2 } \text { asn } \rightarrow \infty$ ; confidence 0.201

93. h13007017.png ; $a _ { 11 } f _ { 1 } + \ldots + a _ { i l } f _ { l } = 0 , i = 1 , \ldots , m$ ; confidence 0.201

94. t12020043.png ; $\mathscr { Q } ( k ) = \sum _ { j = 1 } ^ { n } b _ { j } ^ { \prime \prime } ( k ) z _ { j } ^ { k }$ ; confidence 0.201

95. a13012053.png ; $e ^ { k \operatorname { ln } k }$ ; confidence 0.201

96. m13018052.png ; $\mu ( 0 , x ) = - \sum _ { i j } \mu ( 0 , u )$ ; confidence 0.201

97. v13006022.png ; $\hat { E S }$ ; confidence 0.201

98. a130040641.png ; $\langle M e _ { S } _ { P } \mathfrak { M } / \Omega F _ { S } \mathfrak { M } , F _ { S _ { P } } \mathfrak { M } / \Omega F _ { S } _ { P } \mathfrak { M } \rangle$ ; confidence 0.201

99. c02008019.png ; $N$ ; confidence 0.200

100. a130040655.png ; $S _ { P } , \mathfrak { M } = \operatorname { mng } _ { P } , \mathfrak { N } \circ h$ ; confidence 0.200

101. h13007060.png ; $a _ { i 1 } f _ { 1 } + \ldots + a _ { i l } f _ { l } = b _ { i } , i = 1 , \ldots , m$ ; confidence 0.200

102. b12022033.png ; $\rho f ( 1 , u _ { f } , \frac { 1 } { 2 } | u f | ^ { 2 } + \frac { N } { 2 } T _ { f } ) = \int ( 1 , v , \frac { | v ^ { 2 } } { 2 } ) f ( v ) d v$ ; confidence 0.200

103. e12024056.png ; $d _ { p } \quad \square ( E / K ) \leq 2 \text { ord } _ { p } [ E ( K ) : Z y _ { K } ]$ ; confidence 0.200

104. w120070102.png ; $\| e ^ { i \zeta A } \| \leq C ^ { \prime } ( 1 + | \zeta | ) ^ { s ^ { \prime } } e ^ { \gamma | \operatorname { lm } \zeta | }$ ; confidence 0.200

105. s1305108.png ; $= \operatorname { min } 5 =$ ; confidence 0.200

106. n0669604.png ; $\frac { e ^ { - ( x + \lambda ) / 2 } x ^ { ( n - 2 ) / 2 } } { 2 ^ { x / 2 } \Gamma ( 1 / 2 ) } \sum _ { r = 0 } ^ { \infty } \frac { \lambda ^ { r } x ^ { r } } { ( 2 r ) ! } \frac { \Gamma ( r + 1 / 2 ) } { \Gamma ( r + n / 2 ) }$ ; confidence 0.200

107. b12051094.png ; $d = d + ( \alpha - ( y _ { n } ^ { T } - 1 ) ^ { d } / y _ { n - 1 } ^ { T } s _ { n - 1 } ) s _ { n - 1 }$ ; confidence 0.200

108. s12005019.png ; $S _ { 0 } , \ldots , S _ { n - 1 }$ ; confidence 0.200

109. b130200120.png ; $b ^ { t ^ { s } }$ ; confidence 0.200

110. r13007069.png ; $= \sum _ { j , m \atop j , m } K ( z _ { m } , y _ { j } ) c _ { j } \overline { \beta _ { m } }$ ; confidence 0.200

111. m13018075.png ; $\mu ( \overline { \emptyset } , X ) = \sum _ { A : \overline { H } = X } ( - 1 ) ^ { | A | }$ ; confidence 0.200

112. d12002099.png ; $\hat { c } ^ { 2 }$ ; confidence 0.199

113. t120200198.png ; $> | z _ { h _ { 1 } } + 1 | \geq \ldots \geq | z _ { k _ { 2 } } | > \delta _ { 2 } \geq$ ; confidence 0.199

114. a12007061.png ; $A u \in B ( D _ { A } ( \alpha , \infty ) ) \cap C ^ { \alpha } ( [ 0 , T ] ; X )$ ; confidence 0.199

115. d12026033.png ; $| X _ { N } | = \operatorname { sup } _ { t } | X _ { N } ( t ) |$ ; confidence 0.199

