Difference between revisions of "User:Maximilian Janisch/latexlist/latex/NoNroff/72"
(AUTOMATIC EDIT of page 72 out of 77 with 300 lines: Updated image/latex database (currently 22833 images latexified; order by Length, ascending: False.) |
(AUTOMATIC EDIT of page 72 out of 77 with 300 lines: Updated image/latex database (currently 22833 images latexified; order by Confidence, ascending: False.) |
||
Line 1: | Line 1: | ||
== List == | == List == | ||
− | 1. https://www.encyclopediaofmath.org/legacyimages/ | + | 1. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130070/f13007034.png ; $= \{ x _ { 1 } , \dots , x _ { m } | x _ { i } x ^ { k _ { i } + 1 } = x _ { i + 2 } ; \text { indices } ( \operatorname { mod } m ) \}$ ; confidence 0.208 |
− | 2. https://www.encyclopediaofmath.org/legacyimages/ | + | 2. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120270/s12027015.png ; $R _ { x } [ f ]$ ; confidence 0.208 |
− | 3. https://www.encyclopediaofmath.org/legacyimages/ | + | 3. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120120/e12012093.png ; $w _ { i } ^ { ( t + 1 ) } = E ( q _ { i } | y _ { i } , \mu ^ { ( t ) } , \Sigma ^ { ( t ) } ) = \frac { \nu + p } { \nu + d _ { i } ^ { ( t ) } } , i = 1 , \dots , n$ ; confidence 0.208 |
− | 4. https://www.encyclopediaofmath.org/legacyimages/ | + | 4. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130060/d13006029.png ; $m _ { E _ { 1 } , E _ { 2 } } ( A ) = c . \sum _ { B , C , A = B \cap C } m _ { E _ { 1 } } ( B ) m _ { E _ { 2 } } ( C )$ ; confidence 0.208 |
− | 5. https://www.encyclopediaofmath.org/legacyimages/ | + | 5. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240502.png ; $Z _ { i j }$ ; confidence 0.208 |
− | 6. https://www.encyclopediaofmath.org/legacyimages/ | + | 6. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001098.png ; $k$ ; confidence 0.208 |
− | 7. https://www.encyclopediaofmath.org/legacyimages/ | + | 7. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110400/a11040054.png ; $6$ ; confidence 0.208 |
− | 8. https://www.encyclopediaofmath.org/legacyimages/ | + | 8. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110930/b11093018.png ; $Z _ { D }$ ; confidence 0.208 |
− | 9. https://www.encyclopediaofmath.org/legacyimages/ | + | 9. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120020/d120020168.png ; $\gamma ( \pi _ { 1 } ) \leq 0$ ; confidence 0.208 |
− | 10. https://www.encyclopediaofmath.org/legacyimages/ | + | 10. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120160/s12016016.png ; $\| . \| _ { k }$ ; confidence 0.208 |
− | 11. https://www.encyclopediaofmath.org/legacyimages/ | + | 11. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130100/f1301005.png ; $( ( k _ { N } ) _ { N = 1 } ^ { \infty } , ( l _ { N } ) _ { N = 1 } ^ { \infty } )$ ; confidence 0.208 |
− | 12. https://www.encyclopediaofmath.org/legacyimages/ | + | 12. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120110/f12011046.png ; $Ke _ { 2 }$ ; confidence 0.208 |
− | 13. https://www.encyclopediaofmath.org/legacyimages/ | + | 13. https://www.encyclopediaofmath.org/legacyimages/c/c110/c110250/c11025029.png ; $e ^ { 2 }$ ; confidence 0.208 |
− | 14. https://www.encyclopediaofmath.org/legacyimages/ | + | 14. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120070/h12007036.png ; $c : \alpha \rightarrow b$ ; confidence 0.207 |
− | 15. https://www.encyclopediaofmath.org/legacyimages/ | + | 15. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130060/g130060120.png ; $: = \{ B = [ b _ { i } , j ] : b _ { i , i } = a _ { i , i } , \text { and } r _ { i } ( B ) = r _ { i } ( A ) , 1 \leq i \leq n \}$ ; confidence 0.207 |
− | 16. https://www.encyclopediaofmath.org/legacyimages/ | + | 16. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110320/a1103208.png ; $+ h \sum _ { j = 1 } ^ { i - 1 } A _ { j } ( h T ) [ f ( t _ { m } + c _ { j } h , u _ { m + 1 } ^ { ( j ) } ) - T u _ { n j } ^ { ( j ) } + 1 ]$ ; confidence 0.207 |
− | 17. https://www.encyclopediaofmath.org/legacyimages/ | + | 17. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120070/w12007075.png ; $h _ { y }$ ; confidence 0.207 |
− | 18. https://www.encyclopediaofmath.org/legacyimages/ | + | 18. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120250/d1202502.png ; $f : U \rightarrow R ^ { \kappa }$ ; confidence 0.207 |
− | 19. https://www.encyclopediaofmath.org/legacyimages/ | + | 19. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120060/v12006053.png ; $B _ { m } - B _ { N }$ ; confidence 0.207 |
− | 20. https://www.encyclopediaofmath.org/legacyimages/ | + | 20. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120040/h12004029.png ; $V _ { \xi } \subseteq ^ { * } W$ ; confidence 0.207 |
− | 21. https://www.encyclopediaofmath.org/legacyimages/a/ | + | 21. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120130/a12013046.png ; $P _ { \theta } * ( X _ { n } - 1 , d x )$ ; confidence 0.207 |
− | 22. https://www.encyclopediaofmath.org/legacyimages/ | + | 22. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120030/d1200305.png ; $x _ { n } / x / y _ { n }$ ; confidence 0.207 |
− | 23. https://www.encyclopediaofmath.org/legacyimages/ | + | 23. https://www.encyclopediaofmath.org/legacyimages/v/v096/v096900/v09690033.png ; $T \rightarrow T | _ { P ^ { \prime } } H$ ; confidence 0.207 |
− | 24. https://www.encyclopediaofmath.org/legacyimages/ | + | 24. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120260/a120260117.png ; $( m , X _ { 1 } , \dots , X _ { s } ) ^ { c }$ ; confidence 0.207 |
− | 25. https://www.encyclopediaofmath.org/legacyimages/ | + | 25. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120090/b12009031.png ; $\xi = e ^ { i \alpha | n \tau } f$ ; confidence 0.207 |
− | 26. https://www.encyclopediaofmath.org/legacyimages/ | + | 26. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130040/z13004017.png ; $| \frac { n } { 2 } | \lfloor \frac { n - 1 } { 2 } \rfloor \lfloor \frac { m } { 2 } \rfloor \lfloor \frac { m - 1 } { 2 } \rfloor$ ; confidence 0.206 |
− | 27. https://www.encyclopediaofmath.org/legacyimages/ | + | 27. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120030/m12003090.png ; $\vec { x } _ { j }$ ; confidence 0.206 |
− | 28. https://www.encyclopediaofmath.org/legacyimages/ | + | 28. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120130/m12013074.png ; $\frac { d N } { d t } = \lambda N ( 1 - ( \frac { N } { K } ) ^ { x } )$ ; confidence 0.206 |
− | 29. https://www.encyclopediaofmath.org/legacyimages/ | + | 29. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120200/d12020015.png ; $p _ { N } ( s ) = \sum _ { m = 1 } ^ { n } a _ { m j } m ^ { - s }$ ; confidence 0.206 |
− | 30. https://www.encyclopediaofmath.org/legacyimages/ | + | 30. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011600/a01160050.png ; $r$ ; confidence 0.206 |
− | 31. https://www.encyclopediaofmath.org/legacyimages/ | + | 31. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130310/a13031033.png ; $\mu _ { n } ( X ) : = \mu ( X ) / \sum _ { R = n } \mu ( Y )$ ; confidence 0.206 |
− | 32. https://www.encyclopediaofmath.org/legacyimages/ | + | 32. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120040/l12004082.png ; $f _ { l + 1 / 2 } ^ { \operatorname { mac } } = \left\{ \begin{array} { l } { \frac { 1 } { 2 } ( \hat { f } _ { i } ^ { + } + f _ { l + 1 } ^ { n } ) } \\ { \text { or } } \\ { \frac { 1 } { 2 } ( \hat { f } _ { i + 1 } ^ { - } + f _ { l } ^ { n } ) } \end{array} \right.$ ; confidence 0.206 |
− | 33. https://www.encyclopediaofmath.org/legacyimages/ | + | 33. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120070/w12007011.png ; $q _ { t }$ ; confidence 0.206 |
− | 34. https://www.encyclopediaofmath.org/legacyimages/ | + | 34. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130020/i13002026.png ; $X = I _ { A _ { 1 } } + \ldots + I _ { A _ { n } }$ ; confidence 0.206 |
− | 35. https://www.encyclopediaofmath.org/legacyimages/ | + | 35. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120160/f12016027.png ; $C \backslash \sigma _ { TE } ( T )$ ; confidence 0.206 |
− | 36. https://www.encyclopediaofmath.org/legacyimages/ | + | 36. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130020/b13002041.png ; $w ^ { * }$ ; confidence 0.206 |
− | 37. https://www.encyclopediaofmath.org/legacyimages/ | + | 37. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120100/a12010052.png ; $i ^ { p }$ ; confidence 0.206 |
− | 38. https://www.encyclopediaofmath.org/legacyimages/a/ | + | 38. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120260/a120260106.png ; $\hat { y } = ( \hat { y } _ { 1 } , \dots , \hat { y } _ { n } ) \in \hat { A } [ [ X ] ] ^ { n }$ ; confidence 0.205 |
− | 39. https://www.encyclopediaofmath.org/legacyimages/ | + | 39. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120010/c12001076.png ; $E _ { i } ^ { * * }$ ; confidence 0.205 |
− | 40. https://www.encyclopediaofmath.org/legacyimages/ | + | 40. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120150/m12015028.png ; $\int _ { Y } \int x f _ { X , Y } d X d Y = 1$ ; confidence 0.205 |
− | 41. https://www.encyclopediaofmath.org/legacyimages/ | + | 41. https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f11016062.png ; $\Omega [ D ]$ ; confidence 0.205 |
− | 42. https://www.encyclopediaofmath.org/legacyimages/ | + | 42. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130080/d13008096.png ; $= \{ z \in D : \operatorname { liminf } _ { W \rightarrow X } [ K _ { D } ( z , w ) - K _ { D } ( z 0 , w ) ] < \frac { 1 } { 2 } \operatorname { log } R \}$ ; confidence 0.205 |
− | 43. https://www.encyclopediaofmath.org/legacyimages/ | + | 43. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120100/m12010012.png ; $\Delta _ { x } = \{ 0 , \dots , n \}$ ; confidence 0.205 |
− | 44. https://www.encyclopediaofmath.org/legacyimages/a/ | + | 44. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120100/a12010060.png ; $D ( \Delta ) = H _ { \diamond } ^ { 1 } \cap H ^ { 2 } ( \Omega )$ ; confidence 0.205 |
− | 45. https://www.encyclopediaofmath.org/legacyimages/ | + | 45. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130070/b13007058.png ; $\sigma : a \mapsto a b , b \mapsto b , \gamma _ { r } : \alpha \mapsto a ^ { r + 1 } b ^ { 2 } a ^ { - r } , r \geq 1$ ; confidence 0.205 |
− | 46. https://www.encyclopediaofmath.org/legacyimages/ | + | 46. https://www.encyclopediaofmath.org/legacyimages/c/c027/c027180/c02718026.png ; $C _ { i }$ ; confidence 0.205 |
− | 47. https://www.encyclopediaofmath.org/legacyimages/ | + | 47. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130100/w13010040.png ; $= - I ^ { \kappa } a ( b ) \in ( - \infty , 0 ) , \text { for all } 0 < b < \kappa _ { \alpha }$ ; confidence 0.205 |
− | 48. https://www.encyclopediaofmath.org/legacyimages/ | + | 48. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120240/s1202401.png ; $h ^ { 5 }$ ; confidence 0.205 |
− | 49. https://www.encyclopediaofmath.org/legacyimages/a/ | + | 49. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010600/a01060019.png ; $H _ { \hat { j } }$ ; confidence 0.205 |
− | 50. https://www.encyclopediaofmath.org/legacyimages/ | + | 50. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120020/v12002088.png ; $H ^ { 0 } ( f ^ { - 1 } ( y ) , G ) = G , H ^ { H } ( f ^ { - 1 } ( y ) , G ) = 0$ ; confidence 0.205 |
− | 51. https://www.encyclopediaofmath.org/legacyimages/ | + | 51. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w130080169.png ; $\alpha = 1 , \dots , 1$ ; confidence 0.205 |
− | 52. https://www.encyclopediaofmath.org/legacyimages/ | + | 52. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032000/d03200040.png ; $k 2$ ; confidence 0.205 |
− | 53. https://www.encyclopediaofmath.org/legacyimages/ | + | 53. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120250/s12025055.png ; $\hat { h } = 1$ ; confidence 0.204 |
− | 54. https://www.encyclopediaofmath.org/legacyimages/ | + | 54. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120020/v120020189.png ; $\hat { t } \square ^ { * } : H ^ { n + 1 } ( \overline { D } \square ^ { n + 1 } , S ^ { n } ) \rightarrow H ^ { n + 1 } ( \Gamma _ { \square \square ^ { n + 1 } } , \Gamma _ { S ^ { n } } )$ ; confidence 0.204 |
