Difference between revisions of "User:Maximilian Janisch/latexlist/latex/NoNroff/39"
(AUTOMATIC EDIT of page 39 out of 77 with 300 lines: Updated image/latex database (currently 22833 images latexified; order by Length, ascending: False.) |
(AUTOMATIC EDIT of page 39 out of 77 with 300 lines: Updated image/latex database (currently 22833 images latexified; order by Confidence, ascending: False.) |
||
| Line 1: | Line 1: | ||
== List == | == List == | ||
| − | 1. https://www.encyclopediaofmath.org/legacyimages/ | + | 1. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110470/b11047042.png ; $i + 1$ ; confidence 0.829 |
| − | 2. https://www.encyclopediaofmath.org/legacyimages/ | + | 2. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120210/b120210127.png ; $w _ { 1 } , \dots , w _ { k }$ ; confidence 0.829 |
| − | 3. https://www.encyclopediaofmath.org/legacyimages/ | + | 3. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022110/c02211023.png ; $x _ { 0 } < \ldots < x _ { k }$ ; confidence 0.829 |
| − | 4. https://www.encyclopediaofmath.org/legacyimages/ | + | 4. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010910/a01091014.png ; $C _ { 1 }$ ; confidence 0.829 |
| − | 5. https://www.encyclopediaofmath.org/legacyimages/ | + | 5. https://www.encyclopediaofmath.org/legacyimages/l/l060/l060020/l06002010.png ; $\alpha = \Pi ( l ) = 2 \operatorname { arctan } e ^ { - l / R }$ ; confidence 0.829 |
| − | 6. https://www.encyclopediaofmath.org/legacyimages/ | + | 6. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130250/m13025081.png ; $M _ { 5 } ( R ^ { n } ) = \{$ ; confidence 0.829 |
| − | 7. https://www.encyclopediaofmath.org/legacyimages/ | + | 7. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130070/c130070217.png ; $\epsilon = \operatorname { ord } _ { T } ( d x / d \tau )$ ; confidence 0.829 |
| − | 8. https://www.encyclopediaofmath.org/legacyimages/ | + | 8. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120300/b12030086.png ; $\int _ { R ^ { N } } | g ( y ) | ^ { 2 } d y = \int _ { Y ^ { \prime } } \sum _ { m = 1 } ^ { \infty } | g _ { m } ( \eta ) | ^ { 2 } d \eta$ ; confidence 0.829 |
| − | 9. https://www.encyclopediaofmath.org/legacyimages/ | + | 9. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120170/l120170197.png ; $\pi 2 ( K )$ ; confidence 0.829 |
| − | 10. https://www.encyclopediaofmath.org/legacyimages/ | + | 10. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120100/l12010076.png ; $\sum _ { j \geq 1 } \int _ { R ^ { n } } | \nabla f _ { j } ( x ) | ^ { 2 } d x \geq K _ { n } \int _ { R ^ { n } } \rho ( x ) ^ { 1 + 2 / n } d x$ ; confidence 0.829 |
| − | 11. https://www.encyclopediaofmath.org/legacyimages/ | + | 11. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130260/m130260144.png ; $= \{ ( m , b ) \in M ( A ) \oplus B : \pi ( m ) = \tau ( b ) \}$ ; confidence 0.828 |
| − | 12. https://www.encyclopediaofmath.org/legacyimages/ | + | 12. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b110220101.png ; $F _ { \infty } \in \operatorname { Gal } ( C / R$ ; confidence 0.828 |
| − | 13. https://www.encyclopediaofmath.org/legacyimages/ | + | 13. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012060/a0120607.png ; $m ^ { \prime }$ ; confidence 0.828 |
| − | 14. https://www.encyclopediaofmath.org/legacyimages/ | + | 14. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130410/s1304107.png ; $p ^ { ( i ) }$ ; confidence 0.828 |
| − | 15. https://www.encyclopediaofmath.org/legacyimages/ | + | 15. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b120400118.png ; $p : \mathfrak { b } \rightarrow C$ ; confidence 0.828 |
| − | 16. https://www.encyclopediaofmath.org/legacyimages/ | + | 16. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130320/a1303203.png ; $E _ { \theta } ( N ) = \sum _ { n = 1 } ^ { \infty } n P _ { \theta } ( N = n ) = \sum _ { n = 0 } ^ { \infty } P _ { \theta } ( N > n )$ ; confidence 0.828 |
| − | 17. https://www.encyclopediaofmath.org/legacyimages/ | + | 17. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110100/b110100387.png ; $K _ { 2 }$ ; confidence 0.828 |
| − | 18. https://www.encyclopediaofmath.org/legacyimages/ | + | 18. https://www.encyclopediaofmath.org/legacyimages/r/r110/r110110/r11011056.png ; $x ^ { x } > y$ ; confidence 0.828 |
| − | 19. https://www.encyclopediaofmath.org/legacyimages/ | + | 19. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120140/t12014072.png ; $\operatorname { dist } _ { L } \infty ( u , H ^ { \infty } ) < 1$ ; confidence 0.828 |
| − | 20. https://www.encyclopediaofmath.org/legacyimages/ | + | 20. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130630/s13063020.png ; $( y _ { 1 } , \dots , y _ { s } )$ ; confidence 0.828 |
| − | 21. https://www.encyclopediaofmath.org/legacyimages/ | + | 21. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120160/d12016055.png ; $\pi _ { k } ( S )$ ; confidence 0.828 |
| − | 22. https://www.encyclopediaofmath.org/legacyimages/ | + | 22. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130230/b13023032.png ; $\operatorname { St } _ { G } ( u ) = \{ g \in G : u ^ { g } = u \}$ ; confidence 0.828 |
| − | 23. https://www.encyclopediaofmath.org/legacyimages/ | + | 23. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130140/c13014022.png ; $\sum _ { i = 1 } ^ { r } A _ { i } = J$ ; confidence 0.828 |
| − | 24. https://www.encyclopediaofmath.org/legacyimages/ | + | 24. https://www.encyclopediaofmath.org/legacyimages/s/s090/s090990/s09099047.png ; $f ( z ) = \sum _ { x = 0 } ^ { \infty } a _ { x } z ^ { x }$ ; confidence 0.828 |
| − | 25. https://www.encyclopediaofmath.org/legacyimages/ | + | 25. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120070/c12007066.png ; $Z ( \alpha ) = 1 _ { Z }$ ; confidence 0.828 |
| − | 26. https://www.encyclopediaofmath.org/legacyimages/ | + | 26. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120040/b12004021.png ; $e > 0$ ; confidence 0.828 |
| − | 27. https://www.encyclopediaofmath.org/legacyimages/ | + | 27. https://www.encyclopediaofmath.org/legacyimages/r/r082/r082320/r08232068.png ; $a , b \leq d , e$ ; confidence 0.828 |
| − | 28. https://www.encyclopediaofmath.org/legacyimages/ | + | 28. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120050/w12005023.png ; $N ^ { r + 1 } = 0$ ; confidence 0.828 |
| − | 29. https://www.encyclopediaofmath.org/legacyimages/ | + | 29. https://www.encyclopediaofmath.org/legacyimages/q/q130/q130050/q130050103.png ; $QS ( T , C )$ ; confidence 0.828 |
| − | 30. https://www.encyclopediaofmath.org/legacyimages/ | + | 30. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120260/d12026034.png ; $P \{ \operatorname { sup } _ { t } w ( t ) < z \}$ ; confidence 0.828 |
| − | 31. https://www.encyclopediaofmath.org/legacyimages/ | + | 31. https://www.encyclopediaofmath.org/legacyimages/z/z120/z120010/z12001055.png ; $p ^ { ( p ^ { m } - 1 ) / 2 }$ ; confidence 0.828 |
| − | 32. https://www.encyclopediaofmath.org/legacyimages/ | + | 32. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130050/w1300503.png ; $W ( g )$ ; confidence 0.828 |
| − | 33. https://www.encyclopediaofmath.org/legacyimages/ | + | 33. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120050/t12005071.png ; $j ^ { r } ( f )$ ; confidence 0.827 |
| − | 34. https://www.encyclopediaofmath.org/legacyimages/ | + | 34. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130020/b13002090.png ; $x \circ y : = ( x | 1 ) y + ( y | 1 ) x - ( x | \sigma ( y ) ) 1$ ; confidence 0.827 |
| − | 35. https://www.encyclopediaofmath.org/legacyimages/ | + | 35. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120210/c120210114.png ; $\Lambda _ { n } ( \theta ) = \operatorname { log } ( d P _ { n , \theta _ { n } } / P _ { n , \theta } )$ ; confidence 0.827 |
| − | 36. https://www.encyclopediaofmath.org/legacyimages/ | + | 36. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520478.png ; $k + i + m = n$ ; confidence 0.827 |
| − | 37. https://www.encyclopediaofmath.org/legacyimages/ | + | 37. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130190/b1301902.png ; $| \zeta ( 1 / 2 + i t ) |$ ; confidence 0.827 |
| − | 38. https://www.encyclopediaofmath.org/legacyimages/ | + | 38. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120120/d12012031.png ; $\Phi : O G \rightarrow A C$ ; confidence 0.827 |
| − | 39. https://www.encyclopediaofmath.org/legacyimages/ | + | 39. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120320/s12032076.png ; $N = A ^ { \gamma } | s$ ; confidence 0.827 |
| − | 40. https://www.encyclopediaofmath.org/legacyimages/ | + | 40. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130040/j13004014.png ; $V _ { L } ( t )$ ; confidence 0.827 |
| − | 41. https://www.encyclopediaofmath.org/legacyimages/f/ | + | 41. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040490/f04049042.png ; $Y = \sum _ { j } Y _ { j } / n$ ; confidence 0.827 |
| − | 42. https://www.encyclopediaofmath.org/legacyimages/ | + | 42. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130270/a13027080.png ; $X _ { n } \subset X _ { n } + 1$ ; confidence 0.827 |
| − | 43. https://www.encyclopediaofmath.org/legacyimages/ | + | 43. https://www.encyclopediaofmath.org/legacyimages/p/p075/p075480/p0754802.png ; $( p \supset ( q \supset r ) ) \supset ( ( p \supset q ) \supset ( p \supset r ) )$ ; confidence 0.827 |
| − | 44. https://www.encyclopediaofmath.org/legacyimages/ | + | 44. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120120/k12012047.png ; $\frac { - x f ^ { \prime } ( x ) } { f ( x ) } / \infty , \quad x \rightarrow \infty$ ; confidence 0.827 |
| − | 45. https://www.encyclopediaofmath.org/legacyimages/ | + | 45. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120290/d12029058.png ; $\sum _ { n = 1 } ^ { \infty } \varphi ( q _ { n } ) f ( q _ { n } )$ ; confidence 0.827 |
46. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130280/f13028028.png ; $c ^ { T } x \in \hat { G }$ ; confidence 0.827 | 46. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130280/f13028028.png ; $c ^ { T } x \in \hat { G }$ ; confidence 0.827 | ||
| − | 47. https://www.encyclopediaofmath.org/legacyimages/ | + | 47. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120020/b12002016.png ; $\operatorname { lim } _ { n \rightarrow \infty } \frac { n ^ { 1 / 4 } } { ( \operatorname { log } n ) ^ { 1 / 2 } } \frac { \| \alpha _ { n } + \beta _ { n } \| } { \| \alpha _ { n } \| ^ { 1 / 2 } } = 1$ ; confidence 0.827 |
| − | 48. https://www.encyclopediaofmath.org/legacyimages/ | + | 48. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120260/a12026037.png ; $Y = ( Y _ { 1 } , \dots , Y _ { s } )$ ; confidence 0.827 |
| − | 49. https://www.encyclopediaofmath.org/legacyimages/ | + | 49. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120130/a12013052.png ; $\overline { \theta } _ { n } = \overline { \theta } _ { n - 1 } + \frac { 1 } { n } ( \theta _ { n - 1 } - \overline { \theta } _ { n - 1 } )$ ; confidence 0.827 |
| − | 50. https://www.encyclopediaofmath.org/legacyimages/ | + | 50. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110610/a110610106.png ; $A \in A$ ; confidence 0.826 |
| − | 51. https://www.encyclopediaofmath.org/legacyimages/ | + | 51. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130210/f13021050.png ; $A ( G _ { 2 } )$ ; confidence 0.826 |