116. f04049012.png ; $\frac { 2 \nu ^ { 2 } \frac { 2 } { 2 } ( \nu _ { 1 } + \nu _ { 2 } - 2 ) } { \nu _ { 1 } ( \nu _ { 2 } - 2 ) ^ { 2 } ( \nu _ { 2 } - 4 ) } \quad \text { for } \nu _ { 2 } > 4$ ; confidence 0.199

117. c12020048.png ; $\angle D$ ; confidence 0.199

118. j120020183.png ; $P [ \tau \in \Pi ] = | I | / ( 2 \pi )$ ; confidence 0.199

119. l12003021.png ; $S q ^ { i } x _ { n } = 0$ ; confidence 0.199

120. b12027054.png ; $F ^ { ( 0 ) } ( u ) = I _ { [ 0 , \infty ) } ^ { ( 2 ) }$ ; confidence 0.199

121. d12031018.png ; $f ( T ) = \sum _ { n = 0 } ^ { \infty } \alpha _ { n } T ^ { n }$ ; confidence 0.199

122. b11047070.png ; $C ^ { i k }$ ; confidence 0.199

123. s13051049.png ; $| V$ ; confidence 0.199

124. a11004045.png ; $a$ ; confidence 0.199

125. e120230155.png ; $\frac { d } { d t } A ( \sigma _ { t } ) | _ { t = 0 } = \frac { d } { d t } \int _ { N } \sigma ^ { k ^ { * } } \phi _ { t } ^ { k ^ { * } } ( L \Delta ) | _ { t = 0 } =$ ; confidence 0.198

126. g13004012.png ; $f : R ^ { m } \rightarrow R ^ { n }$ ; confidence 0.198

127. c12001030.png ; $T : C ^ { m + 1 } \rightarrow C ^ { n + 1 }$ ; confidence 0.198

128. b12018033.png ; $\forall x _ { 1 } \ldots \forall x _ { N } ( P _ { X 1 } \ldots x _ { N } \leftrightarrow \varphi ( x _ { 1 } , \ldots , x _ { N } ) )$ ; confidence 0.198

129. b12015093.png ; $\operatorname { Var } _ { P _ { 0 } } ( d ^ { * } ) =$ ; confidence 0.198

130. a130040271.png ; $Mod ^ { * } S _ { D }$ ; confidence 0.198

131. f1300207.png ; $T _ { i j }$ ; confidence 0.197

132. e12007026.png ; $( \varphi | _ { k } ^ { V } M ) ( z ) = v ( M ) ( cz + d ) ^ { - k } \varphi ( M z )$ ; confidence 0.197

133. d12014030.png ; $\alpha \neq 0 \in F _ { q }$ ; confidence 0.197

134. l13006088.png ; $( z _ { k } , \ldots , z _ { k } + r - 1 ) \neq ( 0 , \ldots , 0 )$ ; confidence 0.197

135. c13010021.png ; $f = \sum _ { i = 1 } ^ { n } a _ { i } \chi _ { B _ { i } } , \quad B _ { i } = \cup _ { j = i } ^ { n } A _ { i }$ ; confidence 0.197

136. o13001037.png ; $\theta . w : = \sum ^ { 3 } j = 1 \quad \theta _ { j } w _ { j }$ ; confidence 0.197

137. n067520158.png ; $\alpha _ { j } \in K$ ; confidence 0.197

138. t130140140.png ; $q ( x ) = \sum _ { i \in I } x _ { i } ^ { 2 } + \sum _ { i \prec j } x _ { i } x _ { j } - \sum _ { p \in \operatorname { max } l } ( \sum _ { i \prec p } x _ { i } ) x _ { p }$ ; confidence 0.197

139. e12019037.png ; $l _ { x }$ ; confidence 0.196

140. c11048021.png ; $X \in N$ ; confidence 0.196

141. h13007038.png ; $\Delta f _ { i } = A _ { , r + 1 } f _ { r + 1 } + \ldots + A _ { , l } f _ { l }$ ; confidence 0.196

142. f11016092.png ; $\mathfrak { A } \equiv \ell \mathfrak { B }$ ; confidence 0.196

143. b0161709.png ; $T$ ; confidence 0.196

144. k055840403.png ; $21 , \dots , 2 x$ ; confidence 0.196

145. b12002049.png ; $\beta _ { n , F }$ ; confidence 0.196

146. a01055030.png ; $g = e$ ; confidence 0.195

147. s13048053.png ; $( E _ { f } ^ { p q } , a _ { \ell } ^ { p q } )$ ; confidence 0.195