− | 55. https://www.encyclopediaofmath.org/legacyimages/ | + | 55. https://www.encyclopediaofmath.org/legacyimages/m/m063/m063770/m06377012.png ; $x ^ { ( x ) } + a _ { x } - 1 z ^ { ( x - 1 ) } + \ldots + a _ { 0 } x = 0$ ; confidence 0.204 |
− | 56. https://www.encyclopediaofmath.org/legacyimages/ | + | 56. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120210/m12021017.png ; $K , L \in K ^ { n }$ ; confidence 0.204 |
− | 57. https://www.encyclopediaofmath.org/legacyimages/a/ | + | 57. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110580/a11058063.png ; $\hat { l } _ { \uparrow }$ ; confidence 0.204 |
− | 58. https://www.encyclopediaofmath.org/legacyimages/ | + | 58. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031670/d03167019.png ; $\xi _ { 4 }$ ; confidence 0.204 |
− | 59. https://www.encyclopediaofmath.org/legacyimages/a/ | + | 59. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012060/a01206014.png ; $I _ { \uparrow }$ ; confidence 0.204 |
− | 60. https://www.encyclopediaofmath.org/legacyimages/ | + | 60. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120040/c12004054.png ; $CF ( \zeta - z , w ) = \frac { ( n - 1 ) ! } { ( 2 \pi i ) ^ { n } } \frac { \sum _ { k = 1 } ^ { n } ( - 1 ) ^ { k - 1 } w _ { k } d w [ k ] \wedge d \zeta } { \langle w , \zeta - z \rangle ^ { n } }$ ; confidence 0.204 |
− | 61. https://www.encyclopediaofmath.org/legacyimages/ | + | 61. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520270.png ; $\overline { b } 1$ ; confidence 0.204 |
− | 62. https://www.encyclopediaofmath.org/legacyimages/ | + | 62. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130050/l1300505.png ; $a ^ { ( t ) } = ( \alpha _ { t } , \alpha _ { t } + 1 , \ldots , \alpha _ { x } + t - 1 ) ( t \geq 0 )$ ; confidence 0.204 |
− | 63. https://www.encyclopediaofmath.org/legacyimages/ | + | 63. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130060/h13006014.png ; $T _ { n } T _ { m } = \sum _ { d } \sum _ { d ( n , m ) } d ^ { k - 1 } T _ { m n / d } 2$ ; confidence 0.203 |
− | 64. https://www.encyclopediaofmath.org/legacyimages/ | + | 64. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p12017089.png ; $\vec { a }$ ; confidence 0.203 |
− | 65. https://www.encyclopediaofmath.org/legacyimages/ | + | 65. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120020/j12002021.png ; $\int _ { 1 } | \varphi - \varphi _ { 1 } | ^ { 2 } d \vartheta \leq c ^ { 2 } | I |$ ; confidence 0.203 |
− | 66. https://www.encyclopediaofmath.org/legacyimages/ | + | 66. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120430/b12043033.png ; $S _ { 0 } . = . \circ \Psi _ { B , B } \circ ( S \otimes S )$ ; confidence 0.203 |
− | 67. https://www.encyclopediaofmath.org/legacyimages/ | + | 67. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130010/l1300107.png ; $x = ( x _ { 1 } , \dots , x _ { N } ) \in T ^ { x }$ ; confidence 0.203 |
− | 68. https://www.encyclopediaofmath.org/legacyimages/ | + | 68. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120130/b12013077.png ; $A ^ { - \infty } = \cup _ { p > 0 } L _ { w } ^ { p }$ ; confidence 0.203 |
− | 69. https://www.encyclopediaofmath.org/legacyimages/ | + | 69. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120270/m12027043.png ; $a _ { j k }$ ; confidence 0.203 |
− | 70. https://www.encyclopediaofmath.org/legacyimages/ | + | 70. https://www.encyclopediaofmath.org/legacyimages/n/n066/n066630/n06663045.png ; $H _ { p } ^ { r _ { 1 } , \dots , r _ { i - 1 } , r _ { i } + \epsilon , r _ { i + 1 } , \dots , r _ { n } }$ ; confidence 0.203 |
− | 71. https://www.encyclopediaofmath.org/legacyimages/ | + | 71. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130050/h13005025.png ; $\hat { \psi } ( x , k ) \approx \left\{ \begin{array} { l l } { e ^ { - i k x } + b ( k ) } & { e ^ { i k x } } \\ { \alpha ( k ) e ^ { - i k x } } & { \text { as } x } \end{array} \right.$ ; confidence 0.203 |
− | 72. https://www.encyclopediaofmath.org/legacyimages/ | + | 72. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120070/c1200707.png ; $C ^ { n } ( C , M ) = \prod _ { \langle \alpha _ { 1 } , \ldots , \alpha _ { N } \rangle } M ( \operatorname { codom } \alpha _ { n } ) , n > 0$ ; confidence 0.202 |
− | 73. https://www.encyclopediaofmath.org/legacyimages/ | + | 73. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120100/l12010098.png ; $- E$ ; confidence 0.202 |
− | 74. https://www.encyclopediaofmath.org/legacyimages/ | + | 74. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120100/b12010045.png ; $L _ { Y }$ ; confidence 0.202 |
− | 75. https://www.encyclopediaofmath.org/legacyimages/ | + | 75. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120080/q12008057.png ; $E [ W ] _ { \operatorname { exh } } = \frac { \delta ^ { 2 } } { 2 r } + \frac { P \lambda \dot { b } ^ { ( 2 ) } + r ( P - \rho ) } { 2 ( 1 - \rho ) }$ ; confidence 0.202 |
− | 76. https://www.encyclopediaofmath.org/legacyimages/ | + | 76. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120070/h12007015.png ; $a , b \in A _ { M }$ ; confidence 0.202 |
− | 77. https://www.encyclopediaofmath.org/legacyimages/ | + | 77. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120160/b12016071.png ; $\{ e _ { i } \} _ { 1 } ^ { n }$ ; confidence 0.202 |
− | 78. https://www.encyclopediaofmath.org/legacyimages/ | + | 78. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w12011016.png ; $\hat { u } ( \xi ) = \int e ^ { - 2 i \pi x . \xi } u ( x ) d x$ ; confidence 0.202 |
− | 79. https://www.encyclopediaofmath.org/legacyimages/ | + | 79. https://www.encyclopediaofmath.org/legacyimages/q/q130/q130040/q13004027.png ; $\operatorname { l(f } ^ { \prime } ( x ) ) = \operatorname { min } \{ | f ^ { \prime } ( x ) h | : | h | = 1 \}$ ; confidence 0.202 |
− | 80. https://www.encyclopediaofmath.org/legacyimages/ | + | 80. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130040/t13004051.png ; $D x ^ { N }$ ; confidence 0.202 |
− | 81. https://www.encyclopediaofmath.org/legacyimages/ | + | 81. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130050/l1300509.png ; $( \alpha _ { k } ) _ { k } = 0 , \ldots , N - 1$ ; confidence 0.202 |
− | 82. https://www.encyclopediaofmath.org/legacyimages/ | + | 82. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120130/l1201305.png ; $\hat { Q }$ ; confidence 0.202 |
− | 83. https://www.encyclopediaofmath.org/legacyimages/ | + | 83. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130050/o13005085.png ; $x _ { x } \in \mathfrak { H }$ ; confidence 0.202 |
− | 84. https://www.encyclopediaofmath.org/legacyimages/ | + | 84. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130120/b13012058.png ; $\| \alpha \| _ { P M } ^ { * } = \operatorname { sup } _ { n \geq 0 } \frac { 1 } { n + 1 } \sum _ { k = - n } ^ { n } | d _ { k } |$ ; confidence 0.201 |
− | 85. https://www.encyclopediaofmath.org/legacyimages/ | + | 85. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120020/w12002025.png ; $\operatorname { l } _ { p } ^ { p } ( P , Q ) = \int _ { 0 } ^ { 1 } | F ^ { - 1 } ( u ) - G ^ { - 1 } ( u ) | ^ { p } d u , p \geq 1$ ; confidence 0.201 |
− | 86. https://www.encyclopediaofmath.org/legacyimages/ | + | 86. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120100/l12010043.png ; $L _ { \gamma , n } = L _ { \gamma , n } ^ { c }$ ; confidence 0.201 |
− | 87. https://www.encyclopediaofmath.org/legacyimages/ | + | 87. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120260/s1202606.png ; $\int _ { S ^ { \prime } ( R ) } e ^ { i \langle X , \xi \rangle _ { d } } d \mu ( x ) = e ^ { - \| \xi \| _ { 2 } ^ { 2 } / 2 } , \xi \in S ( R )$ ; confidence 0.201 |
− | 88. https://www.encyclopediaofmath.org/legacyimages/ | + | 88. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130060/l13006082.png ; $( z _ { k } , \ldots , z _ { k } + r - 1 )$ ; confidence 0.201 |
− | 89. https://www.encyclopediaofmath.org/legacyimages/ | + | 89. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120130/c1201308.png ; $( M ) \leq v , | \text { sec. curv. } M | \leq \kappa$ ; confidence 0.201 |
− | 90. https://www.encyclopediaofmath.org/legacyimages/ | + | 90. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120150/p12015058.png ; $\sqrt { 2 }$ ; confidence 0.201 |
− | 91. https://www.encyclopediaofmath.org/legacyimages/ | + | 91. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130030/i13003079.png ; $Ch ( \text { ind } ( P ) ) = ( - 1 ) ^ { n } \pi * ( \text { ind } ( [ a ] ) T ( M | B ) )$ ; confidence 0.201 |
− | 92. https://www.encyclopediaofmath.org/legacyimages/a/a130/ | + | 92. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130060/a130060149.png ; $P _ { E } ^ { \# } ( n ) \sim \frac { 1 } { 468 \sqrt { \pi } } 4 ^ { n } n ^ { - 7 / 2 } \text { asn } \rightarrow \infty$ ; confidence 0.201 |
− | 93. https://www.encyclopediaofmath.org/legacyimages/ | + | 93. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130070/h13007017.png ; $a _ { 11 } f _ { 1 } + \ldots + a _ { i l } f _ { l } = 0 , i = 1 , \ldots , m$ ; confidence 0.201 |
− | 94. https://www.encyclopediaofmath.org/legacyimages/ | + | 94. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t12020043.png ; $\mathscr { Q } ( k ) = \sum _ { j = 1 } ^ { n } b _ { j } ^ { \prime \prime } ( k ) z _ { j } ^ { k }$ ; confidence 0.201 |
− | 95. https://www.encyclopediaofmath.org/legacyimages/a/a130/ | + | 95. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130120/a13012053.png ; $e ^ { k \operatorname { ln } k }$ ; confidence 0.201 |
− | 96. https://www.encyclopediaofmath.org/legacyimages/ | + | 96. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130180/m13018052.png ; $\mu ( 0 , x ) = - \sum _ { i j } \mu ( 0 , u )$ ; confidence 0.201 |
− | 97. https://www.encyclopediaofmath.org/legacyimages/ | + | 97. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130060/v13006022.png ; $\hat { E S }$ ; confidence 0.201 |
− | 98. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/ | + | 98. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040641.png ; $\langle M e _ { S } _ { P } \mathfrak { M } / \Omega F _ { S } \mathfrak { M } , F _ { S _ { P } } \mathfrak { M } / \Omega F _ { S } _ { P } \mathfrak { M } \rangle$ ; confidence 0.201 |
− | 99. https://www.encyclopediaofmath.org/legacyimages/ | + | 99. https://www.encyclopediaofmath.org/legacyimages/c/c020/c020080/c02008019.png ; $N$ ; confidence 0.200 |
− | 100. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/ | + | 100. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040655.png ; $S _ { P } , \mathfrak { M } = \operatorname { mng } _ { P } , \mathfrak { N } \circ h$ ; confidence 0.200 |
− | 101. https://www.encyclopediaofmath.org/legacyimages/ | + | 101. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130070/h13007060.png ; $a _ { i 1 } f _ { 1 } + \ldots + a _ { i l } f _ { l } = b _ { i } , i = 1 , \ldots , m$ ; confidence 0.200 |
− | 102. https://www.encyclopediaofmath.org/legacyimages/ | + | 102. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120220/b12022033.png ; $\rho f ( 1 , u _ { f } , \frac { 1 } { 2 } | u f | ^ { 2 } + \frac { N } { 2 } T _ { f } ) = \int ( 1 , v , \frac { | v ^ { 2 } } { 2 } ) f ( v ) d v$ ; confidence 0.200 |
− | 103. https://www.encyclopediaofmath.org/legacyimages/ | + | 103. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120240/e12024056.png ; $d _ { p } \quad \square ( E / K ) \leq 2 \text { ord } _ { p } [ E ( K ) : Z y _ { K } ]$ ; confidence 0.200 |
− | 104. https://www.encyclopediaofmath.org/legacyimages/ | + | 104. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120070/w120070102.png ; $\| e ^ { i \zeta A } \| \leq C ^ { \prime } ( 1 + | \zeta | ) ^ { s ^ { \prime } } e ^ { \gamma | \operatorname { lm } \zeta | }$ ; confidence 0.200 |
− | 105. https://www.encyclopediaofmath.org/legacyimages/ | + | 105. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130510/s1305108.png ; $= \operatorname { min } 5 =$ ; confidence 0.200 |
− | 106. https://www.encyclopediaofmath.org/legacyimages/ | + | 106. https://www.encyclopediaofmath.org/legacyimages/n/n066/n066960/n0669604.png ; $\frac { e ^ { - ( x + \lambda ) / 2 } x ^ { ( n - 2 ) / 2 } } { 2 ^ { x / 2 } \Gamma ( 1 / 2 ) } \sum _ { r = 0 } ^ { \infty } \frac { \lambda ^ { r } x ^ { r } } { ( 2 r ) ! } \frac { \Gamma ( r + 1 / 2 ) } { \Gamma ( r + n / 2 ) }$ ; confidence 0.200 |