| − | 52. https://www.encyclopediaofmath.org/legacyimages/ | + | 52. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130120/p13012041.png ; $62$ ; confidence 0.826 |
| − | 53. https://www.encyclopediaofmath.org/legacyimages/ | + | 53. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130450/s1304506.png ; $\{ ( R _ { i } , S _ { i } ) \} _ { i = 1 } ^ { n }$ ; confidence 0.826 |
| − | 54. https://www.encyclopediaofmath.org/legacyimages/ | + | 54. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120230/e12023053.png ; $= \int _ { a } ^ { b } [ \frac { \partial L } { \partial y } ( \sigma ^ { 1 } ( x ) ) z ( x ) + \frac { \partial L } { \partial y ^ { \prime } } ( \sigma ^ { 1 } ( x ) ) z ^ { \prime } ( x ) ] d x =$ ; confidence 0.826 |
| − | 55. https://www.encyclopediaofmath.org/legacyimages/ | + | 55. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130050/o13005016.png ; $\frac { J - W _ { \Theta } ( z ) J W _ { \Theta } ( w ) ^ { * } } { z - \overline { w } } = 2 i K ^ { * } ( T - z I ) ^ { - 1 } ( T ^ { * } - \overline { w } l ) ^ { - 1 } K$ ; confidence 0.826 |
| − | 56. https://www.encyclopediaofmath.org/legacyimages/ | + | 56. https://www.encyclopediaofmath.org/legacyimages/q/q130/q130030/q13003021.png ; $p _ { 0 } = \| P _ { 0 } \psi \| ^ { 2 }$ ; confidence 0.826 |
| − | 57. https://www.encyclopediaofmath.org/legacyimages/ | + | 57. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130070/e13007029.png ; $o ( \# A )$ ; confidence 0.826 |
| − | 58. https://www.encyclopediaofmath.org/legacyimages/ | + | 58. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130010/l13001076.png ; $0 \leq s _ { 1 } + \ldots + s _ { n } \leq N$ ; confidence 0.826 |
| − | 59. https://www.encyclopediaofmath.org/legacyimages/ | + | 59. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120140/e120140103.png ; $( \varphi \rightarrow \varphi \left( \begin{array} { c } { x } \\ { \varepsilon x \varphi } \end{array} \right) ) = 1$ ; confidence 0.826 |
| − | 60. https://www.encyclopediaofmath.org/legacyimages/ | + | 60. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130090/c13009010.png ; $x _ { j } = \operatorname { cos } ( \pi j / N )$ ; confidence 0.826 |
| − | 61. https://www.encyclopediaofmath.org/legacyimages/ | + | 61. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120370/b12037087.png ; $n ^ { \Omega ( \sqrt { k } ) }$ ; confidence 0.826 |
| − | 62. https://www.encyclopediaofmath.org/legacyimages/ | + | 62. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120060/w12006017.png ; $\varphi _ { i } : U _ { i } \subset R ^ { m } \rightarrow M$ ; confidence 0.826 |
| − | 63. https://www.encyclopediaofmath.org/legacyimages/ | + | 63. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130010/l13001060.png ; $C _ { 1 } \operatorname { ln } ^ { n } N \leq \| S _ { N B } \| \leq C _ { 2 } \operatorname { ln } ^ { n } N$ ; confidence 0.826 |
| − | 64. https://www.encyclopediaofmath.org/legacyimages/ | + | 64. https://www.encyclopediaofmath.org/legacyimages/z/z120/z120010/z12001052.png ; $t \in Z / p Z$ ; confidence 0.826 |
| − | 65. https://www.encyclopediaofmath.org/legacyimages/ | + | 65. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120050/k12005069.png ; $H + \lambda ( K _ { X } + B )$ ; confidence 0.826 |
| − | 66. https://www.encyclopediaofmath.org/legacyimages/ | + | 66. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110700/b11070040.png ; $C ( T )$ ; confidence 0.825 |
| − | 67. https://www.encyclopediaofmath.org/legacyimages/b/ | + | 67. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110020/b11002021.png ; $b : U \times V \rightarrow R$ ; confidence 0.825 |
| − | 68. https://www.encyclopediaofmath.org/legacyimages/ | + | 68. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520263.png ; $\left\| \begin{array} { l l } { 1 } & { 0 } \\ { 0 } & { 1 } \end{array} \right\| \mapsto \left\| \begin{array} { l l } { 1 } & { 0 } \\ { 0 } & { 1 } \end{array} \right\|$ ; confidence 0.825 |
| − | 69. https://www.encyclopediaofmath.org/legacyimages/ | + | 69. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110660/b11066033.png ; $L _ { \infty } ( R )$ ; confidence 0.825 |
| − | 70. https://www.encyclopediaofmath.org/legacyimages/ | + | 70. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120070/c12007089.png ; $K = z$ ; confidence 0.825 |
| − | 71. https://www.encyclopediaofmath.org/legacyimages/ | + | 71. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120020/v12002024.png ; $H * ( X , Q )$ ; confidence 0.825 |
| − | 72. https://www.encyclopediaofmath.org/legacyimages/ | + | 72. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130010/o13001043.png ; $\hat { f } ( \xi ) = \frac { 1 } { ( 2 \pi ) ^ { 3 / 2 } } \int _ { D ^ { \prime } } f ( x ) \overline { u ( x , \xi ) } d x : = F f$ ; confidence 0.825 |
| − | 73. https://www.encyclopediaofmath.org/legacyimages/ | + | 73. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130530/s130530104.png ; $S ^ { r - 1 } \subset R ^ { r }$ ; confidence 0.825 |
| − | 74. https://www.encyclopediaofmath.org/legacyimages/ | + | 74. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130050/e13005014.png ; $E ( \alpha , \beta ) = \partial _ { x } \partial _ { y } - \frac { \beta } { x - y } \partial _ { x } + \frac { \alpha } { x - y } \partial y$ ; confidence 0.825 |
| − | 75. https://www.encyclopediaofmath.org/legacyimages/ | + | 75. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120090/f12009027.png ; $C _ { \epsilon } > 0$ ; confidence 0.825 |
| − | 76. https://www.encyclopediaofmath.org/legacyimages/ | + | 76. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120050/g12005035.png ; $R = R _ { c }$ ; confidence 0.825 |
| − | 77. https://www.encyclopediaofmath.org/legacyimages/ | + | 77. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120080/f12008041.png ; $\| \varphi \| = \operatorname { inf } \| \xi \| \| \eta \|$ ; confidence 0.825 |
| − | 78. https://www.encyclopediaofmath.org/legacyimages/ | + | 78. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130070/v13007041.png ; $w = \phi _ { 0 }$ ; confidence 0.824 |
| − | 79. https://www.encyclopediaofmath.org/legacyimages/ | + | 79. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120070/d12007013.png ; $[ E : K ]$ ; confidence 0.824 |
| − | 80. https://www.encyclopediaofmath.org/legacyimages/ | + | 80. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120010/e120010128.png ; $f = G d \circ e$ ; confidence 0.824 |
| − | 81. https://www.encyclopediaofmath.org/legacyimages/ | + | 81. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m130140117.png ; $Q = \| q _ { p s , i } \|$ ; confidence 0.824 |
| − | 82. https://www.encyclopediaofmath.org/legacyimages/ | + | 82. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120490/b1204902.png ; $m : \Sigma \rightarrow X$ ; confidence 0.824 |
| − | 83. https://www.encyclopediaofmath.org/legacyimages/ | + | 83. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120110/f12011067.png ; $D ^ { n } = R ^ { n } \cup S _ { \infty } ^ { n - 1 }$ ; confidence 0.824 |
| − | 84. https://www.encyclopediaofmath.org/legacyimages/ | + | 84. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120010/c12001031.png ; $T : P ^ { m } \backslash X \rightarrow P ^ { n }$ ; confidence 0.824 |
| − | 85. https://www.encyclopediaofmath.org/legacyimages/ | + | 85. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035000/e035000135.png ; $\operatorname { lim } _ { k \rightarrow \infty } \frac { S ( T ^ { k } , a f ( \epsilon ) ^ { k } ) } { k } = 2 H _ { \epsilon } ^ { \prime } ( \xi )$ ; confidence 0.824 |
| − | 86. https://www.encyclopediaofmath.org/legacyimages/ | + | 86. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120070/w12007050.png ; $\sigma : R ^ { 2 n } \rightarrow C$ ; confidence 0.824 |
| − | 87. https://www.encyclopediaofmath.org/legacyimages/ | + | 87. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120050/t12005064.png ; $\overline { \Sigma } \square ^ { i } ( f )$ ; confidence 0.824 |
| − | 88. https://www.encyclopediaofmath.org/legacyimages/ | + | 88. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120030/m1200302.png ; $F _ { \theta }$ ; confidence 0.824 |
| − | 89. https://www.encyclopediaofmath.org/legacyimages/ | + | 89. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130290/f13029068.png ; $f \rightarrow$ ; confidence 0.824 |
| − | 90. https://www.encyclopediaofmath.org/legacyimages/ | + | 90. https://www.encyclopediaofmath.org/legacyimages/r/r082/r082320/r08232037.png ; $\operatorname { ln } \rho$ ; confidence 0.824 |
| − | 91. https://www.encyclopediaofmath.org/legacyimages/ | + | 91. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120120/a12012071.png ; $( x ^ { * } , y ^ { * } , p ^ { * } )$ ; confidence 0.824 |
| − | 92. https://www.encyclopediaofmath.org/legacyimages/ | + | 92. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120090/l12009035.png ; $[ d f , d g ] _ { P } = d \{ f , g \} _ { P }$ ; confidence 0.824 |
| − | 93. https://www.encyclopediaofmath.org/legacyimages/ | + | 93. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120130/t12013080.png ; $x , y \in R ^ { l + 1 }$ ; confidence 0.823 |
| − | 94. https://www.encyclopediaofmath.org/legacyimages/ | + | 94. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130100/b13010021.png ; $T ( z ) = \{ T k _ { z } , k _ { z } \}$ ; confidence 0.823 |
| − | 95. https://www.encyclopediaofmath.org/legacyimages/ | + | 95. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120270/b12027072.png ; $\{ u _ { j } \}$ ; confidence 0.823 |
| − | 96. https://www.encyclopediaofmath.org/legacyimages/ | + | 96. https://www.encyclopediaofmath.org/legacyimages/v/v096/v096910/v09691026.png ; $\hbar ( x )$ ; confidence 0.823 |
| − | 97. https://www.encyclopediaofmath.org/legacyimages/ | + | 97. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110500/a11050011.png ; $Q _ { p }$ ; confidence 0.823 |
| − | 98. https://www.encyclopediaofmath.org/legacyimages/ | + | 98. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120130/p12013035.png ; $n \rightarrow \infty$ ; confidence 0.823 |
| − | 99. https://www.encyclopediaofmath.org/legacyimages/ | + | 99. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120130/b12013013.png ; $k _ { z } ( w )$ ; confidence 0.823 |
| − | 100. https://www.encyclopediaofmath.org/legacyimages/ | + | 100. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110410/a11041046.png ; $X ^ { \prime }$ ; confidence 0.823 |
| − | 101. https://www.encyclopediaofmath.org/legacyimages/ | + | 101. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040980/f0409807.png ; $H _ { 2 } ( M ; Z )$ ; confidence 0.823 |
| − | 102. https://www.encyclopediaofmath.org/legacyimages/ | + | 102. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130260/m130260176.png ; $C M _ { n } = C _ { 0 } ( 10,1 ] ) \otimes M _ { n }$ ; confidence 0.823 |
| − | 103. https://www.encyclopediaofmath.org/legacyimages/ | + | 103. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120150/d12015017.png ; $( v , k , \lambda , n ) = ( \frac { q ^ { d + 1 } - 1 } { q - 1 } , \frac { q ^ { d } - 1 } { q - 1 } , \frac { q ^ { d - 1 } - 1 } { q - 1 } , q ^ { d - 1 } )$ ; confidence 0.823 |