148. b120430152.png ; $U _ { q } ( g ) = U _ { q } ( n _ { - } ) \times H _ { \bowtie } U _ { q } ( n _ { + } )$ ; confidence 0.195

149. t09408034.png ; $\rightarrow \pi _ { n } ( X , B , * ) \rightarrow \pi _ { n } ( X ; A , B , x _ { 0 } ) \stackrel { \partial } { \rightarrow } \ldots$ ; confidence 0.195

150. l12003048.png ; $( ( - ) \otimes _ { F } , H ^ { * } B V ) : U \rightarrow U$ ; confidence 0.195

151. b120430166.png ; $\Delta f = 1 \bigotimes f + x \varnothing \partial _ { q } f +$ ; confidence 0.195

152. q12001095.png ; $d \tilde { \pi } ^ { c } ( X ) = d \tilde { \pi } ( X )$ ; confidence 0.195

153. a13018093.png ; $y = ( L )$ ; confidence 0.194

154. a110010295.png ; $\underline { \Phi }$ ; confidence 0.194

155. l05700079.png ; $c _ { t }$ ; confidence 0.194

156. q12007084.png ; $\{ f ^ { i x } \}$ ; confidence 0.194

157. m12013059.png ; $( N _ { * } ^ { 1 } , \ldots , N _ { * } ^ { n } )$ ; confidence 0.194

158. b13012029.png ; $f _ { k } ( x ) = h ^ { - 1 } \int _ { R } \varphi ( \frac { t } { h } ) f ( x - t ) d t$ ; confidence 0.194

159. g12004055.png ; $\hat { f } ( \xi ) = \int _ { R ^ { n } e } ^ { - i x \xi } f ( x ) d x$ ; confidence 0.194

160. c1203102.png ; $\mathfrak { c } _ { \mathfrak { z } } \in R$ ; confidence 0.194

161. l120100108.png ; $K _ { k 1 } ( V )$ ; confidence 0.194

162. c1200806.png ; $\hat { I } _ { y }$ ; confidence 0.194

163. b12021048.png ; $\overline { D } _ { k } = U ( a ) \otimes U ( p ) \wedge ^ { k } ( a / p )$ ; confidence 0.194

164. t120050119.png ; $\vec { d ^ { 2 } f _ { x } } : K _ { x } \times T V _ { x } \rightarrow Q _ { x }$ ; confidence 0.194

165. s1306404.png ; $T _ { n } ( a ) = ( a _ { j - k } ) _ { j , k = 0 } ^ { n - 1 }$ ; confidence 0.194

166. e12001013.png ; $M \subseteq \text { Mono } ( \mathfrak { A } )$ ; confidence 0.193

167. s120340136.png ; $M ( \tilde { x } _ { + } , \tilde { x } _ { - } ) / R$ ; confidence 0.193

168. l05702027.png ; $1 ^ { n }$ ; confidence 0.193

169. m12009031.png ; $x \mapsto e ^ { T x }$ ; confidence 0.193

170. s12024052.png ; $z _ { i } ^ { n } \sim z _ { i + 1 } ^ { n }$ ; confidence 0.193

171. b130200201.png ; $s l _ { 2 } ( R )$ ; confidence 0.193

172. i12001029.png ; $_ { S } \in R ^ { 1 }$ ; confidence 0.193

173. w12007041.png ; $e ^ { i ( p D + q X + t I ) }$ ; confidence 0.193

174. d13011018.png ; $\alpha _ { X } = \left( \begin{array} { l l l l } { 0 } & { 0 } & { 0 } & { 1 } \\ { 0 } & { 0 } & { 1 } & { 0 } \\ { 0 } & { 1 } & { 0 } & { 0 } \\ { 1 } & { 0 } & { 0 } & { 0 } \end{array} \right) = \left( \begin{array} { l l } { 0 } & { \sigma _ { x } } \\ { \sigma _ { x } } & { 0 } \end{array} \right)$ ; confidence 0.193

175. a01167032.png ; $a 1 , \dots , a _ { x }$ ; confidence 0.193

176. a01022046.png ; $v$ ; confidence 0.193

177. w13008092.png ; $d \Omega _ { n } = d \hat { \Omega } _ { n } - \sum _ { 1 } g ( \oint _ { A _ { j } } d \hat { \Omega _ { n } } ) d \omega _ { j }$ ; confidence 0.193