− | 107. https://www.encyclopediaofmath.org/legacyimages/ | + | 107. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120510/b12051094.png ; $d = d + ( \alpha - ( y _ { n } ^ { T } - 1 ) ^ { d } / y _ { n - 1 } ^ { T } s _ { n - 1 } ) s _ { n - 1 }$ ; confidence 0.200 |
− | 108. https://www.encyclopediaofmath.org/legacyimages/ | + | 108. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120050/s12005019.png ; $S _ { 0 } , \ldots , S _ { n - 1 }$ ; confidence 0.200 |
− | 109. https://www.encyclopediaofmath.org/legacyimages/ | + | 109. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b130200120.png ; $b ^ { t ^ { s } }$ ; confidence 0.200 |
− | 110. https://www.encyclopediaofmath.org/legacyimages/ | + | 110. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130070/r13007069.png ; $= \sum _ { j , m \atop j , m } K ( z _ { m } , y _ { j } ) c _ { j } \overline { \beta _ { m } }$ ; confidence 0.200 |
− | 111. https://www.encyclopediaofmath.org/legacyimages/ | + | 111. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130180/m13018075.png ; $\mu ( \overline { \emptyset } , X ) = \sum _ { A : \overline { H } = X } ( - 1 ) ^ { | A | }$ ; confidence 0.200 |
− | 112. https://www.encyclopediaofmath.org/legacyimages/ | + | 112. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120020/d12002099.png ; $\hat { c } ^ { 2 }$ ; confidence 0.199 |
− | 113. https://www.encyclopediaofmath.org/legacyimages/ | + | 113. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t120200198.png ; $> | z _ { h _ { 1 } } + 1 | \geq \ldots \geq | z _ { k _ { 2 } } | > \delta _ { 2 } \geq$ ; confidence 0.199 |
− | 114. https://www.encyclopediaofmath.org/legacyimages/a/ | + | 114. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120070/a12007061.png ; $A u \in B ( D _ { A } ( \alpha , \infty ) ) \cap C ^ { \alpha } ( [ 0 , T ] ; X )$ ; confidence 0.199 |
− | 115. https://www.encyclopediaofmath.org/legacyimages/ | + | 115. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120260/d12026033.png ; $| X _ { N } | = \operatorname { sup } _ { t } | X _ { N } ( t ) |$ ; confidence 0.199 |
− | 116. https://www.encyclopediaofmath.org/legacyimages/ | + | 116. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040490/f04049012.png ; $\frac { 2 \nu ^ { 2 } \frac { 2 } { 2 } ( \nu _ { 1 } + \nu _ { 2 } - 2 ) } { \nu _ { 1 } ( \nu _ { 2 } - 2 ) ^ { 2 } ( \nu _ { 2 } - 4 ) } \quad \text { for } \nu _ { 2 } > 4$ ; confidence 0.199 |
− | 117. https://www.encyclopediaofmath.org/legacyimages/ | + | 117. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120200/c12020048.png ; $\angle D$ ; confidence 0.199 |
− | 118. https://www.encyclopediaofmath.org/legacyimages/ | + | 118. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120020/j120020183.png ; $P [ \tau \in \Pi ] = | I | / ( 2 \pi )$ ; confidence 0.199 |
− | 119. https://www.encyclopediaofmath.org/legacyimages/ | + | 119. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120030/l12003021.png ; $S q ^ { i } x _ { n } = 0$ ; confidence 0.199 |
− | 120. https://www.encyclopediaofmath.org/legacyimages/ | + | 120. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120270/b12027054.png ; $F ^ { ( 0 ) } ( u ) = I _ { [ 0 , \infty ) } ^ { ( 2 ) }$ ; confidence 0.199 |
− | 121. https://www.encyclopediaofmath.org/legacyimages/ | + | 121. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120310/d12031018.png ; $f ( T ) = \sum _ { n = 0 } ^ { \infty } \alpha _ { n } T ^ { n }$ ; confidence 0.199 |
− | 122. https://www.encyclopediaofmath.org/legacyimages/ | + | 122. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110470/b11047070.png ; $C ^ { i k }$ ; confidence 0.199 |
− | 123. https://www.encyclopediaofmath.org/legacyimages/ | + | 123. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130510/s13051049.png ; $| V$ ; confidence 0.199 |
− | 124. https://www.encyclopediaofmath.org/legacyimages/a/ | + | 124. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110040/a11004045.png ; $a$ ; confidence 0.199 |
− | 125. https://www.encyclopediaofmath.org/legacyimages/ | + | 125. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120230/e120230155.png ; $\frac { d } { d t } A ( \sigma _ { t } ) | _ { t = 0 } = \frac { d } { d t } \int _ { N } \sigma ^ { k ^ { * } } \phi _ { t } ^ { k ^ { * } } ( L \Delta ) | _ { t = 0 } =$ ; confidence 0.198 |
− | 126. https://www.encyclopediaofmath.org/legacyimages/ | + | 126. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130040/g13004012.png ; $f : R ^ { m } \rightarrow R ^ { n }$ ; confidence 0.198 |
− | 127. https://www.encyclopediaofmath.org/legacyimages/ | + | 127. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120010/c12001030.png ; $T : C ^ { m + 1 } \rightarrow C ^ { n + 1 }$ ; confidence 0.198 |
− | 128. https://www.encyclopediaofmath.org/legacyimages/ | + | 128. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120180/b12018033.png ; $\forall x _ { 1 } \ldots \forall x _ { N } ( P _ { X 1 } \ldots x _ { N } \leftrightarrow \varphi ( x _ { 1 } , \ldots , x _ { N } ) )$ ; confidence 0.198 |
− | 129. https://www.encyclopediaofmath.org/legacyimages/ | + | 129. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120150/b12015093.png ; $\operatorname { Var } _ { P _ { 0 } } ( d ^ { * } ) =$ ; confidence 0.198 |
− | 130. https://www.encyclopediaofmath.org/legacyimages/a/a130/ | + | 130. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040271.png ; $Mod ^ { * } S _ { D }$ ; confidence 0.198 |
− | 131. https://www.encyclopediaofmath.org/legacyimages/ | + | 131. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130020/f1300207.png ; $T _ { i j }$ ; confidence 0.197 |
− | 132. https://www.encyclopediaofmath.org/legacyimages/ | + | 132. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120070/e12007026.png ; $( \varphi | _ { k } ^ { V } M ) ( z ) = v ( M ) ( cz + d ) ^ { - k } \varphi ( M z )$ ; confidence 0.197 |
− | 133. https://www.encyclopediaofmath.org/legacyimages/ | + | 133. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120140/d12014030.png ; $\alpha \neq 0 \in F _ { q }$ ; confidence 0.197 |
− | 134. https://www.encyclopediaofmath.org/legacyimages/ | + | 134. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130060/l13006088.png ; $( z _ { k } , \ldots , z _ { k } + r - 1 ) \neq ( 0 , \ldots , 0 )$ ; confidence 0.197 |
− | 135. https://www.encyclopediaofmath.org/legacyimages/ | + | 135. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130100/c13010021.png ; $f = \sum _ { i = 1 } ^ { n } a _ { i } \chi _ { B _ { i } } , \quad B _ { i } = \cup _ { j = i } ^ { n } A _ { i }$ ; confidence 0.197 |
− | 136. https://www.encyclopediaofmath.org/legacyimages/ | + | 136. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130010/o13001037.png ; $\theta . w : = \sum ^ { 3 } j = 1 \quad \theta _ { j } w _ { j }$ ; confidence 0.197 |
− | 137. https://www.encyclopediaofmath.org/legacyimages/ | + | 137. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520158.png ; $\alpha _ { j } \in K$ ; confidence 0.197 |
− | 138. https://www.encyclopediaofmath.org/legacyimages/ | + | 138. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130140/t130140140.png ; $q ( x ) = \sum _ { i \in I } x _ { i } ^ { 2 } + \sum _ { i \prec j } x _ { i } x _ { j } - \sum _ { p \in \operatorname { max } l } ( \sum _ { i \prec p } x _ { i } ) x _ { p }$ ; confidence 0.197 |
− | 139. https://www.encyclopediaofmath.org/legacyimages/ | + | 139. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120190/e12019037.png ; $l _ { x }$ ; confidence 0.196 |
− | 140. https://www.encyclopediaofmath.org/legacyimages/ | + | 140. https://www.encyclopediaofmath.org/legacyimages/c/c110/c110480/c11048021.png ; $X \in N$ ; confidence 0.196 |
− | 141. https://www.encyclopediaofmath.org/legacyimages/ | + | 141. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130070/h13007038.png ; $\Delta f _ { i } = A _ { , r + 1 } f _ { r + 1 } + \ldots + A _ { , l } f _ { l }$ ; confidence 0.196 |
− | 142. https://www.encyclopediaofmath.org/legacyimages/ | + | 142. https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f11016092.png ; $\mathfrak { A } \equiv \ell \mathfrak { B }$ ; confidence 0.196 |
− | 143. https://www.encyclopediaofmath.org/legacyimages/ | + | 143. https://www.encyclopediaofmath.org/legacyimages/b/b016/b016170/b0161709.png ; $T$ ; confidence 0.196 |
− | 144. https://www.encyclopediaofmath.org/legacyimages/ | + | 144. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840403.png ; $21 , \dots , 2 x$ ; confidence 0.196 |
− | 145. https://www.encyclopediaofmath.org/legacyimages/ | + | 145. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120020/b12002049.png ; $\beta _ { n , F }$ ; confidence 0.196 |
− | 146. https://www.encyclopediaofmath.org/legacyimages/a/a010/ | + | 146. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010550/a01055030.png ; $g = e$ ; confidence 0.195 |
− | 147. https://www.encyclopediaofmath.org/legacyimages/ | + | 147. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130480/s13048053.png ; $( E _ { f } ^ { p q } , a _ { \ell } ^ { p q } )$ ; confidence 0.195 |
− | 148. https://www.encyclopediaofmath.org/legacyimages/ | + | 148. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120430/b120430152.png ; $U _ { q } ( g ) = U _ { q } ( n _ { - } ) \times H _ { \bowtie } U _ { q } ( n _ { + } )$ ; confidence 0.195 |
− | 149. https://www.encyclopediaofmath.org/legacyimages/ | + | 149. https://www.encyclopediaofmath.org/legacyimages/t/t094/t094080/t09408034.png ; $\rightarrow \pi _ { n } ( X , B , * ) \rightarrow \pi _ { n } ( X ; A , B , x _ { 0 } ) \stackrel { \partial } { \rightarrow } \ldots$ ; confidence 0.195 |
− | 150. https://www.encyclopediaofmath.org/legacyimages/ | + | 150. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120030/l12003048.png ; $( ( - ) \otimes _ { F } , H ^ { * } B V ) : U \rightarrow U$ ; confidence 0.195 |
− | 151. https://www.encyclopediaofmath.org/legacyimages/ | + | 151. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120430/b120430166.png ; $\Delta f = 1 \bigotimes f + x \varnothing \partial _ { q } f +$ ; confidence 0.195 |
− | 152. https://www.encyclopediaofmath.org/legacyimages/ | + | 152. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120010/q12001095.png ; $d \tilde { \pi } ^ { c } ( X ) = d \tilde { \pi } ( X )$ ; confidence 0.195 |
− | 153. https://www.encyclopediaofmath.org/legacyimages/a/a130/ | + | 153. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130180/a13018093.png ; $y = ( L )$ ; confidence 0.194 |
− | 154. https://www.encyclopediaofmath.org/legacyimages/a/ | + | 154. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010295.png ; $\underline { \Phi }$ ; confidence 0.194 |
− | 155. https://www.encyclopediaofmath.org/legacyimages/ | + | 155. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057000/l05700079.png ; $c _ { t }$ ; confidence 0.194 |
− | 156. https://www.encyclopediaofmath.org/legacyimages/ | + | 156. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120070/q12007084.png ; $\{ f ^ { i x } \}$ ; confidence 0.194 |
− | 157. https://www.encyclopediaofmath.org/legacyimages/ | + | 157. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120130/m12013059.png ; $( N _ { * } ^ { 1 } , \ldots , N _ { * } ^ { n } )$ ; confidence 0.194 |
− | 158. https://www.encyclopediaofmath.org/legacyimages/ | + | 158. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130120/b13012029.png ; $f _ { k } ( x ) = h ^ { - 1 } \int _ { R } \varphi ( \frac { t } { h } ) f ( x - t ) d t$ ; confidence 0.194 |
− | 159. https://www.encyclopediaofmath.org/legacyimages/ | + | 159. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120040/g12004055.png ; $\hat { f } ( \xi ) = \int _ { R ^ { n } e } ^ { - i x \xi } f ( x ) d x$ ; confidence 0.194 |
− | 160. https://www.encyclopediaofmath.org/legacyimages/ | + | 160. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120310/c1203102.png ; $\mathfrak { c } _ { \mathfrak { z } } \in R$ ; confidence 0.194 |
− | 161. https://www.encyclopediaofmath.org/legacyimages/ | + | 161. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120100/l120100108.png ; $K _ { k 1 } ( V )$ ; confidence 0.194 |