| − | 104. https://www.encyclopediaofmath.org/legacyimages/ | + | 104. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130070/i13007039.png ; $M : = \{ \theta : \theta \in C ^ { 3 } , \theta . \theta = k ^ { 2 } 0 \}$ ; confidence 0.823 |
| − | 105. https://www.encyclopediaofmath.org/legacyimages/ | + | 105. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130180/m13018068.png ; $y \leq z$ ; confidence 0.823 |
| − | 106. https://www.encyclopediaofmath.org/legacyimages/ | + | 106. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120070/w12007018.png ; $p _ { k }$ ; confidence 0.823 |
| − | 107. https://www.encyclopediaofmath.org/legacyimages/ | + | 107. https://www.encyclopediaofmath.org/legacyimages/v/v110/v110060/v11006013.png ; $D = \frac { E h ^ { 3 } } { 12 ( 1 - \nu ^ { 2 } ) }$ ; confidence 0.823 |
| − | 108. https://www.encyclopediaofmath.org/legacyimages/l/l120/ | + | 108. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120170/l12017021.png ; $13$ ; confidence 0.823 |
| − | 109. https://www.encyclopediaofmath.org/legacyimages/l/l120/ | + | 109. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120140/l12014015.png ; $p ( T ) x = 0$ ; confidence 0.823 |
| − | 110. https://www.encyclopediaofmath.org/legacyimages/ | + | 110. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120020/q12002031.png ; $C = \operatorname { Fun } _ { q } ( C )$ ; confidence 0.823 |
| − | 111. https://www.encyclopediaofmath.org/legacyimages/ | + | 111. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130030/o13003051.png ; $Y _ { j } = - \sqrt { 3 } \lambda _ { j } ( j = 1,2,3 ) , Y _ { 4 } = \sqrt { 3 } \lambda _ { 8 }$ ; confidence 0.822 |
| − | 112. https://www.encyclopediaofmath.org/legacyimages/ | + | 112. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120170/b12017016.png ; $G _ { \alpha } ^ { - 1 } = G _ { - \alpha }$ ; confidence 0.822 |
| − | 113. https://www.encyclopediaofmath.org/legacyimages/ | + | 113. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b13020035.png ; $e _ { i } , f _ { i } , h _ { i j }$ ; confidence 0.822 |
| − | 114. https://www.encyclopediaofmath.org/legacyimages/ | + | 114. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840351.png ; $Z ^ { * } Z \leq B _ { 0 }$ ; confidence 0.822 |
| − | 115. https://www.encyclopediaofmath.org/legacyimages/ | + | 115. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130130/t1301306.png ; $T _ { 0 } , T _ { 1 } \in \operatorname { add } T$ ; confidence 0.822 |
| − | 116. https://www.encyclopediaofmath.org/legacyimages/ | + | 116. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013056.png ; $A _ { 1 } ^ { ( 1 ) }$ ; confidence 0.822 |
| − | 117. https://www.encyclopediaofmath.org/legacyimages/ | + | 117. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130040/s13004069.png ; $X ^ { * } = \Gamma \backslash D ^ { * }$ ; confidence 0.822 |
| − | 118. https://www.encyclopediaofmath.org/legacyimages/ | + | 118. https://www.encyclopediaofmath.org/legacyimages/p/p110/p110150/p11015047.png ; $x \preceq y \preceq z \Rightarrow y \in H$ ; confidence 0.822 |
| − | 119. https://www.encyclopediaofmath.org/legacyimages/ | + | 119. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130080/r13008065.png ; $f ( p ) = L g : = \int _ { T } g ( t ) \overline { h ( t , p ) } d m ( t )$ ; confidence 0.822 |
| − | 120. https://www.encyclopediaofmath.org/legacyimages/ | + | 120. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130370/s13037026.png ; $t = ( t _ { 1 } , \dots , t _ { k } )$ ; confidence 0.822 |
| − | 121. https://www.encyclopediaofmath.org/legacyimages/ | + | 121. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130020/k13002022.png ; $T = \sum _ { t } t ( t - 1 ) / 2$ ; confidence 0.822 |
| − | 122. https://www.encyclopediaofmath.org/legacyimages/ | + | 122. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120030/m120030106.png ; $\frac { 1 } { n } \sum _ { i = 1 } ^ { n } \rho ( \frac { n } { s } ) = K$ ; confidence 0.822 |
| − | 123. https://www.encyclopediaofmath.org/legacyimages/ | + | 123. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130070/e13007054.png ; $f ^ { \prime } ( x _ { m } ) = m$ ; confidence 0.822 |
| − | 124. https://www.encyclopediaofmath.org/legacyimages/ | + | 124. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130140/c13014056.png ; $\neq M \subseteq X$ ; confidence 0.822 |
| − | 125. https://www.encyclopediaofmath.org/legacyimages/ | + | 125. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130010/c13001015.png ; $2 \kappa \Delta c - f _ { 0 } ^ { \prime } ( c ) = \lambda \text { in } V$ ; confidence 0.821 |
| − | 126. https://www.encyclopediaofmath.org/legacyimages/ | + | 126. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130250/m13025055.png ; $M _ { 2 } ( R ^ { n } )$ ; confidence 0.821 |
| − | 127. https://www.encyclopediaofmath.org/legacyimages/ | + | 127. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110300/a1103006.png ; $H * \Omega X$ ; confidence 0.821 |
| − | 128. https://www.encyclopediaofmath.org/legacyimages/ | + | 128. https://www.encyclopediaofmath.org/legacyimages/s/s090/s090670/s09067080.png ; $V ^ { * } = \operatorname { Hom } ( V , R )$ ; confidence 0.821 |
| − | 129. https://www.encyclopediaofmath.org/legacyimages/ | + | 129. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h12002026.png ; $| l | = m ( l )$ ; confidence 0.821 |
| − | 130. https://www.encyclopediaofmath.org/legacyimages/ | + | 130. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130070/f13007016.png ; $F ( 2,6 ) = \pi _ { 1 } ( M _ { 3 } )$ ; confidence 0.821 |
| − | 131. https://www.encyclopediaofmath.org/legacyimages/ | + | 131. https://www.encyclopediaofmath.org/legacyimages/x/x120/x120010/x12001082.png ; $S = Q ^ { * } G$ ; confidence 0.821 |
| − | 132. https://www.encyclopediaofmath.org/legacyimages/ | + | 132. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w130080182.png ; $( \overline { \partial } + \mu \partial + D \psi = 0$ ; confidence 0.821 |
| − | 133. https://www.encyclopediaofmath.org/legacyimages/ | + | 133. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120020/q1200203.png ; $SL ( n , C )$ ; confidence 0.821 |
| − | 134. https://www.encyclopediaofmath.org/legacyimages/l/l120/ | + | 134. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120120/l12012047.png ; $O _ { K , p }$ ; confidence 0.821 |
| − | 135. https://www.encyclopediaofmath.org/legacyimages/l/ | + | 135. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l11002062.png ; $x ^ { - } = x \wedge e$ ; confidence 0.821 |
| − | 136. https://www.encyclopediaofmath.org/legacyimages/ | + | 136. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110020/b11002036.png ; $S : V ^ { \prime } \rightarrow U$ ; confidence 0.821 |
| − | 137. https://www.encyclopediaofmath.org/legacyimages/ | + | 137. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120300/c120300110.png ; $O _ { 2 }$ ; confidence 0.821 |
| − | 138. https://www.encyclopediaofmath.org/legacyimages/ | + | 138. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130040/k13004013.png ; $x _ { i } = \left\{ \begin{array} { l l } { 1 } & { \text { if } a _ { i } \leq c - \sum _ { j = 1 } ^ { i - 1 } a _ { j } x _ { j } } \\ { 0 } & { \text { otherwise } } \end{array} \right.$ ; confidence 0.821 |
| − | 139. https://www.encyclopediaofmath.org/legacyimages/ | + | 139. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130150/t1301509.png ; $f \in L ^ { \infty } ( T )$ ; confidence 0.821 |
| − | 140. https://www.encyclopediaofmath.org/legacyimages/ | + | 140. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023270/c02327026.png ; $r ( A \cup B ) + r ( A \cap B ) \leq r ( A ) + r ( B )$ ; confidence 0.820 |
| − | 141. https://www.encyclopediaofmath.org/legacyimages/ | + | 141. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130230/a1302308.png ; $\operatorname { lim } _ { n \rightarrow \infty } ( ( 1 - Q ) ( I - P ) ) ^ { n } f = ( I - P _ { U + V } ) f$ ; confidence 0.820 |
| − | 142. https://www.encyclopediaofmath.org/legacyimages/ | + | 142. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130080/z13008031.png ; $m = k - 1$ ; confidence 0.820 |
| − | 143. https://www.encyclopediaofmath.org/legacyimages/m/ | + | 143. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130010/m13001055.png ; $y _ { i } = f ( x _ { i } )$ ; confidence 0.820 |
| − | 144. https://www.encyclopediaofmath.org/legacyimages/ | + | 144. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010910/a01091016.png ; $C$ ; confidence 0.820 |
| − | 145. https://www.encyclopediaofmath.org/legacyimages/m/ | + | 145. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m13014093.png ; $f \in C ( C ^ { n } )$ ; confidence 0.820 |
| − | 146. https://www.encyclopediaofmath.org/legacyimages/ | + | 146. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120070/w12007031.png ; $\xi \in C ^ { k }$ ; confidence 0.820 |
| − | 147. https://www.encyclopediaofmath.org/legacyimages/m/ | + | 147. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130250/m13025021.png ; $S _ { \Gamma } ^ { \prime } ( R ^ { n } )$ ; confidence 0.820 |
| − | 148. https://www.encyclopediaofmath.org/legacyimages/ | + | 148. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120040/n12004013.png ; $A _ { N } ( F f \circ s \circ f ^ { - 1 } ) = ( G f ) \circ A _ { M } ( s ) \circ f ^ { - 1 }$ ; confidence 0.820 |
| − | 149. https://www.encyclopediaofmath.org/legacyimages/ | + | 149. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120070/q12007026.png ; $k [ g ]$ ; confidence 0.820 |
| − | 150. https://www.encyclopediaofmath.org/legacyimages/ | + | 150. https://www.encyclopediaofmath.org/legacyimages/h/h046/h046020/h04602042.png ; $| \Delta P ( i \omega ) | < | R ( i \omega ) | , \quad \text { a.a. } \omega$ ; confidence 0.820 |
| − | 151. https://www.encyclopediaofmath.org/legacyimages/ | + | 151. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120060/a1200605.png ; $\Omega = R ^ { m }$ ; confidence 0.820 |
| − | 152. https://www.encyclopediaofmath.org/legacyimages/ | + | 152. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130010/r1300106.png ; $a _ { 0 } ( 1 - x _ { 0 } f ) + a _ { 1 } f _ { 1 } + \ldots + a _ { m } f _ { m } = 1$ ; confidence 0.820 |
| − | 153. https://www.encyclopediaofmath.org/legacyimages/ | + | 153. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130030/i130030148.png ; $Ch : K _ { 0 } ( A ) \rightarrow HC _ { 2 n } ( A )$ ; confidence 0.820 |
| − | 154. https://www.encyclopediaofmath.org/legacyimages/ | + | 154. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120150/a12015029.png ; $\operatorname { Der } ( \mathfrak { g } )$ ; confidence 0.820 |
| − | 155. https://www.encyclopediaofmath.org/legacyimages/ | + | 155. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130060/d130060103.png ; $Z \in X$ ; confidence 0.820 |
| − | 156. https://www.encyclopediaofmath.org/legacyimages/ | + | 156. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120050/t12005021.png ; $\Sigma ^ { i , j } ( f ) = \Sigma ^ { j } ( f | _ { \Sigma ^ { i } ( f ) } )$ ; confidence 0.820 |
| − | 157. https://www.encyclopediaofmath.org/legacyimages/ | + | 157. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130030/z13003073.png ; $b$ ; confidence 0.820 |