178. e1200103.png ; $A \stackrel { f } { \rightarrow } B = A \stackrel { é } { \rightarrow } f [ A ] \stackrel { m } { \rightarrow } B$ ; confidence 0.193

179. s09067084.png ; $V _ { q } ^ { p }$ ; confidence 0.193

180. t09408031.png ; $\pi _ { n } ( X ; A , B , ^ { * } ) = \pi _ { n - 1 } ( \Omega ( X ; B , * ) , \Omega ( A ; A \cap B , * ) , * )$ ; confidence 0.193

181. a12024032.png ; $\overline { CH } \overline { D } ^ { p } ( X )$ ; confidence 0.193

182. i130090226.png ; $X ^ { \omega } \chi ^ { - 1 } = \{ x \in X : \delta x = \omega \chi ^ { - 1 } ( \delta ) x f o r \delta \in \Delta \}$ ; confidence 0.193

183. n12002097.png ; $\operatorname { lim } _ { n \rightarrow \infty } \frac { 1 } { n } \operatorname { log } P [ X _ { 1 } + \ldots + X _ { n } \geq n m ] = \int _ { m _ { 0 } } ^ { m } \frac { x - m } { V _ { F } ( x ) } d x$ ; confidence 0.193

184. b12024014.png ; $V \subset C ^ { m }$ ; confidence 0.192

185. a0100205.png ; $P = \cup _ { n _ { 1 } , \ldots , n _ { k } , \ldots } \cap _ { k = 1 } ^ { \infty } E _ { n _ { 1 } } \square \ldots x _ { k }$ ; confidence 0.192

186. a120160164.png ; $e$ ; confidence 0.192

187. c12001039.png ; $p ^ { m } \backslash X$ ; confidence 0.192

188. b130200175.png ; $( e _ { i } ) ^ { k } , v = 0 = ( f _ { i } ) ^ { k } , v$ ; confidence 0.192

189. d120230178.png ; $\vec { G } _ { i } \Theta _ { i }$ ; confidence 0.192

190. c02202042.png ; $k ]$ ; confidence 0.192

191. a011650300.png ; $x _ { i }$ ; confidence 0.192

192. d13013087.png ; $L _ { n } = SU ( 2 ) / Z _ { n }$ ; confidence 0.192

193. b13028048.png ; $\lambda _ { N } H \times \Omega ^ { \infty } X$ ; confidence 0.192

194. m13013078.png ; $v _ { 1 } , \dots , v _ { k }$ ; confidence 0.191

195. b1203607.png ; $\{ \in \{ \}$ ; confidence 0.191

196. a11058010.png ; $p 2$ ; confidence 0.191

197. f13009069.png ; $R _ { S } ( p ; k , n )$ ; confidence 0.191

198. b12031066.png ; $S _ { R } ^ { \delta } ( f ) ( x ) = \sum _ { m \backslash | \leq R } ( 1 - \frac { | m | ^ { 2 } } { R ^ { 2 } } ) ^ { \delta } e ^ { 2 \pi i x m } \hat { f } ( m )$ ; confidence 0.191

199. t12002031.png ; $( X _ { n } ) _ { n \in Z } ^ { d }$ ; confidence 0.191

200. l12010011.png ; $\left\{ \begin{array} { l l } { \gamma \geq \frac { 1 } { 2 } } & { \text { forn } = 1 } \\ { \gamma > 0 } & { \text { forn } = 2 } \\ { \gamma \geq 0 } & { \text { forn } \geq 3 } \end{array} \right.$ ; confidence 0.191

201. a01197039.png ; $\underline { 1 } = 1$ ; confidence 0.191

202. c12004070.png ; $\times [ CF ( \zeta - z , w ) - \frac { ( n - 1 ) ! ( | \zeta | ^ { 2 m } - \langle \overline { \zeta } , z | ^ { m } ) ^ { n } } { [ 2 \pi i | \zeta | ^ { 2 m } \{ \overline { \zeta } , \zeta - z \} ] ^ { N } } \sigma _ { 0 } ]$ ; confidence 0.191