− | 162. https://www.encyclopediaofmath.org/legacyimages/ | + | 162. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120080/c1200806.png ; $\hat { I } _ { y }$ ; confidence 0.194 |
− | 163. https://www.encyclopediaofmath.org/legacyimages/ | + | 163. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120210/b12021048.png ; $\overline { D } _ { k } = U ( a ) \otimes U ( p ) \wedge ^ { k } ( a / p )$ ; confidence 0.194 |
− | 164. https://www.encyclopediaofmath.org/legacyimages/ | + | 164. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120050/t120050119.png ; $\vec { d ^ { 2 } f _ { x } } : K _ { x } \times T V _ { x } \rightarrow Q _ { x }$ ; confidence 0.194 |
− | 165. https://www.encyclopediaofmath.org/legacyimages/ | + | 165. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130640/s1306404.png ; $T _ { n } ( a ) = ( a _ { j - k } ) _ { j , k = 0 } ^ { n - 1 }$ ; confidence 0.194 |
− | 166. https://www.encyclopediaofmath.org/legacyimages/ | + | 166. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120010/e12001013.png ; $M \subseteq \text { Mono } ( \mathfrak { A } )$ ; confidence 0.193 |
− | 167. https://www.encyclopediaofmath.org/legacyimages/ | + | 167. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120340/s120340136.png ; $M ( \tilde { x } _ { + } , \tilde { x } _ { - } ) / R$ ; confidence 0.193 |
− | 168. https://www.encyclopediaofmath.org/legacyimages/ | + | 168. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057020/l05702027.png ; $1 ^ { n }$ ; confidence 0.193 |
− | 169. https://www.encyclopediaofmath.org/legacyimages/ | + | 169. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120090/m12009031.png ; $x \mapsto e ^ { T x }$ ; confidence 0.193 |
− | 170. https://www.encyclopediaofmath.org/legacyimages/ | + | 170. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120240/s12024052.png ; $z _ { i } ^ { n } \sim z _ { i + 1 } ^ { n }$ ; confidence 0.193 |
− | 171. https://www.encyclopediaofmath.org/legacyimages/ | + | 171. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b130200201.png ; $s l _ { 2 } ( R )$ ; confidence 0.193 |
− | 172. https://www.encyclopediaofmath.org/legacyimages/ | + | 172. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120010/i12001029.png ; $_ { S } \in R ^ { 1 }$ ; confidence 0.193 |
− | 173. https://www.encyclopediaofmath.org/legacyimages/ | + | 173. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120070/w12007041.png ; $e ^ { i ( p D + q X + t I ) }$ ; confidence 0.193 |
− | 174. https://www.encyclopediaofmath.org/legacyimages/ | + | 174. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130110/d13011018.png ; $\alpha _ { X } = \left( \begin{array} { l l l l } { 0 } & { 0 } & { 0 } & { 1 } \\ { 0 } & { 0 } & { 1 } & { 0 } \\ { 0 } & { 1 } & { 0 } & { 0 } \\ { 1 } & { 0 } & { 0 } & { 0 } \end{array} \right) = \left( \begin{array} { l l } { 0 } & { \sigma _ { x } } \\ { \sigma _ { x } } & { 0 } \end{array} \right)$ ; confidence 0.193 |
− | 175. https://www.encyclopediaofmath.org/legacyimages/a/ | + | 175. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011670/a01167032.png ; $a 1 , \dots , a _ { x }$ ; confidence 0.193 |
− | 176. https://www.encyclopediaofmath.org/legacyimages/a/ | + | 176. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010220/a01022046.png ; $v$ ; confidence 0.193 |
− | 177. https://www.encyclopediaofmath.org/legacyimages/ | + | 177. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w13008092.png ; $d \Omega _ { n } = d \hat { \Omega } _ { n } - \sum _ { 1 } g ( \oint _ { A _ { j } } d \hat { \Omega _ { n } } ) d \omega _ { j }$ ; confidence 0.193 |
− | 178. https://www.encyclopediaofmath.org/legacyimages/ | + | 178. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120010/e1200103.png ; $A \stackrel { f } { \rightarrow } B = A \stackrel { é } { \rightarrow } f [ A ] \stackrel { m } { \rightarrow } B$ ; confidence 0.193 |
− | 179. https://www.encyclopediaofmath.org/legacyimages/ | + | 179. https://www.encyclopediaofmath.org/legacyimages/s/s090/s090670/s09067084.png ; $V _ { q } ^ { p }$ ; confidence 0.193 |
− | 180. https://www.encyclopediaofmath.org/legacyimages/ | + | 180. https://www.encyclopediaofmath.org/legacyimages/t/t094/t094080/t09408031.png ; $\pi _ { n } ( X ; A , B , ^ { * } ) = \pi _ { n - 1 } ( \Omega ( X ; B , * ) , \Omega ( A ; A \cap B , * ) , * )$ ; confidence 0.193 |
− | 181. https://www.encyclopediaofmath.org/legacyimages/a/a120/ | + | 181. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120240/a12024032.png ; $\overline { CH } \overline { D } ^ { p } ( X )$ ; confidence 0.193 |
− | 182. https://www.encyclopediaofmath.org/legacyimages/ | + | 182. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i130090226.png ; $X ^ { \omega } \chi ^ { - 1 } = \{ x \in X : \delta x = \omega \chi ^ { - 1 } ( \delta ) x f o r \delta \in \Delta \}$ ; confidence 0.193 |
− | 183. https://www.encyclopediaofmath.org/legacyimages/ | + | 183. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120020/n12002097.png ; $\operatorname { lim } _ { n \rightarrow \infty } \frac { 1 } { n } \operatorname { log } P [ X _ { 1 } + \ldots + X _ { n } \geq n m ] = \int _ { m _ { 0 } } ^ { m } \frac { x - m } { V _ { F } ( x ) } d x$ ; confidence 0.193 |
− | 184. https://www.encyclopediaofmath.org/legacyimages/ | + | 184. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120240/b12024014.png ; $V \subset C ^ { m }$ ; confidence 0.192 |
− | 185. https://www.encyclopediaofmath.org/legacyimages/a/a010/ | + | 185. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010020/a0100205.png ; $P = \cup _ { n _ { 1 } , \ldots , n _ { k } , \ldots } \cap _ { k = 1 } ^ { \infty } E _ { n _ { 1 } } \square \ldots x _ { k }$ ; confidence 0.192 |
− | 186. https://www.encyclopediaofmath.org/legacyimages/a/ | + | 186. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120160/a120160164.png ; $e$ ; confidence 0.192 |
− | 187. https://www.encyclopediaofmath.org/legacyimages/ | + | 187. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120010/c12001039.png ; $p ^ { m } \backslash X$ ; confidence 0.192 |
− | 188. https://www.encyclopediaofmath.org/legacyimages/ | + | 188. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b130200175.png ; $( e _ { i } ) ^ { k } , v = 0 = ( f _ { i } ) ^ { k } , v$ ; confidence 0.192 |
− | 189. https://www.encyclopediaofmath.org/legacyimages/ | + | 189. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120230/d120230178.png ; $\vec { G } _ { i } \Theta _ { i }$ ; confidence 0.192 |
− | 190. https://www.encyclopediaofmath.org/legacyimages/ | + | 190. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022020/c02202042.png ; $k ]$ ; confidence 0.192 |
− | 191. https://www.encyclopediaofmath.org/legacyimages/a/ | + | 191. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650300.png ; $x _ { i }$ ; confidence 0.192 |
− | 192. https://www.encyclopediaofmath.org/legacyimages/ | + | 192. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130130/d13013087.png ; $L _ { n } = SU ( 2 ) / Z _ { n }$ ; confidence 0.192 |
− | 193. https://www.encyclopediaofmath.org/legacyimages/b/ | + | 193. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130280/b13028048.png ; $\lambda _ { N } H \times \Omega ^ { \infty } X$ ; confidence 0.192 |
− | 194. https://www.encyclopediaofmath.org/legacyimages/ | + | 194. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130130/m13013078.png ; $v _ { 1 } , \dots , v _ { k }$ ; confidence 0.191 |
− | 195. https://www.encyclopediaofmath.org/legacyimages/b/ | + | 195. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120360/b1203607.png ; $\{ \in \{ \}$ ; confidence 0.191 |
− | 196. https://www.encyclopediaofmath.org/legacyimages/a/ | + | 196. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110580/a11058010.png ; $p 2$ ; confidence 0.191 |
− | 197. https://www.encyclopediaofmath.org/legacyimages/ | + | 197. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130090/f13009069.png ; $R _ { S } ( p ; k , n )$ ; confidence 0.191 |
− | 198. https://www.encyclopediaofmath.org/legacyimages/b/ | + | 198. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120310/b12031066.png ; $S _ { R } ^ { \delta } ( f ) ( x ) = \sum _ { m \backslash | \leq R } ( 1 - \frac { | m | ^ { 2 } } { R ^ { 2 } } ) ^ { \delta } e ^ { 2 \pi i x m } \hat { f } ( m )$ ; confidence 0.191 |
− | 199. https://www.encyclopediaofmath.org/legacyimages/ | + | 199. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120020/t12002031.png ; $( X _ { n } ) _ { n \in Z } ^ { d }$ ; confidence 0.191 |
− | 200. https://www.encyclopediaofmath.org/legacyimages/ | + | 200. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120100/l12010011.png ; $\left\{ \begin{array} { l l } { \gamma \geq \frac { 1 } { 2 } } & { \text { forn } = 1 } \\ { \gamma > 0 } & { \text { forn } = 2 } \\ { \gamma \geq 0 } & { \text { forn } \geq 3 } \end{array} \right.$ ; confidence 0.191 |
− | 201. https://www.encyclopediaofmath.org/legacyimages/ | + | 201. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011970/a01197039.png ; $\underline { 1 } = 1$ ; confidence 0.191 |
− | 202. https://www.encyclopediaofmath.org/legacyimages/ | + | 202. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120040/c12004070.png ; $\times [ CF ( \zeta - z , w ) - \frac { ( n - 1 ) ! ( | \zeta | ^ { 2 m } - \langle \overline { \zeta } , z | ^ { m } ) ^ { n } } { [ 2 \pi i | \zeta | ^ { 2 m } \{ \overline { \zeta } , \zeta - z \} ] ^ { N } } \sigma _ { 0 } ]$ ; confidence 0.191 |
− | 203. https://www.encyclopediaofmath.org/legacyimages/ | + | 203. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130410/s1304104.png ; $\langle p , q \rangle _ { s } = \sum _ { l = 0 } ^ { N } \lambda _ { i } \int _ { R } p ^ { ( l ) } q ^ { ( l ) } d \mu _ { l }$ ; confidence 0.190 |
− | 204. https://www.encyclopediaofmath.org/legacyimages/ | + | 204. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120120/d12012064.png ; $\left. \begin{array} { c c c } { \square } & { c _ { 2 } } & { \square } \\ { \square } & { \square } & { \searrow ^ { \phi _ { 2 } } } \\ { \square ^ { \phi _ { 1 } } } & { \nearrow } & { \vec { \phi _ { 3 } } } \end{array} \right.$ ; confidence 0.190 |
− | 205. https://www.encyclopediaofmath.org/legacyimages/ | + | 205. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120210/t12021086.png ; $t ( G ) = t ( G / e ) + ( x - 1 ) ^ { r ( G ) - r ( G - \epsilon ) } t ( G - e )$ ; confidence 0.190 |
− | 206. https://www.encyclopediaofmath.org/legacyimages/ | + | 206. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130040/c13004024.png ; $\psi ^ { ( R ) } ( z ) = ( - 1 ) ^ { N + 1 } n ! \zeta ( n + 1 , z )$ ; confidence 0.190 |
− | 207. https://www.encyclopediaofmath.org/legacyimages/ | + | 207. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130060/o130060188.png ; $( \sigma _ { 2 } \frac { \partial } { \partial t _ { 1 } } - \sigma _ { 1 } \frac { \partial } { \partial t _ { 2 } } + \tilde { \gamma } ) v = 0$ ; confidence 0.190 |
− | 208. https://www.encyclopediaofmath.org/legacyimages/ | + | 208. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120050/w12005056.png ; $h = ( h _ { 1 } , \dots , h _ { w } ) \in N ^ { w } \subset A ^ { w }$ ; confidence 0.190 |
− | 209. https://www.encyclopediaofmath.org/legacyimages/ | + | 209. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010125.png ; $\dot { i } \leq n$ ; confidence 0.190 |
− | 210. https://www.encyclopediaofmath.org/legacyimages/ | + | 210. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120130/m12013058.png ; $\frac { d N ^ { i } } { d t } = f ^ { i } ( N ^ { 1 } , \ldots , N ^ { n } ) , \quad i = 1 , \dots , n$ ; confidence 0.190 |
− | 211. https://www.encyclopediaofmath.org/legacyimages/ | + | 211. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120100/e12010046.png ; $w ^ { em } = - \frac { 1 } { 2 } \frac { \partial } { \partial t } ( E ^ { 2 } + B ^ { 2 } ) - \nabla \cdot ( S - v ( P E ) )$ ; confidence 0.190 |
− | 212. https://www.encyclopediaofmath.org/legacyimages/ | + | 212. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h12002040.png ; $( \alpha _ { j } + k ) _ { j , k } \geq 0$ ; confidence 0.190 |
− | 213. https://www.encyclopediaofmath.org/legacyimages/ | + | 213. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130100/f130100154.png ; $\langle G \rangle \leq \| u \| _ { H } ( H ) + \epsilon$ ; confidence 0.190 |