| − | 158. https://www.encyclopediaofmath.org/legacyimages/ | + | 158. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130130/p13013058.png ; $p _ { \pi }$ ; confidence 0.820 |
| − | 159. https://www.encyclopediaofmath.org/legacyimages/ | + | 159. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130110/z130110114.png ; $z ^ { - ( 1 + q ) }$ ; confidence 0.820 |
| − | 160. https://www.encyclopediaofmath.org/legacyimages/ | + | 160. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120170/s12017094.png ; $s _ { 1 } \geq \ldots \geq s _ { m } \geq 0$ ; confidence 0.820 |
| − | 161. https://www.encyclopediaofmath.org/legacyimages/ | + | 161. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120290/b12029023.png ; $H _ { f } ^ { U }$ ; confidence 0.820 |
| − | 162. https://www.encyclopediaofmath.org/legacyimages/ | + | 162. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120240/d12024054.png ; $1 / 2 tr$ ; confidence 0.820 |
| − | 163. https://www.encyclopediaofmath.org/legacyimages/ | + | 163. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120210/s12021011.png ; $V _ { Y }$ ; confidence 0.820 |
| − | 164. https://www.encyclopediaofmath.org/legacyimages/ | + | 164. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130620/s13062016.png ; $( \operatorname { cos } \alpha ) y ( 0 ) + ( \operatorname { sin } \alpha ) y ^ { \prime } ( 0 ) = 0$ ; confidence 0.820 |
| − | 165. https://www.encyclopediaofmath.org/legacyimages/ | + | 165. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120490/b12049038.png ; $\{ A _ { j n } \}$ ; confidence 0.820 |
| − | 166. https://www.encyclopediaofmath.org/legacyimages/ | + | 166. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031280/d031280172.png ; $i \in Z$ ; confidence 0.819 |
| − | 167. https://www.encyclopediaofmath.org/legacyimages/ | + | 167. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130090/b1300908.png ; $F ( u ) = \int _ { R } ( u ^ { 2 } + \frac { 1 } { 3 } u ^ { 3 } ) d x$ ; confidence 0.819 |
| − | 168. https://www.encyclopediaofmath.org/legacyimages/ | + | 168. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130150/t13015062.png ; $C ^ { * } ( S ) \otimes _ { \delta } C _ { 0 } ( S )$ ; confidence 0.819 |
| − | 169. https://www.encyclopediaofmath.org/legacyimages/ | + | 169. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120060/a12006075.png ; $u \in D ( S ^ { 2 } )$ ; confidence 0.819 |
| − | 170. https://www.encyclopediaofmath.org/legacyimages/ | + | 170. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120430/b120430116.png ; $\varepsilon \left( \begin{array} { l l } { \alpha } & { \beta } \\ { \gamma } & { \delta } \end{array} \right) = \left( \begin{array} { l l } { 1 } & { 0 } \\ { 0 } & { 1 } \end{array} \right)$ ; confidence 0.819 |
| − | 171. https://www.encyclopediaofmath.org/legacyimages/ | + | 171. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120190/e12019010.png ; $p , v \in X$ ; confidence 0.819 |
| − | 172. https://www.encyclopediaofmath.org/legacyimages/ | + | 172. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130140/t13014044.png ; $X \mapsto \operatorname { dim } X = ( \operatorname { dim } _ { K } X _ { j } ) _ { j \in Q _ { 0 } }$ ; confidence 0.819 |
| − | 173. https://www.encyclopediaofmath.org/legacyimages/ | + | 173. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055780/k05578013.png ; $F ( \tau ) = \frac { 2 \pi \operatorname { sinh } \pi \tau } { \pi ^ { 2 } | I _ { i \alpha } ( \alpha ) | ^ { 2 } } \times$ ; confidence 0.819 |
| − | 174. https://www.encyclopediaofmath.org/legacyimages/ | + | 174. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011600/a01160082.png ; $k ^ { \prime }$ ; confidence 0.819 |
| − | 175. https://www.encyclopediaofmath.org/legacyimages/ | + | 175. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120240/f12024085.png ; $\phi ( t _ { 0 } ) = x ( t _ { 0 } )$ ; confidence 0.819 |
| − | 176. https://www.encyclopediaofmath.org/legacyimages/ | + | 176. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h120020148.png ; $\{ \hat { \phi } ( j + k ) \} j , k \geq 0$ ; confidence 0.819 |
| − | 177. https://www.encyclopediaofmath.org/legacyimages/ | + | 177. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120040/g12004014.png ; $G _ { 0 } ^ { s } ( \Omega ) = G ^ { s } ( \Omega ) \cap C _ { 0 } ^ { \infty } ( \Omega )$ ; confidence 0.819 |
| − | 178. https://www.encyclopediaofmath.org/legacyimages/ | + | 178. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130620/s130620222.png ; $B \subset A$ ; confidence 0.819 |
| − | 179. https://www.encyclopediaofmath.org/legacyimages/ | + | 179. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120090/m12009036.png ; $Q ( x ) e ^ { i \xi x }$ ; confidence 0.819 |
| − | 180. https://www.encyclopediaofmath.org/legacyimages/ | + | 180. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120100/b1201008.png ; $X \equiv ( x _ { 1 } , \dots , x _ { n } )$ ; confidence 0.819 |
| − | 181. https://www.encyclopediaofmath.org/legacyimages/ | + | 181. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120170/a12017030.png ; $R = \int _ { 0 } ^ { + \infty } \beta ( \alpha ) \Pi ( \alpha ) d \alpha$ ; confidence 0.819 |
| − | 182. https://www.encyclopediaofmath.org/legacyimages/ | + | 182. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120210/s12021013.png ; $0 \neq \phi \in E ( \lambda , D _ { Y } ) \text { with } \pi ^ { * } \phi \in E ( \mu , D _ { Z } )$ ; confidence 0.819 |
| − | 183. https://www.encyclopediaofmath.org/legacyimages/ | + | 183. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130060/g130060111.png ; $\{ \alpha , i \} _ { i = 1 } ^ { n }$ ; confidence 0.819 |
| − | 184. https://www.encyclopediaofmath.org/legacyimages/ | + | 184. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040790.png ; $g = g ^ { \prime }$ ; confidence 0.819 |
| − | 185. https://www.encyclopediaofmath.org/legacyimages/ | + | 185. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120100/a12010019.png ; $x \notin D ( A )$ ; confidence 0.819 |
| − | 186. https://www.encyclopediaofmath.org/legacyimages/ | + | 186. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130260/m130260152.png ; $b = b ^ { x }$ ; confidence 0.818 |
| − | 187. https://www.encyclopediaofmath.org/legacyimages/ | + | 187. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120220/b1202201.png ; $\partial _ { t } f + v . \nabla _ { x } f = \frac { Q ( f ) } { \varepsilon }$ ; confidence 0.818 |
| − | 188. https://www.encyclopediaofmath.org/legacyimages/ | + | 188. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120340/s120340167.png ; $\tilde { \Sigma } = \Sigma \backslash \cup _ { i = 1,2,3 } U _ { i }$ ; confidence 0.818 |
| − | 189. https://www.encyclopediaofmath.org/legacyimages/ | + | 189. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130080/c13008033.png ; $N _ { A } ( x )$ ; confidence 0.818 |
| − | 190. https://www.encyclopediaofmath.org/legacyimages/ | + | 190. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023270/c02327027.png ; $A \subseteq S$ ; confidence 0.818 |
| − | 191. https://www.encyclopediaofmath.org/legacyimages/ | + | 191. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120030/v12003018.png ; $| \mu _ { N } ( E ) | < \varepsilon$ ; confidence 0.818 |
| − | 192. https://www.encyclopediaofmath.org/legacyimages/ | + | 192. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130230/b1302304.png ; $G : H ] < \infty$ ; confidence 0.818 |
| − | 193. https://www.encyclopediaofmath.org/legacyimages/ | + | 193. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012410/a012410123.png ; $2 d$ ; confidence 0.818 |
| − | 194. https://www.encyclopediaofmath.org/legacyimages/ | + | 194. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022110/c02211060.png ; $\xi _ { 1 } ^ { 2 } + \ldots + \xi _ { k - m - 1 } ^ { 2 } + \mu _ { 1 } \xi _ { k - m } ^ { 2 } + \ldots + \mu _ { m } \xi _ { k - 1 } ^ { 2 }$ ; confidence 0.818 |
| − | 195. https://www.encyclopediaofmath.org/legacyimages/ | + | 195. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130510/s130510147.png ; $\sigma ( u ) = \gamma ( u _ { 1 } ) \oplus \ldots \oplus \gamma ( u _ { m } )$ ; confidence 0.818 |
| − | 196. https://www.encyclopediaofmath.org/legacyimages/ | + | 196. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120190/e120190203.png ; $d ( x , y ) = \sqrt { 1 + x ^ { 2 } } \sqrt { 1 + y ^ { 2 } } - x y$ ; confidence 0.818 |
| − | 197. https://www.encyclopediaofmath.org/legacyimages/ | + | 197. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120290/s1202909.png ; $\sum _ { k = 1 } ^ { \infty } x _ { n } _ { k }$ ; confidence 0.818 |
| − | 198. https://www.encyclopediaofmath.org/legacyimages/ | + | 198. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120020/i1200202.png ; $f ( x ) = \frac { 1 } { ( \pi x ) ^ { 2 } } \int _ { 0 } ^ { \infty } \tau \operatorname { sinh } ( 2 \pi \tau ) \times x | \Gamma ( \frac { 1 } { 2 } - \mu - i \tau ) | ^ { 2 } W _ { \mu , i \tau } ( x ) F ( \tau ) d$ ; confidence 0.818 |
| − | 199. https://www.encyclopediaofmath.org/legacyimages/ | + | 199. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120040/f12004032.png ; $R$ ; confidence 0.818 |
| − | 200. https://www.encyclopediaofmath.org/legacyimages/ | + | 200. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130230/b1302302.png ; $\{ H _ { n } \} _ { n = 1 } ^ { \infty }$ ; confidence 0.818 |
| − | 201. https://www.encyclopediaofmath.org/legacyimages/ | + | 201. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120270/a12027055.png ; $W _ { P } ( \rho ) / W _ { P } ( \operatorname { det } _ { \rho } )$ ; confidence 0.818 |
| − | 202. https://www.encyclopediaofmath.org/legacyimages/ | + | 202. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130030/e13003079.png ; $A ( \Gamma \backslash G ( R ) ) \subset C _ { 0 } ( \Gamma \backslash G ( R ) )$ ; confidence 0.818 |
| − | 203. https://www.encyclopediaofmath.org/legacyimages/ | + | 203. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h120020126.png ; $f \in BMOA = BMO \cap H ^ { 2 }$ ; confidence 0.817 |
| − | 204. https://www.encyclopediaofmath.org/legacyimages/ | + | 204. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120040/l12004013.png ; $\Delta x = x _ { i } + 1 / 2 - x _ { i } - 1 / 2$ ; confidence 0.817 |
| − | 205. https://www.encyclopediaofmath.org/legacyimages/ | + | 205. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130070/r13007043.png ; $B ( x , y ) = \sum _ { j = 1 } ^ { \infty } \lambda _ { j } \overline { \varphi _ { j } ( x ) } \varphi _ { j } ( y )$ ; confidence 0.817 |
| − | 206. https://www.encyclopediaofmath.org/legacyimages/ | + | 206. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023150/c023150262.png ; $83$ ; confidence 0.817 |
| − | 207. https://www.encyclopediaofmath.org/legacyimages/ | + | 207. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130170/w13017051.png ; $f ( \lambda ) = ( 2 \pi ) ^ { - 1 } k ( e ^ { - i \lambda } ) \Sigma k ^ { * } ( e ^ { - i \lambda } )$ ; confidence 0.817 |
| − | 208. https://www.encyclopediaofmath.org/legacyimages/ | + | 208. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120280/a12028066.png ; $( X , X * )$ ; confidence 0.817 |