203. s1304104.png ; $\langle p , q \rangle _ { s } = \sum _ { l = 0 } ^ { N } \lambda _ { i } \int _ { R } p ^ { ( l ) } q ^ { ( l ) } d \mu _ { l }$ ; confidence 0.190

204. d12012064.png ; $\left. \begin{array} { c c c } { \square } & { c _ { 2 } } & { \square } \\ { \square } & { \square } & { \searrow ^ { \phi _ { 2 } } } \\ { \square ^ { \phi _ { 1 } } } & { \nearrow } & { \vec { \phi _ { 3 } } } \end{array} \right.$ ; confidence 0.190

205. t12021086.png ; $t ( G ) = t ( G / e ) + ( x - 1 ) ^ { r ( G ) - r ( G - \epsilon ) } t ( G - e )$ ; confidence 0.190

206. c13004024.png ; $\psi ^ { ( R ) } ( z ) = ( - 1 ) ^ { N + 1 } n ! \zeta ( n + 1 , z )$ ; confidence 0.190

207. o130060188.png ; $( \sigma _ { 2 } \frac { \partial } { \partial t _ { 1 } } - \sigma _ { 1 } \frac { \partial } { \partial t _ { 2 } } + \tilde { \gamma } ) v = 0$ ; confidence 0.190

208. w12005056.png ; $h = ( h _ { 1 } , \dots , h _ { w } ) \in N ^ { w } \subset A ^ { w }$ ; confidence 0.190

209. t120010125.png ; $\dot { i } \leq n$ ; confidence 0.190

210. m12013058.png ; $\frac { d N ^ { i } } { d t } = f ^ { i } ( N ^ { 1 } , \ldots , N ^ { n } ) , \quad i = 1 , \dots , n$ ; confidence 0.190

211. e12010046.png ; $w ^ { em } = - \frac { 1 } { 2 } \frac { \partial } { \partial t } ( E ^ { 2 } + B ^ { 2 } ) - \nabla \cdot ( S - v ( P E ) )$ ; confidence 0.190

212. h12002040.png ; $( \alpha _ { j } + k ) _ { j , k } \geq 0$ ; confidence 0.190

213. f130100154.png ; $\langle G \rangle \leq \| u \| _ { H } ( H ) + \epsilon$ ; confidence 0.190

214. a12010013.png ; $e ^ { - t A _ { X } } = \operatorname { lim } _ { n \rightarrow \infty } ( I + \frac { t } { n } A ) ^ { - n } x = S ( t ) x , \forall x \in X$ ; confidence 0.189

215. b13029054.png ; $a _ { 1 } , \dots , a _ { d }$ ; confidence 0.189

216. b13029080.png ; $I ( M ) = \sum _ { i = 0 } ^ { s - 1 } \left( \begin{array} { c } { s - 1 } \\ { i } \end{array} \right) J _ { A } ( H _ { m } ^ { i } ( M ) )$ ; confidence 0.189

217. t13004049.png ; $h : = \operatorname { max } _ { N \in N } \{ \sigma _ { N } - n \}$ ; confidence 0.189

218. a130040133.png ; $\Lambda _ { D } T$ ; confidence 0.189

219. k05578016.png ; $I _ { V }$ ; confidence 0.189

220. c12026083.png ; $t _ { 8 } + 1 / 2 = t _ { x } + k / 2$ ; confidence 0.189

221. w1300909.png ; $| h | _ { H } ^ { 2 }$ ; confidence 0.189

222. n0666306.png ; $r _ { 2 } > 0$ ; confidence 0.188

223. w13017046.png ; $\hat { y } _ { t , r } = \sum _ { j = r } ^ { \infty } K _ { j } \varepsilon _ { t + r - j }$ ; confidence 0.188

224. f120110108.png ; $H _ { K } ^ { X } ( D ^ { X } + i R ^ { X } , \tilde { O } )$ ; confidence 0.188

225. d12015024.png ; $= ( 3 ^ { d } + 1 \frac { 3 ^ { d + 1 } - 1 } { 2 } , 3 ^ { d } \frac { 3 ^ { d + 1 } + 1 } { 2 } , 3 ^ { d } \frac { 3 ^ { d } + 1 } { 2 } , 3 ^ { 2 d } )$ ; confidence 0.188

226. f13029065.png ; $f _ { L } ^ { \rightarrow } ( a ) ( y ) = \vee \{ \alpha ( x ) : f ( x ) = y \}$ ; confidence 0.188