− | 214. https://www.encyclopediaofmath.org/legacyimages/ | + | 214. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120100/a12010013.png ; $e ^ { - t A _ { X } } = \operatorname { lim } _ { n \rightarrow \infty } ( I + \frac { t } { n } A ) ^ { - n } x = S ( t ) x , \forall x \in X$ ; confidence 0.189 |
− | 215. https://www.encyclopediaofmath.org/legacyimages/b/ | + | 215. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130290/b13029054.png ; $a _ { 1 } , \dots , a _ { d }$ ; confidence 0.189 |
− | 216. https://www.encyclopediaofmath.org/legacyimages/b/ | + | 216. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130290/b13029080.png ; $I ( M ) = \sum _ { i = 0 } ^ { s - 1 } \left( \begin{array} { c } { s - 1 } \\ { i } \end{array} \right) J _ { A } ( H _ { m } ^ { i } ( M ) )$ ; confidence 0.189 |
− | 217. https://www.encyclopediaofmath.org/legacyimages/ | + | 217. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130040/t13004049.png ; $h : = \operatorname { max } _ { N \in N } \{ \sigma _ { N } - n \}$ ; confidence 0.189 |
− | 218. https://www.encyclopediaofmath.org/legacyimages/ | + | 218. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040133.png ; $\Lambda _ { D } T$ ; confidence 0.189 |
− | 219. https://www.encyclopediaofmath.org/legacyimages/ | + | 219. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055780/k05578016.png ; $I _ { V }$ ; confidence 0.189 |
− | 220. https://www.encyclopediaofmath.org/legacyimages/ | + | 220. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120260/c12026083.png ; $t _ { 8 } + 1 / 2 = t _ { x } + k / 2$ ; confidence 0.189 |
− | 221. https://www.encyclopediaofmath.org/legacyimages/ | + | 221. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130090/w1300909.png ; $| h | _ { H } ^ { 2 }$ ; confidence 0.189 |
− | 222. https://www.encyclopediaofmath.org/legacyimages/ | + | 222. https://www.encyclopediaofmath.org/legacyimages/n/n066/n066630/n0666306.png ; $r _ { 2 } > 0$ ; confidence 0.188 |
− | 223. https://www.encyclopediaofmath.org/legacyimages/ | + | 223. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130170/w13017046.png ; $\hat { y } _ { t , r } = \sum _ { j = r } ^ { \infty } K _ { j } \varepsilon _ { t + r - j }$ ; confidence 0.188 |
− | 224. https://www.encyclopediaofmath.org/legacyimages/ | + | 224. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120110/f120110108.png ; $H _ { K } ^ { X } ( D ^ { X } + i R ^ { X } , \tilde { O } )$ ; confidence 0.188 |
− | 225. https://www.encyclopediaofmath.org/legacyimages/ | + | 225. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120150/d12015024.png ; $= ( 3 ^ { d } + 1 \frac { 3 ^ { d + 1 } - 1 } { 2 } , 3 ^ { d } \frac { 3 ^ { d + 1 } + 1 } { 2 } , 3 ^ { d } \frac { 3 ^ { d } + 1 } { 2 } , 3 ^ { 2 d } )$ ; confidence 0.188 |
− | 226. https://www.encyclopediaofmath.org/legacyimages/ | + | 226. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130290/f13029065.png ; $f _ { L } ^ { \rightarrow } ( a ) ( y ) = \vee \{ \alpha ( x ) : f ( x ) = y \}$ ; confidence 0.188 |
− | 227. https://www.encyclopediaofmath.org/legacyimages/ | + | 227. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120170/c120170170.png ; $\tau ( \sum a _ { i j } z ^ { i } z ^ { j } ) = \sum a _ { i j } \gamma _ { i j }$ ; confidence 0.188 |
− | 228. https://www.encyclopediaofmath.org/legacyimages/ | + | 228. https://www.encyclopediaofmath.org/legacyimages/m/m063/m063770/m06377013.png ; $\dot { x } = A x , \quad x \in R ^ { x }$ ; confidence 0.188 |
− | 229. https://www.encyclopediaofmath.org/legacyimages/ | + | 229. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120560/b1205605.png ; $h = h ( M ) = \operatorname { inf } _ { \Gamma } \frac { \operatorname { Vol } ( \Gamma ) } { \operatorname { min } \{ \operatorname { Vol } ( M _ { 1 } ) , \text { Vol } ( M _ { 2 } ) \} }$ ; confidence 0.188 |
− | 230. https://www.encyclopediaofmath.org/legacyimages/ | + | 230. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130020/f13002015.png ; $c ^ { a } ( x ) c ^ { b } ( y ) = - c ^ { b } ( y ) c ^ { a } ( x )$ ; confidence 0.188 |
− | 231. https://www.encyclopediaofmath.org/legacyimages/ | + | 231. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130070/c130070204.png ; $\operatorname { ord } _ { T } ( u d v ) = \operatorname { ord } _ { T } ( u d v / d \tau )$ ; confidence 0.188 |
− | 232. https://www.encyclopediaofmath.org/legacyimages/ | + | 232. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120070/c12007037.png ; $\operatorname { lim } _ { L } \leftarrow ^ { n }$ ; confidence 0.188 |
− | 233. https://www.encyclopediaofmath.org/legacyimages/ | + | 233. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040192.png ; $\mathfrak { A } ^ { * } S = \mathfrak { A }$ ; confidence 0.188 |
− | 234. https://www.encyclopediaofmath.org/legacyimages/ | + | 234. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130020/i13002048.png ; $\sum _ { k = 1 } ^ { m } x _ { k } S _ { k } \leq P ( A _ { 1 } \cup \ldots \cup A _ { n } ) \leq \sum _ { k = 1 } ^ { m } y _ { k } S _ { k }$ ; confidence 0.188 |
− | 235. https://www.encyclopediaofmath.org/legacyimages/a/ | + | 235. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040280.png ; $\Gamma \dagger _ { D } \Delta ( \varphi , \psi )$ ; confidence 0.188 |
− | 236. https://www.encyclopediaofmath.org/legacyimages/ | + | 236. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120080/c12008026.png ; $A _ { 1 } = \left[ \begin{array} { c c c } { A _ { 11 } } & { \dots } & { A _ { 1 m } } \\ { \dots } & { \dots } & { \dots } \\ { A _ { m 1 } } & { \dots } & { A _ { m m } } \end{array} \right] \in C ^ { m n \times m n }$ ; confidence 0.187 |
− | 237. https://www.encyclopediaofmath.org/legacyimages/ | + | 237. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130060/l13006044.png ; $D _ { k } ^ { * }$ ; confidence 0.187 |
− | 238. https://www.encyclopediaofmath.org/legacyimages/ | + | 238. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067360/n06736068.png ; $1.1 p$ ; confidence 0.187 |
− | 239. https://www.encyclopediaofmath.org/legacyimages/ | + | 239. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120040/g12004077.png ; $P ( x , D ) u = ( 2 \pi ) ^ { - n } \int _ { R ^ { n } } e ^ { i x \xi } p ( x , \xi ) \hat { u } ( \xi ) d \xi$ ; confidence 0.187 |
− | 240. https://www.encyclopediaofmath.org/legacyimages/ | + | 240. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130080/z13008038.png ; $= \frac { ( \alpha + 1 ) _ { k + l } } { ( \alpha + 1 ) _ { k } ( \alpha + 1 ) _ { l } } \sum _ { j = 0 } ^ { \operatorname { min } ( k , l ) } \frac { ( - k ) _ { j } ( - l ) } { ( - k - l - \alpha ) j ! } r ^ { k + l - 2 j }$ ; confidence 0.187 |
− | 241. https://www.encyclopediaofmath.org/legacyimages/ | + | 241. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120070/q12007011.png ; $( \Delta \bigotimes \text { id } ) R = R _ { 13 } R _ { 23 } , ( \text { id } \bigotimes \Delta ) R = R _ { 13 } R _ { 12 }$ ; confidence 0.187 |
− | 242. https://www.encyclopediaofmath.org/legacyimages/ | + | 242. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010100.png ; $O = G / \operatorname { Sp } ( 1 ) . K$ ; confidence 0.187 |
− | 243. https://www.encyclopediaofmath.org/legacyimages/ | + | 243. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030060/d03006013.png ; $+ \frac { 1 } { 2 \alpha } \int _ { x - w t } ^ { x + c t } \psi ( \xi ) d \xi + \frac { 1 } { 2 } [ \phi ( x + a t ) + \phi ( x - a t ) ]$ ; confidence 0.187 |
− | 244. https://www.encyclopediaofmath.org/legacyimages/ | + | 244. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120340/s120340106.png ; $X - = ( x - , u - )$ ; confidence 0.187 |
− | 245. https://www.encyclopediaofmath.org/legacyimages/ | + | 245. https://www.encyclopediaofmath.org/legacyimages/z/z120/z120010/z12001084.png ; $\{ \text { ad } e _ { - } ^ { p } _ { - 1 } ^ { k } : 0 < k < m \}$ ; confidence 0.187 |
− | 246. https://www.encyclopediaofmath.org/legacyimages/ | + | 246. https://www.encyclopediaofmath.org/legacyimages/s/s086/s086020/s08602017.png ; $\left.\begin{array} { r l } { \Phi ^ { + } ( t _ { 0 } ) } & { = \frac { 1 } { 2 \pi i } \int _ { \Gamma } \frac { \phi ( t ) d t } { t - t _ { 0 } } + \frac { 1 } { 2 } \phi ( t _ { 0 } ) } \\ { \Phi ^ { - } ( t _ { 0 } ) } & { = \frac { 1 } { 2 \pi i } \int _ { \Gamma } \frac { \phi ( t ) d t } { t - t _ { 0 } } - \frac { 1 } { 2 } \phi ( t _ { 0 } ) } \end{array} \right\}$ ; confidence 0.187 |
− | 247. https://www.encyclopediaofmath.org/legacyimages/ | + | 247. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120100/e12010045.png ; $G ^ { em } = G ^ { em } \cdot f$ ; confidence 0.187 |
− | 248. https://www.encyclopediaofmath.org/legacyimages/ | + | 248. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120080/q12008066.png ; $\left[ \begin{array} { l } { 1 } \\ { 1 } \end{array} \right]$ ; confidence 0.187 |
− | 249. https://www.encyclopediaofmath.org/legacyimages/ | + | 249. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130260/a13026019.png ; $a _ { m p } r \equiv a _ { m p ^ { r - 1 } } ( \operatorname { mod } p ^ { 3 r } )$ ; confidence 0.187 |
− | 250. https://www.encyclopediaofmath.org/legacyimages/ | + | 250. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120040/l12004081.png ; $( u _ { i } ^ { n } + \hat { u } _ { i } ^ { + } ) / 2$ ; confidence 0.187 |
− | 251. https://www.encyclopediaofmath.org/legacyimages/ | + | 251. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120070/e120070105.png ; $\hat { H } ^ { 1 } = \hat { H } ^ { 1 } ( \Gamma , k , v ; P ( k ) )$ ; confidence 0.187 |
− | 252. https://www.encyclopediaofmath.org/legacyimages/ | + | 252. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130070/e13007042.png ; $\vec { c } _ { i } ^ { \prime }$ ; confidence 0.187 |
− | 253. https://www.encyclopediaofmath.org/legacyimages/ | + | 253. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120100/n12010059.png ; $\| Y _ { m } \| _ { G } ^ { 2 } = \sum _ { i , j = 1 } ^ { k } g j \langle y _ { m } + i - 1 , y _ { m } + j - 1 \rangle$ ; confidence 0.187 |
− | 254. https://www.encyclopediaofmath.org/legacyimages/ | + | 254. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130080/t13008013.png ; $+ ( 1 - \mu _ { x } + t ^ { + } d t ) e ^ { - \delta d t } V _ { t + d t } + o ( d t )$ ; confidence 0.187 |
− | 255. https://www.encyclopediaofmath.org/legacyimages/ | + | 255. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120240/d12024092.png ; $gl ( n , C )$ ; confidence 0.187 |
− | 256. https://www.encyclopediaofmath.org/legacyimages/ | + | 256. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120130/l120130103.png ; $Z [ X _ { 1 } , \dots , X _ { N } ]$ ; confidence 0.187 |
− | 257. https://www.encyclopediaofmath.org/legacyimages/ | + | 257. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m13014085.png ; $\frac { \pi ^ { n } } { n \operatorname { vol } ( D ) } \int _ { \partial D } f ( \zeta ) \nu ( \zeta - a ) = f ( a )$ ; confidence 0.186 |
− | 258. https://www.encyclopediaofmath.org/legacyimages/ | + | 258. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130070/r130070137.png ; $= ( F ( . ) , ( h ( \ldots , y ) , ( h ( , x ) , h ( \ldots , x ) ) _ { H } ) _ { H } ) _ { H } =$ ; confidence 0.186 |
− | 259. https://www.encyclopediaofmath.org/legacyimages/ | + | 259. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120050/s120050115.png ; $\alpha _ { 1 } , \dots , \alpha _ { n }$ ; confidence 0.186 |
− | 260. https://www.encyclopediaofmath.org/legacyimages/ | + | 260. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120070/c12007036.png ; $H ^ { n } ( C , M ) = \operatorname { lim } _ { L } \leftarrow ^ { n } M$ ; confidence 0.186 |
− | 261. https://www.encyclopediaofmath.org/legacyimages/ | + | 261. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180211.png ; $\tau _ { V }$ ; confidence 0.186 |
− | 262. https://www.encyclopediaofmath.org/legacyimages/ | + | 262. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120040/i1200404.png ; $f ( z ) = \frac { 1 } { ( 2 \pi i ) ^ { N } } \int _ { b _ { 0 } P } \frac { f ( \zeta ) d \zeta _ { 1 } \ldots d \zeta _ { N } } { ( \zeta _ { 1 } - z _ { 1 } ) \ldots ( \zeta _ { N } - z _ { N } ) } , z \in P$ ; confidence 0.186 |