| − | 209. https://www.encyclopediaofmath.org/legacyimages/ | + | 209. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120290/c12029029.png ; $\operatorname { Ker } ( \mu )$ ; confidence 0.817 |
| − | 210. https://www.encyclopediaofmath.org/legacyimages/ | + | 210. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130360/s13036023.png ; $Y _ { t } = B _ { t } - \operatorname { min } _ { 0 \leq s \leq t } B _ { s } \wedge 0$ ; confidence 0.817 |
| − | 211. https://www.encyclopediaofmath.org/legacyimages/ | + | 211. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023250/c023250155.png ; $N ( A )$ ; confidence 0.817 |
| − | 212. https://www.encyclopediaofmath.org/legacyimages/ | + | 212. https://www.encyclopediaofmath.org/legacyimages/v/v096/v096910/v0969104.png ; $\operatorname { lim } _ { n \rightarrow \infty } \frac { 1 } { n } \sum _ { k = 0 } ^ { n - 1 } U ^ { k } h = \hbar$ ; confidence 0.817 |
| − | 213. https://www.encyclopediaofmath.org/legacyimages/ | + | 213. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120370/b12037064.png ; $L \subseteq \{ 0,1 \}$ ; confidence 0.817 |
| − | 214. https://www.encyclopediaofmath.org/legacyimages/ | + | 214. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120130/w12013021.png ; $\sigma _ { ess } ( - \Delta + V ) = [ 0 , \infty )$ ; confidence 0.817 |
| − | 215. https://www.encyclopediaofmath.org/legacyimages/ | + | 215. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120030/w12003057.png ; $[ 0 , \omega ]$ ; confidence 0.817 |
| − | 216. https://www.encyclopediaofmath.org/legacyimages/ | + | 216. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120030/d12003070.png ; $DB _ { 1 } ^ { * }$ ; confidence 0.817 |
| − | 217. https://www.encyclopediaofmath.org/legacyimages/ | + | 217. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120210/w12021038.png ; $( s _ { 1 } , \dots , s _ { k } , B _ { m } )$ ; confidence 0.817 |
| − | 218. https://www.encyclopediaofmath.org/legacyimages/ | + | 218. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130010/o13001029.png ; $\sigma ( \alpha ) : = \int _ { S ^ { 2 } } | f ( \alpha , \beta , k ) | ^ { 2 } d \beta$ ; confidence 0.817 |
| − | 219. https://www.encyclopediaofmath.org/legacyimages/ | + | 219. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130320/a13032059.png ; $\theta = q$ ; confidence 0.817 |
| − | 220. https://www.encyclopediaofmath.org/legacyimages/ | + | 220. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130100/r13010056.png ; $( i , x )$ ; confidence 0.817 |
| − | 221. https://www.encyclopediaofmath.org/legacyimages/ | + | 221. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240312.png ; $SS _ { e } = \sum _ { i j k } ( y _ { i j k } - y _ { i j } ) ^ { 2 }$ ; confidence 0.817 |
| − | 222. https://www.encyclopediaofmath.org/legacyimages/ | + | 222. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130100/p130100166.png ; $f : T \rightarrow C ^ { n }$ ; confidence 0.817 |
| − | 223. https://www.encyclopediaofmath.org/legacyimages/ | + | 223. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120130/d12013014.png ; $S ( V ) ^ { G L ( V ) }$ ; confidence 0.817 |
| − | 224. https://www.encyclopediaofmath.org/legacyimages/ | + | 224. https://www.encyclopediaofmath.org/legacyimages/w/w110/w110060/w11006014.png ; $P ( \overline { B } ( t , \omega ) = B ( t , \omega ) ) = 1$ ; confidence 0.816 |
| − | 225. https://www.encyclopediaofmath.org/legacyimages/ | + | 225. https://www.encyclopediaofmath.org/legacyimages/l/l061/l061050/l06105088.png ; $F ( \omega )$ ; confidence 0.816 |
| − | 226. https://www.encyclopediaofmath.org/legacyimages/ | + | 226. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130110/z13011035.png ; $G _ { n } ( f ( k , n ) ) = k$ ; confidence 0.816 |
| − | 227. https://www.encyclopediaofmath.org/legacyimages/ | + | 227. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130110/v13011049.png ; $d \beta _ { j } / d t$ ; confidence 0.816 |
| − | 228. https://www.encyclopediaofmath.org/legacyimages/ | + | 228. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130160/b1301604.png ; $| f \| : = \{ \| f ( x ) \| : x \in X \}$ ; confidence 0.816 |
| − | 229. https://www.encyclopediaofmath.org/legacyimages/s/s120/ | + | 229. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120280/s12028036.png ; $[ g ] : Y \rightarrow P$ ; confidence 0.816 |
| − | 230. https://www.encyclopediaofmath.org/legacyimages/ | + | 230. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130290/b13029048.png ; $1 _ { A } ( A / \mathfrak { q } ) - e _ { \mathfrak { q } } ^ { 0 } ( A )$ ; confidence 0.816 |
| − | 231. https://www.encyclopediaofmath.org/legacyimages/ | + | 231. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130140/m130140107.png ; $D _ { 1 }$ ; confidence 0.816 |
| − | 232. https://www.encyclopediaofmath.org/legacyimages/ | + | 232. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120190/l12019047.png ; $\dot { X } = A ( t ) X$ ; confidence 0.816 |
| − | 233. https://www.encyclopediaofmath.org/legacyimages/ | + | 233. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120050/k12005072.png ; $f ^ { * } f * O _ { X } ( m q ( H + \lambda ( K _ { X } + B ) ) ) \rightarrow$ ; confidence 0.816 |
| − | 234. https://www.encyclopediaofmath.org/legacyimages/ | + | 234. https://www.encyclopediaofmath.org/legacyimages/l/l061/l061050/l06105060.png ; $f ( [ a , b ] )$ ; confidence 0.816 |
| − | 235. https://www.encyclopediaofmath.org/legacyimages/ | + | 235. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130090/w130090110.png ; $\frac { 1 } { \sqrt { n _ { 1 } ! n _ { 2 } ! \ldots } }$ ; confidence 0.816 |
| − | 236. https://www.encyclopediaofmath.org/legacyimages/ | + | 236. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130130/t13013050.png ; $( T , ) : \operatorname { mod } \Lambda \rightarrow$ ; confidence 0.816 |
| − | 237. https://www.encyclopediaofmath.org/legacyimages/ | + | 237. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120120/m12012059.png ; $R C$ ; confidence 0.816 |
| − | 238. https://www.encyclopediaofmath.org/legacyimages/s/ | + | 238. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130530/s13053093.png ; $( r - r _ { P } - 1 )$ ; confidence 0.816 |
| − | 239. https://www.encyclopediaofmath.org/legacyimages/ | + | 239. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025830/c02583040.png ; $T ^ { x } \rightarrow 0$ ; confidence 0.816 |
| − | 240. https://www.encyclopediaofmath.org/legacyimages/ | + | 240. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120150/a12015043.png ; $\operatorname { Ad } ( G ) X = \{ \operatorname { Ad } ( g ) X : g \in G \}$ ; confidence 0.816 |
| − | 241. https://www.encyclopediaofmath.org/legacyimages/ | + | 241. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120100/b12010049.png ; $U ( t ) = e ^ { A } S ( - t ) e ^ { - A }$ ; confidence 0.816 |
| − | 242. https://www.encyclopediaofmath.org/legacyimages/ | + | 242. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120130/a12013042.png ; $( h _ { \theta } ^ { * } - \frac { I } { 2 } ) V + V ( h _ { \theta } ^ { * } - \frac { I } { 2 } ) ^ { T } = R ( \theta ^ { * } )$ ; confidence 0.816 |
| − | 243. https://www.encyclopediaofmath.org/legacyimages/ | + | 243. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120100/b1201005.png ; $\nu > 1$ ; confidence 0.815 |
| − | 244. https://www.encyclopediaofmath.org/legacyimages/ | + | 244. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120170/c120170149.png ; $Z = \alpha 1 + \beta Z$ ; confidence 0.815 |
| − | 245. https://www.encyclopediaofmath.org/legacyimages/ | + | 245. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130060/l13006068.png ; $N _ { 2 } ^ { * } = \operatorname { min } _ { i } \{ m _ { i } + p _ { i } \}$ ; confidence 0.815 |
| − | 246. https://www.encyclopediaofmath.org/legacyimages/ | + | 246. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040754.png ; $_ { R } , \mathfrak { M } ( r ) = \operatorname { mng } _ { P \cup R } , \mathfrak { M } ( \varphi _ { r } )$ ; confidence 0.815 |
| − | 247. https://www.encyclopediaofmath.org/legacyimages/ | + | 247. https://www.encyclopediaofmath.org/legacyimages/g/g110/g110160/g11016028.png ; $M _ { 24 }$ ; confidence 0.815 |
| − | 248. https://www.encyclopediaofmath.org/legacyimages/ | + | 248. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k0558405.png ; $[ x , y ] = [ y , x ]$ ; confidence 0.815 |
| − | 249. https://www.encyclopediaofmath.org/legacyimages/ | + | 249. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011300/a01130059.png ; $S ^ { n }$ ; confidence 0.815 |
| − | 250. https://www.encyclopediaofmath.org/legacyimages/ | + | 250. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840352.png ; $\operatorname { Im } \sigma ( Z ) \geq 0$ ; confidence 0.815 |
| − | 251. https://www.encyclopediaofmath.org/legacyimages/ | + | 251. https://www.encyclopediaofmath.org/legacyimages/d/d110/d110220/d1102202.png ; $L y \equiv y ^ { ( n ) } + p _ { 1 } ( x ) y ^ { ( n - 1 ) } + \ldots + p _ { n } ( x ) y = 0$ ; confidence 0.815 |
| − | 252. https://www.encyclopediaofmath.org/legacyimages/ | + | 252. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130270/a13027050.png ; $g \in Y$ ; confidence 0.815 |
| − | 253. https://www.encyclopediaofmath.org/legacyimages/ | + | 253. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011930/a01193049.png ; $G / H$ ; confidence 0.815 |
| − | 254. https://www.encyclopediaofmath.org/legacyimages/ | + | 254. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120250/a12025089.png ; $K$ ; confidence 0.815 |
| − | 255. https://www.encyclopediaofmath.org/legacyimages/ | + | 255. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130190/f13019037.png ; $- j ^ { 2 } a$ ; confidence 0.815 |
| − | 256. https://www.encyclopediaofmath.org/legacyimages/ | + | 256. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130020/h13002072.png ; $F ( S ^ { d } ) ^ { q }$ ; confidence 0.815 |
| − | 257. https://www.encyclopediaofmath.org/legacyimages/ | + | 257. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010550/a01055066.png ; $B _ { G }$ ; confidence 0.815 |
| − | 258. https://www.encyclopediaofmath.org/legacyimages/ | + | 258. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120220/a12022038.png ; $S , T \in L ( X )$ ; confidence 0.814 |
| − | 259. https://www.encyclopediaofmath.org/legacyimages/ | + | 259. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130010/g13001092.png ; $GF ( 2 ^ { 593 } )$ ; confidence 0.814 |
| − | 260. https://www.encyclopediaofmath.org/legacyimages/t/t120/ | + | 260. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t12020060.png ; $\operatorname { inf } _ { z _ { j } } \operatorname { max } _ { k = 1 , \ldots , 2 n - 1 } \frac { | s _ { k } | } { M _ { 2 } ( k ) } = 1$ ; confidence 0.814 |
| − | 261. https://www.encyclopediaofmath.org/legacyimages/ | + | 261. https://www.encyclopediaofmath.org/legacyimages/m/m062/m062220/m06222054.png ; $P _ { 0 } ^ { x + 1 }$ ; confidence 0.814 |
| − | 262. https://www.encyclopediaofmath.org/legacyimages/ | + | 262. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011450/a011450177.png ; $X ( C )$ ; confidence 0.814 |
| − | 263. https://www.encyclopediaofmath.org/legacyimages/ | + | 263. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130150/c13015030.png ; $O ( \varepsilon ^ { q - N } )$ ; confidence 0.814 |