227. c120170170.png ; $\tau ( \sum a _ { i j } z ^ { i } z ^ { j } ) = \sum a _ { i j } \gamma _ { i j }$ ; confidence 0.188

228. m06377013.png ; $\dot { x } = A x , \quad x \in R ^ { x }$ ; confidence 0.188

229. b1205605.png ; $h = h ( M ) = \operatorname { inf } _ { \Gamma } \frac { \operatorname { Vol } ( \Gamma ) } { \operatorname { min } \{ \operatorname { Vol } ( M _ { 1 } ) , \text { Vol } ( M _ { 2 } ) \} }$ ; confidence 0.188

230. f13002015.png ; $c ^ { a } ( x ) c ^ { b } ( y ) = - c ^ { b } ( y ) c ^ { a } ( x )$ ; confidence 0.188

231. c130070204.png ; $\operatorname { ord } _ { T } ( u d v ) = \operatorname { ord } _ { T } ( u d v / d \tau )$ ; confidence 0.188

232. c12007037.png ; $\operatorname { lim } _ { L } \leftarrow ^ { n }$ ; confidence 0.188

233. a130040192.png ; $\mathfrak { A } ^ { * } S = \mathfrak { A }$ ; confidence 0.188

234. i13002048.png ; $\sum _ { k = 1 } ^ { m } x _ { k } S _ { k } \leq P ( A _ { 1 } \cup \ldots \cup A _ { n } ) \leq \sum _ { k = 1 } ^ { m } y _ { k } S _ { k }$ ; confidence 0.188

235. a130040280.png ; $\Gamma \dagger _ { D } \Delta ( \varphi , \psi )$ ; confidence 0.188

236. c12008026.png ; $A _ { 1 } = \left[ \begin{array} { c c c } { A _ { 11 } } & { \dots } & { A _ { 1 m } } \\ { \dots } & { \dots } & { \dots } \\ { A _ { m 1 } } & { \dots } & { A _ { m m } } \end{array} \right] \in C ^ { m n \times m n }$ ; confidence 0.187

237. l13006044.png ; $D _ { k } ^ { * }$ ; confidence 0.187

238. n06736068.png ; $1.1 p$ ; confidence 0.187

239. g12004077.png ; $P ( x , D ) u = ( 2 \pi ) ^ { - n } \int _ { R ^ { n } } e ^ { i x \xi } p ( x , \xi ) \hat { u } ( \xi ) d \xi$ ; confidence 0.187

240. z13008038.png ; $= \frac { ( \alpha + 1 ) _ { k + l } } { ( \alpha + 1 ) _ { k } ( \alpha + 1 ) _ { l } } \sum _ { j = 0 } ^ { \operatorname { min } ( k , l ) } \frac { ( - k ) _ { j } ( - l ) } { ( - k - l - \alpha ) j ! } r ^ { k + l - 2 j }$ ; confidence 0.187

241. q12007011.png ; $( \Delta \bigotimes \text { id } ) R = R _ { 13 } R _ { 23 } , ( \text { id } \bigotimes \Delta ) R = R _ { 13 } R _ { 12 }$ ; confidence 0.187

242. t120010100.png ; $O = G / \operatorname { Sp } ( 1 ) . K$ ; confidence 0.187

243. d03006013.png ; $+ \frac { 1 } { 2 \alpha } \int _ { x - w t } ^ { x + c t } \psi ( \xi ) d \xi + \frac { 1 } { 2 } [ \phi ( x + a t ) + \phi ( x - a t ) ]$ ; confidence 0.187

244. s120340106.png ; $X - = ( x - , u - )$ ; confidence 0.187

245. z12001084.png ; $\{ \text { ad } e _ { - } ^ { p } _ { - 1 } ^ { k } : 0 < k < m \}$ ; confidence 0.187

246. s08602017.png ; $\left.\begin{array} { r l } { \Phi ^ { + } ( t _ { 0 } ) } & { = \frac { 1 } { 2 \pi i } \int _ { \Gamma } \frac { \phi ( t ) d t } { t - t _ { 0 } } + \frac { 1 } { 2 } \phi ( t _ { 0 } ) } \\ { \Phi ^ { - } ( t _ { 0 } ) } & { = \frac { 1 } { 2 \pi i } \int _ { \Gamma } \frac { \phi ( t ) d t } { t - t _ { 0 } } - \frac { 1 } { 2 } \phi ( t _ { 0 } ) } \end{array} \right\}$ ; confidence 0.187