− | 263. https://www.encyclopediaofmath.org/legacyimages/ | + | 263. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130130/p13013084.png ; $\hat { S } _ { n }$ ; confidence 0.186 |
− | 264. https://www.encyclopediaofmath.org/legacyimages/ | + | 264. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120120/e120120132.png ; $\frac { \partial ^ { 2 } } { \partial \theta _ { . } \partial \theta } Q ( \theta | \theta ^ { * } ) = \theta ^ { * }$ ; confidence 0.186 |
− | 265. https://www.encyclopediaofmath.org/legacyimages/ | + | 265. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i130090106.png ; $p ^ { é } R$ ; confidence 0.185 |
− | 266. https://www.encyclopediaofmath.org/legacyimages/ | + | 266. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w130080119.png ; $d S _ { A }$ ; confidence 0.185 |
− | 267. https://www.encyclopediaofmath.org/legacyimages/ | + | 267. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130010/l13001017.png ; $N B$ ; confidence 0.185 |
− | 268. https://www.encyclopediaofmath.org/legacyimages/ | + | 268. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130100/f1301008.png ; $( l _ { N } ) _ { N = 1 } ^ { \infty } 1$ ; confidence 0.185 |
− | 269. https://www.encyclopediaofmath.org/legacyimages/ | + | 269. https://www.encyclopediaofmath.org/legacyimages/x/x120/x120010/x12001085.png ; $Q ^ { * } G _ { \text { inn } } = Q \otimes _ { C } C ^ { \dagger } [ G _ { \text { inn } } ]$ ; confidence 0.185 |
− | 270. https://www.encyclopediaofmath.org/legacyimages/ | + | 270. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120230/d120230147.png ; $D = \operatorname { diag } \{ d _ { 0 } , \dots , d _ { n - 1 } \}$ ; confidence 0.185 |
− | 271. https://www.encyclopediaofmath.org/legacyimages/ | + | 271. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120320/s12032031.png ; $[ \alpha , b ] = a b - ( - 1 ) ^ { p ( \alpha ) p ( b ) } b a$ ; confidence 0.185 |
− | 272. https://www.encyclopediaofmath.org/legacyimages/c/c120/ | + | 272. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120010/c12001098.png ; $\rho _ { j \overline { k } } = \partial ^ { 2 } \rho / \partial z _ { j } \partial z _ { k }$ ; confidence 0.185 |
− | 273. https://www.encyclopediaofmath.org/legacyimages/ | + | 273. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032660/d0326606.png ; $x _ { 1 } , \dots , x _ { 1 }$ ; confidence 0.185 |
− | 274. https://www.encyclopediaofmath.org/legacyimages/ | + | 274. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120290/b12029016.png ; $\hat { R } _ { R _ { S } ^ { A } } ^ { A } = \hat { R } _ { S } ^ { A } \text { on } R ^ { n }$ ; confidence 0.185 |
− | 275. https://www.encyclopediaofmath.org/legacyimages/ | + | 275. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120070/g12007029.png ; $\operatorname { lif } ( R ^ { M } )$ ; confidence 0.185 |
− | 276. https://www.encyclopediaofmath.org/legacyimages/ | + | 276. https://www.encyclopediaofmath.org/legacyimages/n/n066/n066630/n06663058.png ; $H _ { p } ^ { \gamma } ( R ^ { \gamma } )$ ; confidence 0.185 |
− | 277. https://www.encyclopediaofmath.org/legacyimages/ | + | 277. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120070/q12007063.png ; $\delta : s | _ { 2 } \rightarrow s | _ { 2 } \otimes s \dot { l } _ { 2 }$ ; confidence 0.185 |
− | 278. https://www.encyclopediaofmath.org/legacyimages/ | + | 278. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130030/e13003025.png ; $\Omega ^ { \bullet } ( \tilde { M } _ { C } ) \rightleftarrows \operatorname { Hom } _ { K _ { \infty } } ( \Lambda ^ { \bullet } ( \mathfrak { g } / \mathfrak { k } ) , C _ { \infty } ( \Gamma \backslash G ( R ) \otimes M _ { C } ) )$ ; confidence 0.185 |
− | 279. https://www.encyclopediaofmath.org/legacyimages/ | + | 279. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110320/a1103207.png ; $u _ { m + 1 } ^ { ( i ) } = R _ { 0 } ^ { ( i ) } ( c _ { i } h T ) u _ { m } +$ ; confidence 0.185 |
− | 280. https://www.encyclopediaofmath.org/legacyimages/ | + | 280. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130140/t13014041.png ; $E _ { g }$ ; confidence 0.184 |
− | 281. https://www.encyclopediaofmath.org/legacyimages/ | + | 281. https://www.encyclopediaofmath.org/legacyimages/c/c024/c024850/c024850208.png ; $X _ { \alpha }$ ; confidence 0.184 |
− | 282. https://www.encyclopediaofmath.org/legacyimages/b/b110/ | + | 282. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110100/b110100380.png ; $0.2$ ; confidence 0.184 |
− | 283. https://www.encyclopediaofmath.org/legacyimages/ | + | 283. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130230/m13023092.png ; $E \rightarrow Y \backslash \phi ( E )$ ; confidence 0.184 |
− | 284. https://www.encyclopediaofmath.org/legacyimages/ | + | 284. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130100/f1301006.png ; $( k _ { n } ) _ { n = 1 } ^ { \infty }$ ; confidence 0.184 |
− | 285. https://www.encyclopediaofmath.org/legacyimages/c/ | + | 285. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120030/c12003024.png ; $g : I \rightarrow R ^ { m }$ ; confidence 0.184 |
− | 286. https://www.encyclopediaofmath.org/legacyimages/ | + | 286. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130340/s13034019.png ; $S _ { S } ( M )$ ; confidence 0.184 |
− | 287. https://www.encyclopediaofmath.org/legacyimages/ | + | 287. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120150/d12015043.png ; $Q [ \zeta _ { \dot { e } } ]$ ; confidence 0.184 |
− | 288. https://www.encyclopediaofmath.org/legacyimages/a/ | + | 288. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130060/a130060127.png ; $T ^ { \# } ( n ) \sim C _ { 0 } g _ { 0 } ^ { n } n ^ { - 5 / 2 } \text { asn } \rightarrow \infty$ ; confidence 0.184 |
− | 289. https://www.encyclopediaofmath.org/legacyimages/ | + | 289. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b110220136.png ; $r _ { D } \otimes R : H _ { M } ^ { i + 1 } ( X , Q ( i + 1 - m ) ) _ { Z } \otimes R \rightarrow H _ { D } ^ { i + 1 } ( X _ { / R } , R ( i + 1 - m ) )$ ; confidence 0.184 |
− | 290. https://www.encyclopediaofmath.org/legacyimages/ | + | 290. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130110/d13011010.png ; $\alpha _ { y }$ ; confidence 0.184 |
− | 291. https://www.encyclopediaofmath.org/legacyimages/ | + | 291. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130260/m13026050.png ; $x \rightarrow \| \alpha x \| + \| \alpha x \|$ ; confidence 0.184 |
− | 292. https://www.encyclopediaofmath.org/legacyimages/ | + | 292. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120030/l12003010.png ; $f ^ { * } \in \text { Homalg } ( H ^ { * } ( Y , F _ { p } ) , H ^ { * } ( X , F _ { p } ) )$ ; confidence 0.183 |
− | 293. https://www.encyclopediaofmath.org/legacyimages/ | + | 293. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130290/a13029045.png ; $HF _ { * } ^ { \text { inst } } ( Y , P _ { Y } ) \cong HF _ { * } ^ { \text { symp } } ( M ( P ) , L _ { 0 } , L _ { 1 } )$ ; confidence 0.183 |
− | 294. https://www.encyclopediaofmath.org/legacyimages/c/c120/ | + | 294. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120010/c12001062.png ; $p ^ { n }$ ; confidence 0.183 |
− | 295. https://www.encyclopediaofmath.org/legacyimages/ | + | 295. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120500/b12050026.png ; $l ( t , x ) = \operatorname { lim } _ { \epsilon \rightarrow 0 } \frac { 1 } { 2 \varepsilon } \int _ { 0 } ^ { t } 1 ( x - \varepsilon , x + \varepsilon ) ( W _ { s } ) d s$ ; confidence 0.183 |
− | 296. https://www.encyclopediaofmath.org/legacyimages/ | + | 296. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120260/a12026072.png ; $j$ ; confidence 0.183 |
− | 297. https://www.encyclopediaofmath.org/legacyimages/ | + | 297. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013090.png ; $N$ ; confidence 0.183 |
− | 298. https://www.encyclopediaofmath.org/legacyimages/ | + | 298. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120250/s1202506.png ; $h _ { n } = \int _ { a } ^ { b } x ^ { n } h ( x ) d x$ ; confidence 0.183 |
− | 299. https://www.encyclopediaofmath.org/legacyimages/ | + | 299. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130090/w13009078.png ; $\{ \varphi _ { n _ { 1 } , n _ { 2 } , \ldots } : n _ { j } \geq 0 , n _ { 1 } + n _ { 2 } + \ldots = n , n \geq 0 \}$ ; confidence 0.183 |
− | 300. https://www.encyclopediaofmath.org/legacyimages/ | + | 300. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w130080100.png ; $\partial d S / \partial \alpha j = d \omega j$ ; confidence 0.183 |
Revision as of 00:10, 13 February 2020
List
1. ; $= \{ x _ { 1 } , \dots , x _ { m } | x _ { i } x ^ { k _ { i } + 1 } = x _ { i + 2 } ; \text { indices } ( \operatorname { mod } m ) \}$ ; confidence 0.208
2. ; $R _ { x } [ f ]$ ; confidence 0.208
3. ; $w _ { i } ^ { ( t + 1 ) } = E ( q _ { i } | y _ { i } , \mu ^ { ( t ) } , \Sigma ^ { ( t ) } ) = \frac { \nu + p } { \nu + d _ { i } ^ { ( t ) } } , i = 1 , \dots , n$ ; confidence 0.208
4. ; $m _ { E _ { 1 } , E _ { 2 } } ( A ) = c . \sum _ { B , C , A = B \cap C } m _ { E _ { 1 } } ( B ) m _ { E _ { 2 } } ( C )$ ; confidence 0.208
5. ; $Z _ { i j }$ ; confidence 0.208
6. ; $k$ ; confidence 0.208
7. ; $6$ ; confidence 0.208
8. ; $Z _ { D }$ ; confidence 0.208
9. ; $\gamma ( \pi _ { 1 } ) \leq 0$ ; confidence 0.208
10. ; $\| . \| _ { k }$ ; confidence 0.208
11. ; $( ( k _ { N } ) _ { N = 1 } ^ { \infty } , ( l _ { N } ) _ { N = 1 } ^ { \infty } )$ ; confidence 0.208
12. ; $Ke _ { 2 }$ ; confidence 0.208
13. ; $e ^ { 2 }$ ; confidence 0.208
14. ; $c : \alpha \rightarrow b$ ; confidence 0.207
15. ; $: = \{ B = [ b _ { i } , j ] : b _ { i , i } = a _ { i , i } , \text { and } r _ { i } ( B ) = r _ { i } ( A ) , 1 \leq i \leq n \}$ ; confidence 0.207
16. ; $+ h \sum _ { j = 1 } ^ { i - 1 } A _ { j } ( h T ) [ f ( t _ { m } + c _ { j } h , u _ { m + 1 } ^ { ( j ) } ) - T u _ { n j } ^ { ( j ) } + 1 ]$ ; confidence 0.207
17. ; $h _ { y }$ ; confidence 0.207
18. ; $f : U \rightarrow R ^ { \kappa }$ ; confidence 0.207
19. ; $B _ { m } - B _ { N }$ ; confidence 0.207
20. ; $V _ { \xi } \subseteq ^ { * } W$ ; confidence 0.207
21. ; $P _ { \theta } * ( X _ { n } - 1 , d x )$ ; confidence 0.207
22. ; $x _ { n } / x / y _ { n }$ ; confidence 0.207
23. ; $T \rightarrow T | _ { P ^ { \prime } } H$ ; confidence 0.207
24. ; $( m , X _ { 1 } , \dots , X _ { s } ) ^ { c }$ ; confidence 0.207
25. ; $\xi = e ^ { i \alpha | n \tau } f$ ; confidence 0.207
26. ; $| \frac { n } { 2 } | \lfloor \frac { n - 1 } { 2 } \rfloor \lfloor \frac { m } { 2 } \rfloor \lfloor \frac { m - 1 } { 2 } \rfloor$ ; confidence 0.206
27. ; $\vec { x } _ { j }$ ; confidence 0.206
28. ; $\frac { d N } { d t } = \lambda N ( 1 - ( \frac { N } { K } ) ^ { x } )$ ; confidence 0.206
29. ; $p _ { N } ( s ) = \sum _ { m = 1 } ^ { n } a _ { m j } m ^ { - s }$ ; confidence 0.206
30. ; $r$ ; confidence 0.206
31. ; $\mu _ { n } ( X ) : = \mu ( X ) / \sum _ { R = n } \mu ( Y )$ ; confidence 0.206
32. ; $f _ { l + 1 / 2 } ^ { \operatorname { mac } } = \left\{ \begin{array} { l } { \frac { 1 } { 2 } ( \hat { f } _ { i } ^ { + } + f _ { l + 1 } ^ { n } ) } \\ { \text { or } } \\ { \frac { 1 } { 2 } ( \hat { f } _ { i + 1 } ^ { - } + f _ { l } ^ { n } ) } \end{array} \right.$ ; confidence 0.206
33. ; $q _ { t }$ ; confidence 0.206
34. ; $X = I _ { A _ { 1 } } + \ldots + I _ { A _ { n } }$ ; confidence 0.206
35. ; $C \backslash \sigma _ { TE } ( T )$ ; confidence 0.206
36. ; $w ^ { * }$ ; confidence 0.206
37. ; $i ^ { p }$ ; confidence 0.206
38. ; $\hat { y } = ( \hat { y } _ { 1 } , \dots , \hat { y } _ { n } ) \in \hat { A } [ [ X ] ] ^ { n }$ ; confidence 0.205
39. ; $E _ { i } ^ { * * }$ ; confidence 0.205
40. ; $\int _ { Y } \int x f _ { X , Y } d X d Y = 1$ ; confidence 0.205
41. ; $\Omega [ D ]$ ; confidence 0.205
42. ; $= \{ z \in D : \operatorname { liminf } _ { W \rightarrow X } [ K _ { D } ( z , w ) - K _ { D } ( z 0 , w ) ] < \frac { 1 } { 2 } \operatorname { log } R \}$ ; confidence 0.205
43. ; $\Delta _ { x } = \{ 0 , \dots , n \}$ ; confidence 0.205
44. ; $D ( \Delta ) = H _ { \diamond } ^ { 1 } \cap H ^ { 2 } ( \Omega )$ ; confidence 0.205
45. ; $\sigma : a \mapsto a b , b \mapsto b , \gamma _ { r } : \alpha \mapsto a ^ { r + 1 } b ^ { 2 } a ^ { - r } , r \geq 1$ ; confidence 0.205