| − | 264. https://www.encyclopediaofmath.org/legacyimages/ | + | 264. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055020/k05502018.png ; $T ^ { t } \xi$ ; confidence 0.814 |
| − | 265. https://www.encyclopediaofmath.org/legacyimages/ | + | 265. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120050/a12005014.png ; $t \in [ 0 , T ]$ ; confidence 0.814 |
| − | 266. https://www.encyclopediaofmath.org/legacyimages/t/t120/ | + | 266. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t12020054.png ; $| z _ { 1 } | \geq \ldots \geq | z _ { N } |$ ; confidence 0.814 |
| − | 267. https://www.encyclopediaofmath.org/legacyimages/ | + | 267. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110370/a11037017.png ; $X _ { 2 }$ ; confidence 0.814 |
| − | 268. https://www.encyclopediaofmath.org/legacyimages/ | + | 268. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010600/a01060011.png ; $C ^ { 2 }$ ; confidence 0.814 |
| − | 269. https://www.encyclopediaofmath.org/legacyimages/t/ | + | 269. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130140/t13014060.png ; $M _ { v _ { i } \times v _ { j } } ( K ) _ { \beta } = M _ { v _ { i } \times v _ { j } } ( K )$ ; confidence 0.814 |
| − | 270. https://www.encyclopediaofmath.org/legacyimages/ | + | 270. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840243.png ; $99$ ; confidence 0.814 |
| − | 271. https://www.encyclopediaofmath.org/legacyimages/ | + | 271. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120010/w1200104.png ; $c ^ { * } = C \backslash \{ 0 , \infty \}$ ; confidence 0.814 |
| − | 272. https://www.encyclopediaofmath.org/legacyimages/ | + | 272. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130050/i13005023.png ; $\left( \begin{array} { c c } { t ( k ) } & { r _ { - } ( k ) } \\ { r _ { + } ( k ) } & { t ( k ) } \end{array} \right) = S ( k )$ ; confidence 0.814 |
| − | 273. https://www.encyclopediaofmath.org/legacyimages/ | + | 273. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130010/k1300103.png ; $( L )$ ; confidence 0.814 |
| − | 274. https://www.encyclopediaofmath.org/legacyimages/ | + | 274. https://www.encyclopediaofmath.org/legacyimages/n/n130/n130030/n13003073.png ; $- h \Delta$ ; confidence 0.814 |
| − | 275. https://www.encyclopediaofmath.org/legacyimages/ | + | 275. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120190/l12019024.png ; $\sum _ { i = 1 } ^ { m } ( \sum _ { j = 1 } ^ { m } a _ { i j } x _ { j } ) \frac { \partial _ { v } } { \partial x _ { i } } = U$ ; confidence 0.813 |
| − | 276. https://www.encyclopediaofmath.org/legacyimages/ | + | 276. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120070/e12007019.png ; $v ( M ) | = 1$ ; confidence 0.813 |
| − | 277. https://www.encyclopediaofmath.org/legacyimages/v/ | + | 277. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130050/v13005053.png ; $D v$ ; confidence 0.813 |
| − | 278. https://www.encyclopediaofmath.org/legacyimages/ | + | 278. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120020/d120020176.png ; $( MP )$ ; confidence 0.813 |
| − | 279. https://www.encyclopediaofmath.org/legacyimages/ | + | 279. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130020/j13002042.png ; $p = o ( n ^ { - 1 / 2 } )$ ; confidence 0.813 |
| − | 280. https://www.encyclopediaofmath.org/legacyimages/ | + | 280. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130040/g13004035.png ; $4 ^ { - k }$ ; confidence 0.813 |
| − | 281. https://www.encyclopediaofmath.org/legacyimages/ | + | 281. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180403.png ; $S ( g ) = 0 \in C ^ { \infty } ( \hat { M } )$ ; confidence 0.813 |
| − | 282. https://www.encyclopediaofmath.org/legacyimages/ | + | 282. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120090/f12009069.png ; $F \mu$ ; confidence 0.813 |
| − | 283. https://www.encyclopediaofmath.org/legacyimages/ | + | 283. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520147.png ; $A \in M _ { n \times n } ( K )$ ; confidence 0.813 |
| − | 284. https://www.encyclopediaofmath.org/legacyimages/ | + | 284. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120170/s12017053.png ; $x _ { i } y$ ; confidence 0.813 |
| − | 285. https://www.encyclopediaofmath.org/legacyimages/ | + | 285. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011990/a0119907.png ; $< x$ ; confidence 0.813 |
| − | 286. https://www.encyclopediaofmath.org/legacyimages/ | + | 286. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110660/b11066058.png ; $| x ^ { \prime } - x | \leq | x - y | / 2$ ; confidence 0.813 |
| − | 287. https://www.encyclopediaofmath.org/legacyimages/ | + | 287. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130160/c130160170.png ; $2 ^ { - n ^ { k } }$ ; confidence 0.813 |
| − | 288. https://www.encyclopediaofmath.org/legacyimages/ | + | 288. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120180/s12018066.png ; $\langle x , x \rangle > 0$ ; confidence 0.813 |
| − | 289. https://www.encyclopediaofmath.org/legacyimages/ | + | 289. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120280/a120280122.png ; $M ^ { U } ( E ) = \{ x \in X : \operatorname { sp } _ { U } ( x ) \subseteq E \}$ ; confidence 0.813 |
| − | 290. https://www.encyclopediaofmath.org/legacyimages/ | + | 290. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030270/d03027014.png ; $p = [ cn ]$ ; confidence 0.813 |
| − | 291. https://www.encyclopediaofmath.org/legacyimages/ | + | 291. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120050/a12005098.png ; $A ( . )$ ; confidence 0.813 |
| − | 292. https://www.encyclopediaofmath.org/legacyimages/ | + | 292. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120130/d12013016.png ; $\{ c _ { x } , j \}$ ; confidence 0.813 |
| − | 293. https://www.encyclopediaofmath.org/legacyimages/ | + | 293. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120070/c12007065.png ; $Z ( C ) = Z$ ; confidence 0.813 |
| − | 294. https://www.encyclopediaofmath.org/legacyimages/ | + | 294. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120530/b12053020.png ; $( f _ { n } ) _ { n = 1 } ^ { \infty } \subset L _ { + }$ ; confidence 0.813 |
| − | 295. https://www.encyclopediaofmath.org/legacyimages/ | + | 295. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030250/d0302504.png ; $x \in [ a , b ]$ ; confidence 0.813 |
| − | 296. https://www.encyclopediaofmath.org/legacyimages/ | + | 296. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120100/l12010057.png ; $L _ { \gamma , \gamma } ^ { 1 }$ ; confidence 0.813 |
| − | 297. https://www.encyclopediaofmath.org/legacyimages/ | + | 297. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120140/t12014091.png ; $\frac { \phi } { | \phi | } = \operatorname { exp } ( \xi + \tilde { \eta } + c )$ ; confidence 0.812 |
| − | 298. https://www.encyclopediaofmath.org/legacyimages/ | + | 298. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120120/d12012060.png ; $\phi _ { k } = d ( a _ { k } )$ ; confidence 0.812 |
| − | 299. https://www.encyclopediaofmath.org/legacyimages/ | + | 299. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120210/c12021032.png ; $\{ P _ { N } \}$ ; confidence 0.812 |
| − | 300. https://www.encyclopediaofmath.org/legacyimages/ | + | 300. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130080/c13008028.png ; $P _ { A } = \{ \mathfrak { p } : F _ { L } / K ( \mathfrak { p } ) = A \}$ ; confidence 0.812 |
Revision as of 00:10, 13 February 2020
List
1.
; $i + 1$ ; confidence 0.829
2.
; $w _ { 1 } , \dots , w _ { k }$ ; confidence 0.829
3.
; $x _ { 0 } < \ldots < x _ { k }$ ; confidence 0.829
4.
; $C _ { 1 }$ ; confidence 0.829
5.
; $\alpha = \Pi ( l ) = 2 \operatorname { arctan } e ^ { - l / R }$ ; confidence 0.829
6.
; $M _ { 5 } ( R ^ { n } ) = \{$ ; confidence 0.829
7.
; $\epsilon = \operatorname { ord } _ { T } ( d x / d \tau )$ ; confidence 0.829
8.
; $\int _ { R ^ { N } } | g ( y ) | ^ { 2 } d y = \int _ { Y ^ { \prime } } \sum _ { m = 1 } ^ { \infty } | g _ { m } ( \eta ) | ^ { 2 } d \eta$ ; confidence 0.829
9.
; $\pi 2 ( K )$ ; confidence 0.829
10.
; $\sum _ { j \geq 1 } \int _ { R ^ { n } } | \nabla f _ { j } ( x ) | ^ { 2 } d x \geq K _ { n } \int _ { R ^ { n } } \rho ( x ) ^ { 1 + 2 / n } d x$ ; confidence 0.829
11.
; $= \{ ( m , b ) \in M ( A ) \oplus B : \pi ( m ) = \tau ( b ) \}$ ; confidence 0.828
12.
; $F _ { \infty } \in \operatorname { Gal } ( C / R$ ; confidence 0.828
13.
; $m ^ { \prime }$ ; confidence 0.828
14.
; $p ^ { ( i ) }$ ; confidence 0.828
15.
; $p : \mathfrak { b } \rightarrow C$ ; confidence 0.828
16.
; $E _ { \theta } ( N ) = \sum _ { n = 1 } ^ { \infty } n P _ { \theta } ( N = n ) = \sum _ { n = 0 } ^ { \infty } P _ { \theta } ( N > n )$ ; confidence 0.828
17.
; $K _ { 2 }$ ; confidence 0.828
18.
; $x ^ { x } > y$ ; confidence 0.828
19.
; $\operatorname { dist } _ { L } \infty ( u , H ^ { \infty } ) < 1$ ; confidence 0.828
20.
; $( y _ { 1 } , \dots , y _ { s } )$ ; confidence 0.828
21.
; $\pi _ { k } ( S )$ ; confidence 0.828
22.
; $\operatorname { St } _ { G } ( u ) = \{ g \in G : u ^ { g } = u \}$ ; confidence 0.828
23.
; $\sum _ { i = 1 } ^ { r } A _ { i } = J$ ; confidence 0.828
24.
; $f ( z ) = \sum _ { x = 0 } ^ { \infty } a _ { x } z ^ { x }$ ; confidence 0.828
25.
; $Z ( \alpha ) = 1 _ { Z }$ ; confidence 0.828
26.
; $e > 0$ ; confidence 0.828
27.
; $a , b \leq d , e$ ; confidence 0.828
28.
; $N ^ { r + 1 } = 0$ ; confidence 0.828
29.
; $QS ( T , C )$ ; confidence 0.828
30.
; $P \{ \operatorname { sup } _ { t } w ( t ) < z \}$ ; confidence 0.828
31.
; $p ^ { ( p ^ { m } - 1 ) / 2 }$ ; confidence 0.828
32.
; $W ( g )$ ; confidence 0.828
33.
; $j ^ { r } ( f )$ ; confidence 0.827
34.
; $x \circ y : = ( x | 1 ) y + ( y | 1 ) x - ( x | \sigma ( y ) ) 1$ ; confidence 0.827
35.
; $\Lambda _ { n } ( \theta ) = \operatorname { log } ( d P _ { n , \theta _ { n } } / P _ { n , \theta } )$ ; confidence 0.827
36.
; $k + i + m = n$ ; confidence 0.827
37.
; $| \zeta ( 1 / 2 + i t ) |$ ; confidence 0.827
38.
; $\Phi : O G \rightarrow A C$ ; confidence 0.827
39.
; $N = A ^ { \gamma } | s$ ; confidence 0.827
40.
; $V _ { L } ( t )$ ; confidence 0.827
41.
; $Y = \sum _ { j } Y _ { j } / n$ ; confidence 0.827
42.
; $X _ { n } \subset X _ { n } + 1$ ; confidence 0.827
43.
; $( p \supset ( q \supset r ) ) \supset ( ( p \supset q ) \supset ( p \supset r ) )$ ; confidence 0.827
44.
; $\frac { - x f ^ { \prime } ( x ) } { f ( x ) } / \infty , \quad x \rightarrow \infty$ ; confidence 0.827
45.
; $\sum _ { n = 1 } ^ { \infty } \varphi ( q _ { n } ) f ( q _ { n } )$ ; confidence 0.827
46.
; $c ^ { T } x \in \hat { G }$ ; confidence 0.827
47.
; $\operatorname { lim } _ { n \rightarrow \infty } \frac { n ^ { 1 / 4 } } { ( \operatorname { log } n ) ^ { 1 / 2 } } \frac { \| \alpha _ { n } + \beta _ { n } \| } { \| \alpha _ { n } \| ^ { 1 / 2 } } = 1$ ; confidence 0.827
48.
; $Y = ( Y _ { 1 } , \dots , Y _ { s } )$ ; confidence 0.827
49.
; $\overline { \theta } _ { n } = \overline { \theta } _ { n - 1 } + \frac { 1 } { n } ( \theta _ { n - 1 } - \overline { \theta } _ { n - 1 } )$ ; confidence 0.827
50.
; $A \in A$ ; confidence 0.826
51.
; $A ( G _ { 2 } )$ ; confidence 0.826
52.
; $62$ ; confidence 0.826
53.