247. e12010045.png ; $G ^ { em } = G ^ { em } \cdot f$ ; confidence 0.187

248. q12008066.png ; $\left[ \begin{array} { l } { 1 } \\ { 1 } \end{array} \right]$ ; confidence 0.187

249. a13026019.png ; $a _ { m p } r \equiv a _ { m p ^ { r - 1 } } ( \operatorname { mod } p ^ { 3 r } )$ ; confidence 0.187

250. l12004081.png ; $( u _ { i } ^ { n } + \hat { u } _ { i } ^ { + } ) / 2$ ; confidence 0.187

251. e120070105.png ; $\hat { H } ^ { 1 } = \hat { H } ^ { 1 } ( \Gamma , k , v ; P ( k ) )$ ; confidence 0.187

252. e13007042.png ; $\vec { c } _ { i } ^ { \prime }$ ; confidence 0.187

253. n12010059.png ; $\| Y _ { m } \| _ { G } ^ { 2 } = \sum _ { i , j = 1 } ^ { k } g j \langle y _ { m } + i - 1 , y _ { m } + j - 1 \rangle$ ; confidence 0.187

254. t13008013.png ; $+ ( 1 - \mu _ { x } + t ^ { + } d t ) e ^ { - \delta d t } V _ { t + d t } + o ( d t )$ ; confidence 0.187

255. d12024092.png ; $gl ( n , C )$ ; confidence 0.187

256. l120130103.png ; $Z [ X _ { 1 } , \dots , X _ { N } ]$ ; confidence 0.187

257. m13014085.png ; $\frac { \pi ^ { n } } { n \operatorname { vol } ( D ) } \int _ { \partial D } f ( \zeta ) \nu ( \zeta - a ) = f ( a )$ ; confidence 0.186

258. r130070137.png ; $= ( F ( . ) , ( h ( \ldots , y ) , ( h ( , x ) , h ( \ldots , x ) ) _ { H } ) _ { H } ) _ { H } =$ ; confidence 0.186

259. s120050115.png ; $\alpha _ { 1 } , \dots , \alpha _ { n }$ ; confidence 0.186

260. c12007036.png ; $H ^ { n } ( C , M ) = \operatorname { lim } _ { L } \leftarrow ^ { n } M$ ; confidence 0.186

261. c120180211.png ; $\tau _ { V }$ ; confidence 0.186

262. i1200404.png ; $f ( z ) = \frac { 1 } { ( 2 \pi i ) ^ { N } } \int _ { b _ { 0 } P } \frac { f ( \zeta ) d \zeta _ { 1 } \ldots d \zeta _ { N } } { ( \zeta _ { 1 } - z _ { 1 } ) \ldots ( \zeta _ { N } - z _ { N } ) } , z \in P$ ; confidence 0.186

263. p13013084.png ; $\hat { S } _ { n }$ ; confidence 0.186

264. e120120132.png ; $\frac { \partial ^ { 2 } } { \partial \theta _ { . } \partial \theta } Q ( \theta | \theta ^ { * } ) = \theta ^ { * }$ ; confidence 0.186

265. i130090106.png ; $p ^ { é } R$ ; confidence 0.185

266. w130080119.png ; $d S _ { A }$ ; confidence 0.185

267. l13001017.png ; $N B$ ; confidence 0.185

268. f1301008.png ; $( l _ { N } ) _ { N = 1 } ^ { \infty } 1$ ; confidence 0.185

269. x12001085.png ; $Q ^ { * } G _ { \text { inn } } = Q \otimes _ { C } C ^ { \dagger } [ G _ { \text { inn } } ]$ ; confidence 0.185

270. d120230147.png ; $D = \operatorname { diag } \{ d _ { 0 } , \dots , d _ { n - 1 } \}$ ; confidence 0.185

271. s12032031.png ; $[ \alpha , b ] = a b - ( - 1 ) ^ { p ( \alpha ) p ( b ) } b a$ ; confidence 0.185

272. c12001098.png ; $\rho _ { j \overline { k } } = \partial ^ { 2 } \rho / \partial z _ { j } \partial z _ { k }$ ; confidence 0.185