46. ; $C _ { i }$ ; confidence 0.205
47. ; $= - I ^ { \kappa } a ( b ) \in ( - \infty , 0 ) , \text { for all } 0 < b < \kappa _ { \alpha }$ ; confidence 0.205
48. ; $h ^ { 5 }$ ; confidence 0.205
49. ; $H _ { \hat { j } }$ ; confidence 0.205
50. ; $H ^ { 0 } ( f ^ { - 1 } ( y ) , G ) = G , H ^ { H } ( f ^ { - 1 } ( y ) , G ) = 0$ ; confidence 0.205
51. ; $\alpha = 1 , \dots , 1$ ; confidence 0.205
52. ; $k 2$ ; confidence 0.205
53. ; $\hat { h } = 1$ ; confidence 0.204
54. ; $\hat { t } \square ^ { * } : H ^ { n + 1 } ( \overline { D } \square ^ { n + 1 } , S ^ { n } ) \rightarrow H ^ { n + 1 } ( \Gamma _ { \square \square ^ { n + 1 } } , \Gamma _ { S ^ { n } } )$ ; confidence 0.204
55. ; $x ^ { ( x ) } + a _ { x } - 1 z ^ { ( x - 1 ) } + \ldots + a _ { 0 } x = 0$ ; confidence 0.204
56. ; $K , L \in K ^ { n }$ ; confidence 0.204
57. ; $\hat { l } _ { \uparrow }$ ; confidence 0.204
58. ; $\xi _ { 4 }$ ; confidence 0.204
59. ; $I _ { \uparrow }$ ; confidence 0.204
60. ; $CF ( \zeta - z , w ) = \frac { ( n - 1 ) ! } { ( 2 \pi i ) ^ { n } } \frac { \sum _ { k = 1 } ^ { n } ( - 1 ) ^ { k - 1 } w _ { k } d w [ k ] \wedge d \zeta } { \langle w , \zeta - z \rangle ^ { n } }$ ; confidence 0.204
61. ; $\overline { b } 1$ ; confidence 0.204
62. ; $a ^ { ( t ) } = ( \alpha _ { t } , \alpha _ { t } + 1 , \ldots , \alpha _ { x } + t - 1 ) ( t \geq 0 )$ ; confidence 0.204
63. ; $T _ { n } T _ { m } = \sum _ { d } \sum _ { d ( n , m ) } d ^ { k - 1 } T _ { m n / d } 2$ ; confidence 0.203
64. ; $\vec { a }$ ; confidence 0.203
65. ; $\int _ { 1 } | \varphi - \varphi _ { 1 } | ^ { 2 } d \vartheta \leq c ^ { 2 } | I |$ ; confidence 0.203
66. ; $S _ { 0 } . = . \circ \Psi _ { B , B } \circ ( S \otimes S )$ ; confidence 0.203
67. ; $x = ( x _ { 1 } , \dots , x _ { N } ) \in T ^ { x }$ ; confidence 0.203
68. ; $A ^ { - \infty } = \cup _ { p > 0 } L _ { w } ^ { p }$ ; confidence 0.203
69. ; $a _ { j k }$ ; confidence 0.203
70. ; $H _ { p } ^ { r _ { 1 } , \dots , r _ { i - 1 } , r _ { i } + \epsilon , r _ { i + 1 } , \dots , r _ { n } }$ ; confidence 0.203
71. ; $\hat { \psi } ( x , k ) \approx \left\{ \begin{array} { l l } { e ^ { - i k x } + b ( k ) } & { e ^ { i k x } } \\ { \alpha ( k ) e ^ { - i k x } } & { \text { as } x } \end{array} \right.$ ; confidence 0.203
72. ; $C ^ { n } ( C , M ) = \prod _ { \langle \alpha _ { 1 } , \ldots , \alpha _ { N } \rangle } M ( \operatorname { codom } \alpha _ { n } ) , n > 0$ ; confidence 0.202
73. ; $- E$ ; confidence 0.202
74. ; $L _ { Y }$ ; confidence 0.202
75. ; $E [ W ] _ { \operatorname { exh } } = \frac { \delta ^ { 2 } } { 2 r } + \frac { P \lambda \dot { b } ^ { ( 2 ) } + r ( P - \rho ) } { 2 ( 1 - \rho ) }$ ; confidence 0.202
76. ; $a , b \in A _ { M }$ ; confidence 0.202
77. ; $\{ e _ { i } \} _ { 1 } ^ { n }$ ; confidence 0.202
78. ; $\hat { u } ( \xi ) = \int e ^ { - 2 i \pi x . \xi } u ( x ) d x$ ; confidence 0.202
79. ; $\operatorname { l(f } ^ { \prime } ( x ) ) = \operatorname { min } \{ | f ^ { \prime } ( x ) h | : | h | = 1 \}$ ; confidence 0.202
80. ; $D x ^ { N }$ ; confidence 0.202
81. ; $( \alpha _ { k } ) _ { k } = 0 , \ldots , N - 1$ ; confidence 0.202
82. ; $\hat { Q }$ ; confidence 0.202
83. ; $x _ { x } \in \mathfrak { H }$ ; confidence 0.202
84. ; $\| \alpha \| _ { P M } ^ { * } = \operatorname { sup } _ { n \geq 0 } \frac { 1 } { n + 1 } \sum _ { k = - n } ^ { n } | d _ { k } |$ ; confidence 0.201
85. ; $\operatorname { l } _ { p } ^ { p } ( P , Q ) = \int _ { 0 } ^ { 1 } | F ^ { - 1 } ( u ) - G ^ { - 1 } ( u ) | ^ { p } d u , p \geq 1$ ; confidence 0.201
86. ; $L _ { \gamma , n } = L _ { \gamma , n } ^ { c }$ ; confidence 0.201
87. ; $\int _ { S ^ { \prime } ( R ) } e ^ { i \langle X , \xi \rangle _ { d } } d \mu ( x ) = e ^ { - \| \xi \| _ { 2 } ^ { 2 } / 2 } , \xi \in S ( R )$ ; confidence 0.201
88. ; $( z _ { k } , \ldots , z _ { k } + r - 1 )$ ; confidence 0.201
89. ; $( M ) \leq v , | \text { sec. curv. } M | \leq \kappa$ ; confidence 0.201
90. ; $\sqrt { 2 }$ ; confidence 0.201
91. ; $Ch ( \text { ind } ( P ) ) = ( - 1 ) ^ { n } \pi * ( \text { ind } ( [ a ] ) T ( M | B ) )$ ; confidence 0.201
92. ; $P _ { E } ^ { \# } ( n ) \sim \frac { 1 } { 468 \sqrt { \pi } } 4 ^ { n } n ^ { - 7 / 2 } \text { asn } \rightarrow \infty$ ; confidence 0.201
93. ; $a _ { 11 } f _ { 1 } + \ldots + a _ { i l } f _ { l } = 0 , i = 1 , \ldots , m$ ; confidence 0.201
94. ; $\mathscr { Q } ( k ) = \sum _ { j = 1 } ^ { n } b _ { j } ^ { \prime \prime } ( k ) z _ { j } ^ { k }$ ; confidence 0.201
95. ; $e ^ { k \operatorname { ln } k }$ ; confidence 0.201
96. ; $\mu ( 0 , x ) = - \sum _ { i j } \mu ( 0 , u )$ ; confidence 0.201
97. ; $\hat { E S }$ ; confidence 0.201
98. ; $\langle M e _ { S } _ { P } \mathfrak { M } / \Omega F _ { S } \mathfrak { M } , F _ { S _ { P } } \mathfrak { M } / \Omega F _ { S } _ { P } \mathfrak { M } \rangle$ ; confidence 0.201
99. ; $N$ ; confidence 0.200
100. ; $S _ { P } , \mathfrak { M } = \operatorname { mng } _ { P } , \mathfrak { N } \circ h$ ; confidence 0.200
101. ; $a _ { i 1 } f _ { 1 } + \ldots + a _ { i l } f _ { l } = b _ { i } , i = 1 , \ldots , m$ ; confidence 0.200
102. ; $\rho f ( 1 , u _ { f } , \frac { 1 } { 2 } | u f | ^ { 2 } + \frac { N } { 2 } T _ { f } ) = \int ( 1 , v , \frac { | v ^ { 2 } } { 2 } ) f ( v ) d v$ ; confidence 0.200
103. ; $d _ { p } \quad \square ( E / K ) \leq 2 \text { ord } _ { p } [ E ( K ) : Z y _ { K } ]$ ; confidence 0.200
104. ; $\| e ^ { i \zeta A } \| \leq C ^ { \prime } ( 1 + | \zeta | ) ^ { s ^ { \prime } } e ^ { \gamma | \operatorname { lm } \zeta | }$ ; confidence 0.200
105. ; $= \operatorname { min } 5 =$ ; confidence 0.200
106. ; $\frac { e ^ { - ( x + \lambda ) / 2 } x ^ { ( n - 2 ) / 2 } } { 2 ^ { x / 2 } \Gamma ( 1 / 2 ) } \sum _ { r = 0 } ^ { \infty } \frac { \lambda ^ { r } x ^ { r } } { ( 2 r ) ! } \frac { \Gamma ( r + 1 / 2 ) } { \Gamma ( r + n / 2 ) }$ ; confidence 0.200
107. ; $d = d + ( \alpha - ( y _ { n } ^ { T } - 1 ) ^ { d } / y _ { n - 1 } ^ { T } s _ { n - 1 } ) s _ { n - 1 }$ ; confidence 0.200
108. ; $S _ { 0 } , \ldots , S _ { n - 1 }$ ; confidence 0.200
109. ; $b ^ { t ^ { s } }$ ; confidence 0.200
110. ; $= \sum _ { j , m \atop j , m } K ( z _ { m } , y _ { j } ) c _ { j } \overline { \beta _ { m } }$ ; confidence 0.200
111. ; $\mu ( \overline { \emptyset } , X ) = \sum _ { A : \overline { H } = X } ( - 1 ) ^ { | A | }$ ; confidence 0.200
112. ; $\hat { c } ^ { 2 }$ ; confidence 0.199
113. ; $> | z _ { h _ { 1 } } + 1 | \geq \ldots \geq | z _ { k _ { 2 } } | > \delta _ { 2 } \geq$ ; confidence 0.199
114. ; $A u \in B ( D _ { A } ( \alpha , \infty ) ) \cap C ^ { \alpha } ( [ 0 , T ] ; X )$ ; confidence 0.199
115. ; $| X _ { N } | = \operatorname { sup } _ { t } | X _ { N } ( t ) |$ ; confidence 0.199
116. ; $\frac { 2 \nu ^ { 2 } \frac { 2 } { 2 } ( \nu _ { 1 } + \nu _ { 2 } - 2 ) } { \nu _ { 1 } ( \nu _ { 2 } - 2 ) ^ { 2 } ( \nu _ { 2 } - 4 ) } \quad \text { for } \nu _ { 2 } > 4$ ; confidence 0.199
117. ; $\angle D$ ; confidence 0.199
118. ; $P [ \tau \in \Pi ] = | I | / ( 2 \pi )$ ; confidence 0.199
119. ; $S q ^ { i } x _ { n } = 0$ ; confidence 0.199
120. ; $F ^ { ( 0 ) } ( u ) = I _ { [ 0 , \infty ) } ^ { ( 2 ) }$ ; confidence 0.199
121. ; $f ( T ) = \sum _ { n = 0 } ^ { \infty } \alpha _ { n } T ^ { n }$ ; confidence 0.199
122. ; $C ^ { i k }$ ; confidence 0.199
123. ; $| V$ ; confidence 0.199
124. ; $a$ ; confidence 0.199
125. ; $\frac { d } { d t } A ( \sigma _ { t } ) | _ { t = 0 } = \frac { d } { d t } \int _ { N } \sigma ^ { k ^ { * } } \phi _ { t } ^ { k ^ { * } } ( L \Delta ) | _ { t = 0 } =$ ; confidence 0.198
126. ; $f : R ^ { m } \rightarrow R ^ { n }$ ; confidence 0.198
127. ; $T : C ^ { m + 1 } \rightarrow C ^ { n + 1 }$ ; confidence 0.198
128. ; $\forall x _ { 1 } \ldots \forall x _ { N } ( P _ { X 1 } \ldots x _ { N } \leftrightarrow \varphi ( x _ { 1 } , \ldots , x _ { N } ) )$ ; confidence 0.198
129. ; $\operatorname { Var } _ { P _ { 0 } } ( d ^ { * } ) =$ ; confidence 0.198
130. ; $Mod ^ { * } S _ { D }$ ; confidence 0.198
131. ; $T _ { i j }$ ; confidence 0.197
132. ; $( \varphi | _ { k } ^ { V } M ) ( z ) = v ( M ) ( cz + d ) ^ { - k } \varphi ( M z )$ ; confidence 0.197
133. ; $\alpha \neq 0 \in F _ { q }$ ; confidence 0.197
134. ; $( z _ { k } , \ldots , z _ { k } + r - 1 ) \neq ( 0 , \ldots , 0 )$ ; confidence 0.197
135. ; $f = \sum _ { i = 1 } ^ { n } a _ { i } \chi _ { B _ { i } } , \quad B _ { i } = \cup _ { j = i } ^ { n } A _ { i }$ ; confidence 0.197
136. ; $\theta . w : = \sum ^ { 3 } j = 1 \quad \theta _ { j } w _ { j }$ ; confidence 0.197
137. ; $\alpha _ { j } \in K$ ; confidence 0.197
138. ; $q ( x ) = \sum _ { i \in I } x _ { i } ^ { 2 } + \sum _ { i \prec j } x _ { i } x _ { j } - \sum _ { p \in \operatorname { max } l } ( \sum _ { i \prec p } x _ { i } ) x _ { p }$ ; confidence 0.197
139. ; $l _ { x }$ ; confidence 0.196
140. ; $X \in N$ ; confidence 0.196
141. ; $\Delta f _ { i } = A _ { , r + 1 } f _ { r + 1 } + \ldots + A _ { , l } f _ { l }$ ; confidence 0.196
142. ; $\mathfrak { A } \equiv \ell \mathfrak { B }$ ; confidence 0.196
143. ; $T$ ; confidence 0.196
144. ; $21 , \dots , 2 x$ ; confidence 0.196
145. ; $\beta _ { n , F }$ ; confidence 0.196
146. ; $g = e$ ; confidence 0.195
147. ; $( E _ { f } ^ { p q } , a _ { \ell } ^ { p q } )$ ; confidence 0.195
148. ; $U _ { q } ( g ) = U _ { q } ( n _ { - } ) \times H _ { \bowtie } U _ { q } ( n _ { + } )$ ; confidence 0.195
149. ; $\rightarrow \pi _ { n } ( X , B , * ) \rightarrow \pi _ { n } ( X ; A , B , x _ { 0 } ) \stackrel { \partial } { \rightarrow } \ldots$ ; confidence 0.195
150. ; $( ( - ) \otimes _ { F } , H ^ { * } B V ) : U \rightarrow U$ ; confidence 0.195
151. ; $\Delta f = 1 \bigotimes f + x \varnothing \partial _ { q } f +$ ; confidence 0.195
152. ; $d \tilde { \pi } ^ { c } ( X ) = d \tilde { \pi } ( X )$ ; confidence 0.195
153. ; $y = ( L )$ ; confidence 0.194
154. ; $\underline { \Phi }$ ; confidence 0.194
155. ; $c _ { t }$ ; confidence 0.194
156. ; $\{ f ^ { i x } \}$ ; confidence 0.194
157. ; $( N _ { * } ^ { 1 } , \ldots , N _ { * } ^ { n } )$ ; confidence 0.194
158. ; $f _ { k } ( x ) = h ^ { - 1 } \int _ { R } \varphi ( \frac { t } { h } ) f ( x - t ) d t$ ; confidence 0.194
159. ; $\hat { f } ( \xi ) = \int _ { R ^ { n } e } ^ { - i x \xi } f ( x ) d x$ ; confidence 0.194
160. ; $\mathfrak { c } _ { \mathfrak { z } } \in R$ ; confidence 0.194
161. ; $K _ { k 1 } ( V )$ ; confidence 0.194
162. ; $\hat { I } _ { y }$ ; confidence 0.194
163. ; $\overline { D } _ { k } = U ( a ) \otimes U ( p ) \wedge ^ { k } ( a / p )$ ; confidence 0.194
164. ; $\vec { d ^ { 2 } f _ { x } } : K _ { x } \times T V _ { x } \rightarrow Q _ { x }$ ; confidence 0.194
165. ; $T _ { n } ( a ) = ( a _ { j - k } ) _ { j , k = 0 } ^ { n - 1 }$ ; confidence 0.194
166. ; $M \subseteq \text { Mono } ( \mathfrak { A } )$ ; confidence 0.193
167. ; $M ( \tilde { x } _ { + } , \tilde { x } _ { - } ) / R$ ; confidence 0.193
168. ; $1 ^ { n }$ ; confidence 0.193
169. ; $x \mapsto e ^ { T x }$ ; confidence 0.193
170. ; $z _ { i } ^ { n } \sim z _ { i + 1 } ^ { n }$ ; confidence 0.193
171. ; $s l _ { 2 } ( R )$ ; confidence 0.193
172. ; $_ { S } \in R ^ { 1 }$ ; confidence 0.193
173. ; $e ^ { i ( p D + q X + t I ) }$ ; confidence 0.193
174. ; $\alpha _ { X } = \left( \begin{array} { l l l l } { 0 } & { 0 } & { 0 } & { 1 } \\ { 0 } & { 0 } & { 1 } & { 0 } \\ { 0 } & { 1 } & { 0 } & { 0 } \\ { 1 } & { 0 } & { 0 } & { 0 } \end{array} \right) = \left( \begin{array} { l l } { 0 } & { \sigma _ { x } } \\ { \sigma _ { x } } & { 0 } \end{array} \right)$ ; confidence 0.193
175. ; $a 1 , \dots , a _ { x }$ ; confidence 0.193
176. ; $v$ ; confidence 0.193
177. ; $d \Omega _ { n } = d \hat { \Omega } _ { n } - \sum _ { 1 } g ( \oint _ { A _ { j } } d \hat { \Omega _ { n } } ) d \omega _ { j }$ ; confidence 0.193
178. ; $A \stackrel { f } { \rightarrow } B = A \stackrel { é } { \rightarrow } f [ A ] \stackrel { m } { \rightarrow } B$ ; confidence 0.193
179. ; $V _ { q } ^ { p }$ ; confidence 0.193
180. ; $\pi _ { n } ( X ; A , B , ^ { * } ) = \pi _ { n - 1 } ( \Omega ( X ; B , * ) , \Omega ( A ; A \cap B , * ) , * )$ ; confidence 0.193
181. ; $\overline { CH } \overline { D } ^ { p } ( X )$ ; confidence 0.193