; $\{ ( R _ { i } , S _ { i } ) \} _ { i = 1 } ^ { n }$ ; confidence 0.826
54.
; $= \int _ { a } ^ { b } [ \frac { \partial L } { \partial y } ( \sigma ^ { 1 } ( x ) ) z ( x ) + \frac { \partial L } { \partial y ^ { \prime } } ( \sigma ^ { 1 } ( x ) ) z ^ { \prime } ( x ) ] d x =$ ; confidence 0.826
55.
; $\frac { J - W _ { \Theta } ( z ) J W _ { \Theta } ( w ) ^ { * } } { z - \overline { w } } = 2 i K ^ { * } ( T - z I ) ^ { - 1 } ( T ^ { * } - \overline { w } l ) ^ { - 1 } K$ ; confidence 0.826
56.
; $p _ { 0 } = \| P _ { 0 } \psi \| ^ { 2 }$ ; confidence 0.826
57.
; $o ( \# A )$ ; confidence 0.826
58.
; $0 \leq s _ { 1 } + \ldots + s _ { n } \leq N$ ; confidence 0.826
59.
; $( \varphi \rightarrow \varphi \left( \begin{array} { c } { x } \\ { \varepsilon x \varphi } \end{array} \right) ) = 1$ ; confidence 0.826
60.
; $x _ { j } = \operatorname { cos } ( \pi j / N )$ ; confidence 0.826
61.
; $n ^ { \Omega ( \sqrt { k } ) }$ ; confidence 0.826
62.
; $\varphi _ { i } : U _ { i } \subset R ^ { m } \rightarrow M$ ; confidence 0.826
63.
; $C _ { 1 } \operatorname { ln } ^ { n } N \leq \| S _ { N B } \| \leq C _ { 2 } \operatorname { ln } ^ { n } N$ ; confidence 0.826
64.
; $t \in Z / p Z$ ; confidence 0.826
65.
; $H + \lambda ( K _ { X } + B )$ ; confidence 0.826
66.
; $C ( T )$ ; confidence 0.825
67.
; $b : U \times V \rightarrow R$ ; confidence 0.825
68.
; $\left\| \begin{array} { l l } { 1 } & { 0 } \\ { 0 } & { 1 } \end{array} \right\| \mapsto \left\| \begin{array} { l l } { 1 } & { 0 } \\ { 0 } & { 1 } \end{array} \right\|$ ; confidence 0.825
69.
; $L _ { \infty } ( R )$ ; confidence 0.825
70.
; $K = z$ ; confidence 0.825
71.
; $H * ( X , Q )$ ; confidence 0.825
72.
; $\hat { f } ( \xi ) = \frac { 1 } { ( 2 \pi ) ^ { 3 / 2 } } \int _ { D ^ { \prime } } f ( x ) \overline { u ( x , \xi ) } d x : = F f$ ; confidence 0.825
73.
; $S ^ { r - 1 } \subset R ^ { r }$ ; confidence 0.825
74.
; $E ( \alpha , \beta ) = \partial _ { x } \partial _ { y } - \frac { \beta } { x - y } \partial _ { x } + \frac { \alpha } { x - y } \partial y$ ; confidence 0.825
75.
; $C _ { \epsilon } > 0$ ; confidence 0.825
76.
; $R = R _ { c }$ ; confidence 0.825
77.
; $\| \varphi \| = \operatorname { inf } \| \xi \| \| \eta \|$ ; confidence 0.825
78.
; $w = \phi _ { 0 }$ ; confidence 0.824
79.
; $[ E : K ]$ ; confidence 0.824
80.
; $f = G d \circ e$ ; confidence 0.824
81.
; $Q = \| q _ { p s , i } \|$ ; confidence 0.824
82.
; $m : \Sigma \rightarrow X$ ; confidence 0.824
83.
; $D ^ { n } = R ^ { n } \cup S _ { \infty } ^ { n - 1 }$ ; confidence 0.824
84.
; $T : P ^ { m } \backslash X \rightarrow P ^ { n }$ ; confidence 0.824
85.
; $\operatorname { lim } _ { k \rightarrow \infty } \frac { S ( T ^ { k } , a f ( \epsilon ) ^ { k } ) } { k } = 2 H _ { \epsilon } ^ { \prime } ( \xi )$ ; confidence 0.824
86.
; $\sigma : R ^ { 2 n } \rightarrow C$ ; confidence 0.824
87.
; $\overline { \Sigma } \square ^ { i } ( f )$ ; confidence 0.824
88.
; $F _ { \theta }$ ; confidence 0.824
89.
; $f \rightarrow$ ; confidence 0.824
90.
; $\operatorname { ln } \rho$ ; confidence 0.824
91.
; $( x ^ { * } , y ^ { * } , p ^ { * } )$ ; confidence 0.824
92.
; $[ d f , d g ] _ { P } = d \{ f , g \} _ { P }$ ; confidence 0.824
93.
; $x , y \in R ^ { l + 1 }$ ; confidence 0.823
94.
; $T ( z ) = \{ T k _ { z } , k _ { z } \}$ ; confidence 0.823
95.
; $\{ u _ { j } \}$ ; confidence 0.823
96.
; $\hbar ( x )$ ; confidence 0.823
97.
; $Q _ { p }$ ; confidence 0.823
98.
; $n \rightarrow \infty$ ; confidence 0.823
99.
; $k _ { z } ( w )$ ; confidence 0.823
100.
; $X ^ { \prime }$ ; confidence 0.823
101.
; $H _ { 2 } ( M ; Z )$ ; confidence 0.823
102.
; $C M _ { n } = C _ { 0 } ( 10,1 ] ) \otimes M _ { n }$ ; confidence 0.823
103.
; $( v , k , \lambda , n ) = ( \frac { q ^ { d + 1 } - 1 } { q - 1 } , \frac { q ^ { d } - 1 } { q - 1 } , \frac { q ^ { d - 1 } - 1 } { q - 1 } , q ^ { d - 1 } )$ ; confidence 0.823
104.
; $M : = \{ \theta : \theta \in C ^ { 3 } , \theta . \theta = k ^ { 2 } 0 \}$ ; confidence 0.823
105.
; $y \leq z$ ; confidence 0.823
106.
; $p _ { k }$ ; confidence 0.823
107.
; $D = \frac { E h ^ { 3 } } { 12 ( 1 - \nu ^ { 2 } ) }$ ; confidence 0.823
108.
; $13$ ; confidence 0.823
109.
; $p ( T ) x = 0$ ; confidence 0.823
110.
; $C = \operatorname { Fun } _ { q } ( C )$ ; confidence 0.823
111.
; $Y _ { j } = - \sqrt { 3 } \lambda _ { j } ( j = 1,2,3 ) , Y _ { 4 } = \sqrt { 3 } \lambda _ { 8 }$ ; confidence 0.822
112.
; $G _ { \alpha } ^ { - 1 } = G _ { - \alpha }$ ; confidence 0.822
113.
; $e _ { i } , f _ { i } , h _ { i j }$ ; confidence 0.822
114.
; $Z ^ { * } Z \leq B _ { 0 }$ ; confidence 0.822
115.
; $T _ { 0 } , T _ { 1 } \in \operatorname { add } T$ ; confidence 0.822
116.
; $A _ { 1 } ^ { ( 1 ) }$ ; confidence 0.822
117.
; $X ^ { * } = \Gamma \backslash D ^ { * }$ ; confidence 0.822
118.
; $x \preceq y \preceq z \Rightarrow y \in H$ ; confidence 0.822
119.
; $f ( p ) = L g : = \int _ { T } g ( t ) \overline { h ( t , p ) } d m ( t )$ ; confidence 0.822
120.
; $t = ( t _ { 1 } , \dots , t _ { k } )$ ; confidence 0.822
121.
; $T = \sum _ { t } t ( t - 1 ) / 2$ ; confidence 0.822
122.
; $\frac { 1 } { n } \sum _ { i = 1 } ^ { n } \rho ( \frac { n } { s } ) = K$ ; confidence 0.822
123.
; $f ^ { \prime } ( x _ { m } ) = m$ ; confidence 0.822
124.
; $\neq M \subseteq X$ ; confidence 0.822
125.
; $2 \kappa \Delta c - f _ { 0 } ^ { \prime } ( c ) = \lambda \text { in } V$ ; confidence 0.821
126.
; $M _ { 2 } ( R ^ { n } )$ ; confidence 0.821
127.
; $H * \Omega X$ ; confidence 0.821
128.
; $V ^ { * } = \operatorname { Hom } ( V , R )$ ; confidence 0.821
129.
; $| l | = m ( l )$ ; confidence 0.821
130.
; $F ( 2,6 ) = \pi _ { 1 } ( M _ { 3 } )$ ; confidence 0.821
131.
; $S = Q ^ { * } G$ ; confidence 0.821
132.
; $( \overline { \partial } + \mu \partial + D \psi = 0$ ; confidence 0.821
133.
; $SL ( n , C )$ ; confidence 0.821
134.
; $O _ { K , p }$ ; confidence 0.821
135.
; $x ^ { - } = x \wedge e$ ; confidence 0.821
136.
; $S : V ^ { \prime } \rightarrow U$ ; confidence 0.821
137.
; $O _ { 2 }$ ; confidence 0.821
138.
; $x _ { i } = \left\{ \begin{array} { l l } { 1 } & { \text { if } a _ { i } \leq c - \sum _ { j = 1 } ^ { i - 1 } a _ { j } x _ { j } } \\ { 0 } & { \text { otherwise } } \end{array} \right.$ ; confidence 0.821
139.
; $f \in L ^ { \infty } ( T )$ ; confidence 0.821
140.
; $r ( A \cup B ) + r ( A \cap B ) \leq r ( A ) + r ( B )$ ; confidence 0.820
141.
; $\operatorname { lim } _ { n \rightarrow \infty } ( ( 1 - Q ) ( I - P ) ) ^ { n } f = ( I - P _ { U + V } ) f$ ; confidence 0.820
142.
; $m = k - 1$ ; confidence 0.820
143.
; $y _ { i } = f ( x _ { i } )$ ; confidence 0.820
144.
; $C$ ; confidence 0.820
145.
; $f \in C ( C ^ { n } )$ ; confidence 0.820
146.
; $\xi \in C ^ { k }$ ; confidence 0.820
147.
; $S _ { \Gamma } ^ { \prime } ( R ^ { n } )$ ; confidence 0.820
148.
; $A _ { N } ( F f \circ s \circ f ^ { - 1 } ) = ( G f ) \circ A _ { M } ( s ) \circ f ^ { - 1 }$ ; confidence 0.820
149.
; $k [ g ]$ ; confidence 0.820
150.
; $| \Delta P ( i \omega ) | < | R ( i \omega ) | , \quad \text { a.a. } \omega$ ; confidence 0.820
151.
; $\Omega = R ^ { m }$ ; confidence 0.820
152.
; $a _ { 0 } ( 1 - x _ { 0 } f ) + a _ { 1 } f _ { 1 } + \ldots + a _ { m } f _ { m } = 1$ ; confidence 0.820
153.
; $Ch : K _ { 0 } ( A ) \rightarrow HC _ { 2 n } ( A )$ ; confidence 0.820
154.
; $\operatorname { Der } ( \mathfrak { g } )$ ; confidence 0.820
155.
; $Z \in X$ ; confidence 0.820
156.
; $\Sigma ^ { i , j } ( f ) = \Sigma ^ { j } ( f | _ { \Sigma ^ { i } ( f ) } )$ ; confidence 0.820
157.
; $b$ ; confidence 0.820
158.
; $p _ { \pi }$ ; confidence 0.820
159.
; $z ^ { - ( 1 + q ) }$ ; confidence 0.820
160.
; $s _ { 1 } \geq \ldots \geq s _ { m } \geq 0$ ; confidence 0.820
161.
; $H _ { f } ^ { U }$ ; confidence 0.820
162.
; $1 / 2 tr$ ; confidence 0.820
163.
; $V _ { Y }$ ; confidence 0.820
164.
; $( \operatorname { cos } \alpha ) y ( 0 ) + ( \operatorname { sin } \alpha ) y ^ { \prime } ( 0 ) = 0$ ; confidence 0.820
165.
; $\{ A _ { j n } \}$ ; confidence 0.820
166.
; $i \in Z$ ; confidence 0.819
167.