273. d0326606.png ; $x _ { 1 } , \dots , x _ { 1 }$ ; confidence 0.185

274. b12029016.png ; $\hat { R } _ { R _ { S } ^ { A } } ^ { A } = \hat { R } _ { S } ^ { A } \text { on } R ^ { n }$ ; confidence 0.185

275. g12007029.png ; $\operatorname { lif } ( R ^ { M } )$ ; confidence 0.185

276. n06663058.png ; $H _ { p } ^ { \gamma } ( R ^ { \gamma } )$ ; confidence 0.185

277. q12007063.png ; $\delta : s | _ { 2 } \rightarrow s | _ { 2 } \otimes s \dot { l } _ { 2 }$ ; confidence 0.185

278. e13003025.png ; $\Omega ^ { \bullet } ( \tilde { M } _ { C } ) \rightleftarrows \operatorname { Hom } _ { K _ { \infty } } ( \Lambda ^ { \bullet } ( \mathfrak { g } / \mathfrak { k } ) , C _ { \infty } ( \Gamma \backslash G ( R ) \otimes M _ { C } ) )$ ; confidence 0.185

279. a1103207.png ; $u _ { m + 1 } ^ { ( i ) } = R _ { 0 } ^ { ( i ) } ( c _ { i } h T ) u _ { m } +$ ; confidence 0.185

280. t13014041.png ; $E _ { g }$ ; confidence 0.184

281. c024850208.png ; $X _ { \alpha }$ ; confidence 0.184

282. b110100380.png ; $0.2$ ; confidence 0.184

283. m13023092.png ; $E \rightarrow Y \backslash \phi ( E )$ ; confidence 0.184

284. f1301006.png ; $( k _ { n } ) _ { n = 1 } ^ { \infty }$ ; confidence 0.184

285. c12003024.png ; $g : I \rightarrow R ^ { m }$ ; confidence 0.184

286. s13034019.png ; $S _ { S } ( M )$ ; confidence 0.184

287. d12015043.png ; $Q [ \zeta _ { \dot { e } } ]$ ; confidence 0.184

288. a130060127.png ; $T ^ { \# } ( n ) \sim C _ { 0 } g _ { 0 } ^ { n } n ^ { - 5 / 2 } \text { asn } \rightarrow \infty$ ; confidence 0.184

289. b110220136.png ; $r _ { D } \otimes R : H _ { M } ^ { i + 1 } ( X , Q ( i + 1 - m ) ) _ { Z } \otimes R \rightarrow H _ { D } ^ { i + 1 } ( X _ { / R } , R ( i + 1 - m ) )$ ; confidence 0.184

290. d13011010.png ; $\alpha _ { y }$ ; confidence 0.184

291. m13026050.png ; $x \rightarrow \| \alpha x \| + \| \alpha x \|$ ; confidence 0.184

292. l12003010.png ; $f ^ { * } \in \text { Homalg } ( H ^ { * } ( Y , F _ { p } ) , H ^ { * } ( X , F _ { p } ) )$ ; confidence 0.183

293. a13029045.png ; $HF _ { * } ^ { \text { inst } } ( Y , P _ { Y } ) \cong HF _ { * } ^ { \text { symp } } ( M ( P ) , L _ { 0 } , L _ { 1 } )$ ; confidence 0.183

294. c12001062.png ; $p ^ { n }$ ; confidence 0.183

295. b12050026.png ; $l ( t , x ) = \operatorname { lim } _ { \epsilon \rightarrow 0 } \frac { 1 } { 2 \varepsilon } \int _ { 0 } ^ { t } 1 ( x - \varepsilon , x + \varepsilon ) ( W _ { s } ) d s$ ; confidence 0.183

296. a12026072.png ; $j$ ; confidence 0.183

297. a13013090.png ; $N$ ; confidence 0.183

298. s1202506.png ; $h _ { n } = \int _ { a } ^ { b } x ^ { n } h ( x ) d x$ ; confidence 0.183

299. w13009078.png ; $\{ \varphi _ { n _ { 1 } , n _ { 2 } , \ldots } : n _ { j } \geq 0 , n _ { 1 } + n _ { 2 } + \ldots = n , n \geq 0 \}$ ; confidence 0.183

300. w130080100.png ; $\partial d S / \partial \alpha j = d \omega j$ ; confidence 0.183

How to Cite This Entry:
Maximilian Janisch/latexlist/latex/NoNroff/72. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Maximilian_Janisch/latexlist/latex/NoNroff/72&oldid=44560