182. ; $X ^ { \omega } \chi ^ { - 1 } = \{ x \in X : \delta x = \omega \chi ^ { - 1 } ( \delta ) x f o r \delta \in \Delta \}$ ; confidence 0.193
183. ; $\operatorname { lim } _ { n \rightarrow \infty } \frac { 1 } { n } \operatorname { log } P [ X _ { 1 } + \ldots + X _ { n } \geq n m ] = \int _ { m _ { 0 } } ^ { m } \frac { x - m } { V _ { F } ( x ) } d x$ ; confidence 0.193
184. ; $V \subset C ^ { m }$ ; confidence 0.192
185. ; $P = \cup _ { n _ { 1 } , \ldots , n _ { k } , \ldots } \cap _ { k = 1 } ^ { \infty } E _ { n _ { 1 } } \square \ldots x _ { k }$ ; confidence 0.192
186. ; $e$ ; confidence 0.192
187. ; $p ^ { m } \backslash X$ ; confidence 0.192
188. ; $( e _ { i } ) ^ { k } , v = 0 = ( f _ { i } ) ^ { k } , v$ ; confidence 0.192
189. ; $\vec { G } _ { i } \Theta _ { i }$ ; confidence 0.192
190. ; $k ]$ ; confidence 0.192
191. ; $x _ { i }$ ; confidence 0.192
192. ; $L _ { n } = SU ( 2 ) / Z _ { n }$ ; confidence 0.192
193. ; $\lambda _ { N } H \times \Omega ^ { \infty } X$ ; confidence 0.192
194. ; $v _ { 1 } , \dots , v _ { k }$ ; confidence 0.191
195. ; $\{ \in \{ \}$ ; confidence 0.191
196. ; $p 2$ ; confidence 0.191
197. ; $R _ { S } ( p ; k , n )$ ; confidence 0.191
198. ; $S _ { R } ^ { \delta } ( f ) ( x ) = \sum _ { m \backslash | \leq R } ( 1 - \frac { | m | ^ { 2 } } { R ^ { 2 } } ) ^ { \delta } e ^ { 2 \pi i x m } \hat { f } ( m )$ ; confidence 0.191
199. ; $( X _ { n } ) _ { n \in Z } ^ { d }$ ; confidence 0.191
200. ; $\left\{ \begin{array} { l l } { \gamma \geq \frac { 1 } { 2 } } & { \text { forn } = 1 } \\ { \gamma > 0 } & { \text { forn } = 2 } \\ { \gamma \geq 0 } & { \text { forn } \geq 3 } \end{array} \right.$ ; confidence 0.191
201. ; $\underline { 1 } = 1$ ; confidence 0.191
202. ; $\times [ CF ( \zeta - z , w ) - \frac { ( n - 1 ) ! ( | \zeta | ^ { 2 m } - \langle \overline { \zeta } , z | ^ { m } ) ^ { n } } { [ 2 \pi i | \zeta | ^ { 2 m } \{ \overline { \zeta } , \zeta - z \} ] ^ { N } } \sigma _ { 0 } ]$ ; confidence 0.191
203. ; $\langle p , q \rangle _ { s } = \sum _ { l = 0 } ^ { N } \lambda _ { i } \int _ { R } p ^ { ( l ) } q ^ { ( l ) } d \mu _ { l }$ ; confidence 0.190
204. ; $\left. \begin{array} { c c c } { \square } & { c _ { 2 } } & { \square } \\ { \square } & { \square } & { \searrow ^ { \phi _ { 2 } } } \\ { \square ^ { \phi _ { 1 } } } & { \nearrow } & { \vec { \phi _ { 3 } } } \end{array} \right.$ ; confidence 0.190
205. ; $t ( G ) = t ( G / e ) + ( x - 1 ) ^ { r ( G ) - r ( G - \epsilon ) } t ( G - e )$ ; confidence 0.190
206. ; $\psi ^ { ( R ) } ( z ) = ( - 1 ) ^ { N + 1 } n ! \zeta ( n + 1 , z )$ ; confidence 0.190
207. ; $( \sigma _ { 2 } \frac { \partial } { \partial t _ { 1 } } - \sigma _ { 1 } \frac { \partial } { \partial t _ { 2 } } + \tilde { \gamma } ) v = 0$ ; confidence 0.190
208. ; $h = ( h _ { 1 } , \dots , h _ { w } ) \in N ^ { w } \subset A ^ { w }$ ; confidence 0.190
209. ; $\dot { i } \leq n$ ; confidence 0.190
210. ; $\frac { d N ^ { i } } { d t } = f ^ { i } ( N ^ { 1 } , \ldots , N ^ { n } ) , \quad i = 1 , \dots , n$ ; confidence 0.190
211. ; $w ^ { em } = - \frac { 1 } { 2 } \frac { \partial } { \partial t } ( E ^ { 2 } + B ^ { 2 } ) - \nabla \cdot ( S - v ( P E ) )$ ; confidence 0.190
212. ; $( \alpha _ { j } + k ) _ { j , k } \geq 0$ ; confidence 0.190
213. ; $\langle G \rangle \leq \| u \| _ { H } ( H ) + \epsilon$ ; confidence 0.190
214. ; $e ^ { - t A _ { X } } = \operatorname { lim } _ { n \rightarrow \infty } ( I + \frac { t } { n } A ) ^ { - n } x = S ( t ) x , \forall x \in X$ ; confidence 0.189
215. ; $a _ { 1 } , \dots , a _ { d }$ ; confidence 0.189
216. ; $I ( M ) = \sum _ { i = 0 } ^ { s - 1 } \left( \begin{array} { c } { s - 1 } \\ { i } \end{array} \right) J _ { A } ( H _ { m } ^ { i } ( M ) )$ ; confidence 0.189
217. ; $h : = \operatorname { max } _ { N \in N } \{ \sigma _ { N } - n \}$ ; confidence 0.189
218. ; $\Lambda _ { D } T$ ; confidence 0.189
219. ; $I _ { V }$ ; confidence 0.189
220. ; $t _ { 8 } + 1 / 2 = t _ { x } + k / 2$ ; confidence 0.189
221. ; $| h | _ { H } ^ { 2 }$ ; confidence 0.189
222. ; $r _ { 2 } > 0$ ; confidence 0.188
223. ; $\hat { y } _ { t , r } = \sum _ { j = r } ^ { \infty } K _ { j } \varepsilon _ { t + r - j }$ ; confidence 0.188
224. ; $H _ { K } ^ { X } ( D ^ { X } + i R ^ { X } , \tilde { O } )$ ; confidence 0.188
225. ; $= ( 3 ^ { d } + 1 \frac { 3 ^ { d + 1 } - 1 } { 2 } , 3 ^ { d } \frac { 3 ^ { d + 1 } + 1 } { 2 } , 3 ^ { d } \frac { 3 ^ { d } + 1 } { 2 } , 3 ^ { 2 d } )$ ; confidence 0.188
226. ; $f _ { L } ^ { \rightarrow } ( a ) ( y ) = \vee \{ \alpha ( x ) : f ( x ) = y \}$ ; confidence 0.188
227. ; $\tau ( \sum a _ { i j } z ^ { i } z ^ { j } ) = \sum a _ { i j } \gamma _ { i j }$ ; confidence 0.188
228. ; $\dot { x } = A x , \quad x \in R ^ { x }$ ; confidence 0.188
229. ; $h = h ( M ) = \operatorname { inf } _ { \Gamma } \frac { \operatorname { Vol } ( \Gamma ) } { \operatorname { min } \{ \operatorname { Vol } ( M _ { 1 } ) , \text { Vol } ( M _ { 2 } ) \} }$ ; confidence 0.188
230. ; $c ^ { a } ( x ) c ^ { b } ( y ) = - c ^ { b } ( y ) c ^ { a } ( x )$ ; confidence 0.188
231. ; $\operatorname { ord } _ { T } ( u d v ) = \operatorname { ord } _ { T } ( u d v / d \tau )$ ; confidence 0.188
232. ; $\operatorname { lim } _ { L } \leftarrow ^ { n }$ ; confidence 0.188
233. ; $\mathfrak { A } ^ { * } S = \mathfrak { A }$ ; confidence 0.188
234. ; $\sum _ { k = 1 } ^ { m } x _ { k } S _ { k } \leq P ( A _ { 1 } \cup \ldots \cup A _ { n } ) \leq \sum _ { k = 1 } ^ { m } y _ { k } S _ { k }$ ; confidence 0.188
235. ; $\Gamma \dagger _ { D } \Delta ( \varphi , \psi )$ ; confidence 0.188
236. ; $A _ { 1 } = \left[ \begin{array} { c c c } { A _ { 11 } } & { \dots } & { A _ { 1 m } } \\ { \dots } & { \dots } & { \dots } \\ { A _ { m 1 } } & { \dots } & { A _ { m m } } \end{array} \right] \in C ^ { m n \times m n }$ ; confidence 0.187
237. ; $D _ { k } ^ { * }$ ; confidence 0.187
238. ; $1.1 p$ ; confidence 0.187
239. ; $P ( x , D ) u = ( 2 \pi ) ^ { - n } \int _ { R ^ { n } } e ^ { i x \xi } p ( x , \xi ) \hat { u } ( \xi ) d \xi$ ; confidence 0.187
240. ; $= \frac { ( \alpha + 1 ) _ { k + l } } { ( \alpha + 1 ) _ { k } ( \alpha + 1 ) _ { l } } \sum _ { j = 0 } ^ { \operatorname { min } ( k , l ) } \frac { ( - k ) _ { j } ( - l ) } { ( - k - l - \alpha ) j ! } r ^ { k + l - 2 j }$ ; confidence 0.187
241. ; $( \Delta \bigotimes \text { id } ) R = R _ { 13 } R _ { 23 } , ( \text { id } \bigotimes \Delta ) R = R _ { 13 } R _ { 12 }$ ; confidence 0.187
242. ; $O = G / \operatorname { Sp } ( 1 ) . K$ ; confidence 0.187
243. ; $+ \frac { 1 } { 2 \alpha } \int _ { x - w t } ^ { x + c t } \psi ( \xi ) d \xi + \frac { 1 } { 2 } [ \phi ( x + a t ) + \phi ( x - a t ) ]$ ; confidence 0.187
244. ; $X - = ( x - , u - )$ ; confidence 0.187
245. ; $\{ \text { ad } e _ { - } ^ { p } _ { - 1 } ^ { k } : 0 < k < m \}$ ; confidence 0.187
246. ; $\left.\begin{array} { r l } { \Phi ^ { + } ( t _ { 0 } ) } & { = \frac { 1 } { 2 \pi i } \int _ { \Gamma } \frac { \phi ( t ) d t } { t - t _ { 0 } } + \frac { 1 } { 2 } \phi ( t _ { 0 } ) } \\ { \Phi ^ { - } ( t _ { 0 } ) } & { = \frac { 1 } { 2 \pi i } \int _ { \Gamma } \frac { \phi ( t ) d t } { t - t _ { 0 } } - \frac { 1 } { 2 } \phi ( t _ { 0 } ) } \end{array} \right\}$ ; confidence 0.187
247. ; $G ^ { em } = G ^ { em } \cdot f$ ; confidence 0.187
248. ; $\left[ \begin{array} { l } { 1 } \\ { 1 } \end{array} \right]$ ; confidence 0.187
249. ; $a _ { m p } r \equiv a _ { m p ^ { r - 1 } } ( \operatorname { mod } p ^ { 3 r } )$ ; confidence 0.187
250. ; $( u _ { i } ^ { n } + \hat { u } _ { i } ^ { + } ) / 2$ ; confidence 0.187
251. ; $\hat { H } ^ { 1 } = \hat { H } ^ { 1 } ( \Gamma , k , v ; P ( k ) )$ ; confidence 0.187
252. ; $\vec { c } _ { i } ^ { \prime }$ ; confidence 0.187
253. ; $\| Y _ { m } \| _ { G } ^ { 2 } = \sum _ { i , j = 1 } ^ { k } g j \langle y _ { m } + i - 1 , y _ { m } + j - 1 \rangle$ ; confidence 0.187
254. ; $+ ( 1 - \mu _ { x } + t ^ { + } d t ) e ^ { - \delta d t } V _ { t + d t } + o ( d t )$ ; confidence 0.187
255. ; $gl ( n , C )$ ; confidence 0.187
256. ; $Z [ X _ { 1 } , \dots , X _ { N } ]$ ; confidence 0.187
257. ; $\frac { \pi ^ { n } } { n \operatorname { vol } ( D ) } \int _ { \partial D } f ( \zeta ) \nu ( \zeta - a ) = f ( a )$ ; confidence 0.186
258. ; $= ( F ( . ) , ( h ( \ldots , y ) , ( h ( , x ) , h ( \ldots , x ) ) _ { H } ) _ { H } ) _ { H } =$ ; confidence 0.186
259. ; $\alpha _ { 1 } , \dots , \alpha _ { n }$ ; confidence 0.186
260. ; $H ^ { n } ( C , M ) = \operatorname { lim } _ { L } \leftarrow ^ { n } M$ ; confidence 0.186
261. ; $\tau _ { V }$ ; confidence 0.186
262. ; $f ( z ) = \frac { 1 } { ( 2 \pi i ) ^ { N } } \int _ { b _ { 0 } P } \frac { f ( \zeta ) d \zeta _ { 1 } \ldots d \zeta _ { N } } { ( \zeta _ { 1 } - z _ { 1 } ) \ldots ( \zeta _ { N } - z _ { N } ) } , z \in P$ ; confidence 0.186
263. ; $\hat { S } _ { n }$ ; confidence 0.186
264. ; $\frac { \partial ^ { 2 } } { \partial \theta _ { . } \partial \theta } Q ( \theta | \theta ^ { * } ) = \theta ^ { * }$ ; confidence 0.186
265. ; $p ^ { é } R$ ; confidence 0.185
266. ; $d S _ { A }$ ; confidence 0.185
267. ; $N B$ ; confidence 0.185
268. ; $( l _ { N } ) _ { N = 1 } ^ { \infty } 1$ ; confidence 0.185
269. ; $Q ^ { * } G _ { \text { inn } } = Q \otimes _ { C } C ^ { \dagger } [ G _ { \text { inn } } ]$ ; confidence 0.185
270. ; $D = \operatorname { diag } \{ d _ { 0 } , \dots , d _ { n - 1 } \}$ ; confidence 0.185
271. ; $[ \alpha , b ] = a b - ( - 1 ) ^ { p ( \alpha ) p ( b ) } b a$ ; confidence 0.185
272. ; $\rho _ { j \overline { k } } = \partial ^ { 2 } \rho / \partial z _ { j } \partial z _ { k }$ ; confidence 0.185
273. ; $x _ { 1 } , \dots , x _ { 1 }$ ; confidence 0.185
274. ; $\hat { R } _ { R _ { S } ^ { A } } ^ { A } = \hat { R } _ { S } ^ { A } \text { on } R ^ { n }$ ; confidence 0.185
275. ; $\operatorname { lif } ( R ^ { M } )$ ; confidence 0.185
276. ; $H _ { p } ^ { \gamma } ( R ^ { \gamma } )$ ; confidence 0.185
277. ; $\delta : s | _ { 2 } \rightarrow s | _ { 2 } \otimes s \dot { l } _ { 2 }$ ; confidence 0.185
278. ; $\Omega ^ { \bullet } ( \tilde { M } _ { C } ) \rightleftarrows \operatorname { Hom } _ { K _ { \infty } } ( \Lambda ^ { \bullet } ( \mathfrak { g } / \mathfrak { k } ) , C _ { \infty } ( \Gamma \backslash G ( R ) \otimes M _ { C } ) )$ ; confidence 0.185
279. ; $u _ { m + 1 } ^ { ( i ) } = R _ { 0 } ^ { ( i ) } ( c _ { i } h T ) u _ { m } +$ ; confidence 0.185
280. ; $E _ { g }$ ; confidence 0.184
281. ; $X _ { \alpha }$ ; confidence 0.184
282. ; $0.2$ ; confidence 0.184
283. ; $E \rightarrow Y \backslash \phi ( E )$ ; confidence 0.184
284. ; $( k _ { n } ) _ { n = 1 } ^ { \infty }$ ; confidence 0.184
285. ; $g : I \rightarrow R ^ { m }$ ; confidence 0.184
286. ; $S _ { S } ( M )$ ; confidence 0.184
287. ; $Q [ \zeta _ { \dot { e } } ]$ ; confidence 0.184
288. ; $T ^ { \# } ( n ) \sim C _ { 0 } g _ { 0 } ^ { n } n ^ { - 5 / 2 } \text { asn } \rightarrow \infty$ ; confidence 0.184
289. ; $r _ { D } \otimes R : H _ { M } ^ { i + 1 } ( X , Q ( i + 1 - m ) ) _ { Z } \otimes R \rightarrow H _ { D } ^ { i + 1 } ( X _ { / R } , R ( i + 1 - m ) )$ ; confidence 0.184
290. ; $\alpha _ { y }$ ; confidence 0.184
291. ; $x \rightarrow \| \alpha x \| + \| \alpha x \|$ ; confidence 0.184
292. ; $f ^ { * } \in \text { Homalg } ( H ^ { * } ( Y , F _ { p } ) , H ^ { * } ( X , F _ { p } ) )$ ; confidence 0.183
293. ; $HF _ { * } ^ { \text { inst } } ( Y , P _ { Y } ) \cong HF _ { * } ^ { \text { symp } } ( M ( P ) , L _ { 0 } , L _ { 1 } )$ ; confidence 0.183
294. ; $p ^ { n }$ ; confidence 0.183
295. ; $l ( t , x ) = \operatorname { lim } _ { \epsilon \rightarrow 0 } \frac { 1 } { 2 \varepsilon } \int _ { 0 } ^ { t } 1 ( x - \varepsilon , x + \varepsilon ) ( W _ { s } ) d s$ ; confidence 0.183
296. ; $j$ ; confidence 0.183
297. ; $N$ ; confidence 0.183
298. ; $h _ { n } = \int _ { a } ^ { b } x ^ { n } h ( x ) d x$ ; confidence 0.183
299. ; $\{ \varphi _ { n _ { 1 } , n _ { 2 } , \ldots } : n _ { j } \geq 0 , n _ { 1 } + n _ { 2 } + \ldots = n , n \geq 0 \}$ ; confidence 0.183
300. ; $\partial d S / \partial \alpha j = d \omega j$ ; confidence 0.183
Maximilian Janisch/latexlist/latex/NoNroff/72. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Maximilian_Janisch/latexlist/latex/NoNroff/72&oldid=44560