; $F ( u ) = \int _ { R } ( u ^ { 2 } + \frac { 1 } { 3 } u ^ { 3 } ) d x$ ; confidence 0.819
168.
; $C ^ { * } ( S ) \otimes _ { \delta } C _ { 0 } ( S )$ ; confidence 0.819
169.
; $u \in D ( S ^ { 2 } )$ ; confidence 0.819
170.
; $\varepsilon \left( \begin{array} { l l } { \alpha } & { \beta } \\ { \gamma } & { \delta } \end{array} \right) = \left( \begin{array} { l l } { 1 } & { 0 } \\ { 0 } & { 1 } \end{array} \right)$ ; confidence 0.819
171.
; $p , v \in X$ ; confidence 0.819
172.
; $X \mapsto \operatorname { dim } X = ( \operatorname { dim } _ { K } X _ { j } ) _ { j \in Q _ { 0 } }$ ; confidence 0.819
173.
; $F ( \tau ) = \frac { 2 \pi \operatorname { sinh } \pi \tau } { \pi ^ { 2 } | I _ { i \alpha } ( \alpha ) | ^ { 2 } } \times$ ; confidence 0.819
174.
; $k ^ { \prime }$ ; confidence 0.819
175.
; $\phi ( t _ { 0 } ) = x ( t _ { 0 } )$ ; confidence 0.819
176.
; $\{ \hat { \phi } ( j + k ) \} j , k \geq 0$ ; confidence 0.819
177.
; $G _ { 0 } ^ { s } ( \Omega ) = G ^ { s } ( \Omega ) \cap C _ { 0 } ^ { \infty } ( \Omega )$ ; confidence 0.819
178.
; $B \subset A$ ; confidence 0.819
179.
; $Q ( x ) e ^ { i \xi x }$ ; confidence 0.819
180.
; $X \equiv ( x _ { 1 } , \dots , x _ { n } )$ ; confidence 0.819
181.
; $R = \int _ { 0 } ^ { + \infty } \beta ( \alpha ) \Pi ( \alpha ) d \alpha$ ; confidence 0.819
182.
; $0 \neq \phi \in E ( \lambda , D _ { Y } ) \text { with } \pi ^ { * } \phi \in E ( \mu , D _ { Z } )$ ; confidence 0.819
183.
; $\{ \alpha , i \} _ { i = 1 } ^ { n }$ ; confidence 0.819
184.
; $g = g ^ { \prime }$ ; confidence 0.819
185.
; $x \notin D ( A )$ ; confidence 0.819
186.
; $b = b ^ { x }$ ; confidence 0.818
187.
; $\partial _ { t } f + v . \nabla _ { x } f = \frac { Q ( f ) } { \varepsilon }$ ; confidence 0.818
188.
; $\tilde { \Sigma } = \Sigma \backslash \cup _ { i = 1,2,3 } U _ { i }$ ; confidence 0.818
189.
; $N _ { A } ( x )$ ; confidence 0.818
190.
; $A \subseteq S$ ; confidence 0.818
191.
; $| \mu _ { N } ( E ) | < \varepsilon$ ; confidence 0.818
192.
; $G : H ] < \infty$ ; confidence 0.818
193.
; $2 d$ ; confidence 0.818
194.
; $\xi _ { 1 } ^ { 2 } + \ldots + \xi _ { k - m - 1 } ^ { 2 } + \mu _ { 1 } \xi _ { k - m } ^ { 2 } + \ldots + \mu _ { m } \xi _ { k - 1 } ^ { 2 }$ ; confidence 0.818
195.
; $\sigma ( u ) = \gamma ( u _ { 1 } ) \oplus \ldots \oplus \gamma ( u _ { m } )$ ; confidence 0.818
196.
; $d ( x , y ) = \sqrt { 1 + x ^ { 2 } } \sqrt { 1 + y ^ { 2 } } - x y$ ; confidence 0.818
197.
; $\sum _ { k = 1 } ^ { \infty } x _ { n } _ { k }$ ; confidence 0.818
198.
; $f ( x ) = \frac { 1 } { ( \pi x ) ^ { 2 } } \int _ { 0 } ^ { \infty } \tau \operatorname { sinh } ( 2 \pi \tau ) \times x | \Gamma ( \frac { 1 } { 2 } - \mu - i \tau ) | ^ { 2 } W _ { \mu , i \tau } ( x ) F ( \tau ) d$ ; confidence 0.818
199.
; $R$ ; confidence 0.818
200.
; $\{ H _ { n } \} _ { n = 1 } ^ { \infty }$ ; confidence 0.818
201.
; $W _ { P } ( \rho ) / W _ { P } ( \operatorname { det } _ { \rho } )$ ; confidence 0.818
202.
; $A ( \Gamma \backslash G ( R ) ) \subset C _ { 0 } ( \Gamma \backslash G ( R ) )$ ; confidence 0.818
203.
; $f \in BMOA = BMO \cap H ^ { 2 }$ ; confidence 0.817
204.
; $\Delta x = x _ { i } + 1 / 2 - x _ { i } - 1 / 2$ ; confidence 0.817
205.
; $B ( x , y ) = \sum _ { j = 1 } ^ { \infty } \lambda _ { j } \overline { \varphi _ { j } ( x ) } \varphi _ { j } ( y )$ ; confidence 0.817
206.
; $83$ ; confidence 0.817
207.
; $f ( \lambda ) = ( 2 \pi ) ^ { - 1 } k ( e ^ { - i \lambda } ) \Sigma k ^ { * } ( e ^ { - i \lambda } )$ ; confidence 0.817
208.
; $( X , X * )$ ; confidence 0.817
209.
; $\operatorname { Ker } ( \mu )$ ; confidence 0.817
210.
; $Y _ { t } = B _ { t } - \operatorname { min } _ { 0 \leq s \leq t } B _ { s } \wedge 0$ ; confidence 0.817
211.
; $N ( A )$ ; confidence 0.817
212.
; $\operatorname { lim } _ { n \rightarrow \infty } \frac { 1 } { n } \sum _ { k = 0 } ^ { n - 1 } U ^ { k } h = \hbar$ ; confidence 0.817
213.
; $L \subseteq \{ 0,1 \}$ ; confidence 0.817
214.
; $\sigma _ { ess } ( - \Delta + V ) = [ 0 , \infty )$ ; confidence 0.817
215.
; $[ 0 , \omega ]$ ; confidence 0.817
216.
; $DB _ { 1 } ^ { * }$ ; confidence 0.817
217.
; $( s _ { 1 } , \dots , s _ { k } , B _ { m } )$ ; confidence 0.817
218.
; $\sigma ( \alpha ) : = \int _ { S ^ { 2 } } | f ( \alpha , \beta , k ) | ^ { 2 } d \beta$ ; confidence 0.817
219.
; $\theta = q$ ; confidence 0.817
220.
; $( i , x )$ ; confidence 0.817
221.
; $SS _ { e } = \sum _ { i j k } ( y _ { i j k } - y _ { i j } ) ^ { 2 }$ ; confidence 0.817
222.
; $f : T \rightarrow C ^ { n }$ ; confidence 0.817
223.
; $S ( V ) ^ { G L ( V ) }$ ; confidence 0.817
224.
; $P ( \overline { B } ( t , \omega ) = B ( t , \omega ) ) = 1$ ; confidence 0.816
225.
; $F ( \omega )$ ; confidence 0.816
226.
; $G _ { n } ( f ( k , n ) ) = k$ ; confidence 0.816
227.
; $d \beta _ { j } / d t$ ; confidence 0.816
228.
; $| f \| : = \{ \| f ( x ) \| : x \in X \}$ ; confidence 0.816
229.
; $[ g ] : Y \rightarrow P$ ; confidence 0.816
230.
; $1 _ { A } ( A / \mathfrak { q } ) - e _ { \mathfrak { q } } ^ { 0 } ( A )$ ; confidence 0.816
231.
; $D _ { 1 }$ ; confidence 0.816
232.
; $\dot { X } = A ( t ) X$ ; confidence 0.816
233.
; $f ^ { * } f * O _ { X } ( m q ( H + \lambda ( K _ { X } + B ) ) ) \rightarrow$ ; confidence 0.816
234.
; $f ( [ a , b ] )$ ; confidence 0.816
235.
; $\frac { 1 } { \sqrt { n _ { 1 } ! n _ { 2 } ! \ldots } }$ ; confidence 0.816
236.
; $( T , ) : \operatorname { mod } \Lambda \rightarrow$ ; confidence 0.816
237.
; $R C$ ; confidence 0.816
238.
; $( r - r _ { P } - 1 )$ ; confidence 0.816
239.
; $T ^ { x } \rightarrow 0$ ; confidence 0.816
240.
; $\operatorname { Ad } ( G ) X = \{ \operatorname { Ad } ( g ) X : g \in G \}$ ; confidence 0.816
241.
; $U ( t ) = e ^ { A } S ( - t ) e ^ { - A }$ ; confidence 0.816
242.
; $( h _ { \theta } ^ { * } - \frac { I } { 2 } ) V + V ( h _ { \theta } ^ { * } - \frac { I } { 2 } ) ^ { T } = R ( \theta ^ { * } )$ ; confidence 0.816
243.
; $\nu > 1$ ; confidence 0.815
244.
; $Z = \alpha 1 + \beta Z$ ; confidence 0.815
245.
; $N _ { 2 } ^ { * } = \operatorname { min } _ { i } \{ m _ { i } + p _ { i } \}$ ; confidence 0.815
246.
; $_ { R } , \mathfrak { M } ( r ) = \operatorname { mng } _ { P \cup R } , \mathfrak { M } ( \varphi _ { r } )$ ; confidence 0.815
247.
; $M _ { 24 }$ ; confidence 0.815
248.
; $[ x , y ] = [ y , x ]$ ; confidence 0.815
249.
; $S ^ { n }$ ; confidence 0.815
250.
; $\operatorname { Im } \sigma ( Z ) \geq 0$ ; confidence 0.815
251.
; $L y \equiv y ^ { ( n ) } + p _ { 1 } ( x ) y ^ { ( n - 1 ) } + \ldots + p _ { n } ( x ) y = 0$ ; confidence 0.815
252.
; $g \in Y$ ; confidence 0.815
253.
; $G / H$ ; confidence 0.815
254.
; $K$ ; confidence 0.815
255.
; $- j ^ { 2 } a$ ; confidence 0.815
256.
; $F ( S ^ { d } ) ^ { q }$ ; confidence 0.815
257.
; $B _ { G }$ ; confidence 0.815
258.
; $S , T \in L ( X )$ ; confidence 0.814
259.
; $GF ( 2 ^ { 593 } )$ ; confidence 0.814
260.
; $\operatorname { inf } _ { z _ { j } } \operatorname { max } _ { k = 1 , \ldots , 2 n - 1 } \frac { | s _ { k } | } { M _ { 2 } ( k ) } = 1$ ; confidence 0.814
261.
; $P _ { 0 } ^ { x + 1 }$ ; confidence 0.814
262.
; $X ( C )$ ; confidence 0.814
263.
; $O ( \varepsilon ^ { q - N } )$ ; confidence 0.814
264.
; $T ^ { t } \xi$ ; confidence 0.814
265.
; $t \in [ 0 , T ]$ ; confidence 0.814
266.
; $| z _ { 1 } | \geq \ldots \geq | z _ { N } |$ ; confidence 0.814
267.
; $X _ { 2 }$ ; confidence 0.814
268.
; $C ^ { 2 }$ ; confidence 0.814
269.
; $M _ { v _ { i } \times v _ { j } } ( K ) _ { \beta } = M _ { v _ { i } \times v _ { j } } ( K )$ ; confidence 0.814
270.
; $99$ ; confidence 0.814
271.
; $c ^ { * } = C \backslash \{ 0 , \infty \}$ ; confidence 0.814
272.
; $\left( \begin{array} { c c } { t ( k ) } & { r _ { - } ( k ) } \\ { r _ { + } ( k ) } & { t ( k ) } \end{array} \right) = S ( k )$ ; confidence 0.814
273.
; $( L )$ ; confidence 0.814
274.
; $- h \Delta$ ; confidence 0.814
275.
; $\sum _ { i = 1 } ^ { m } ( \sum _ { j = 1 } ^ { m } a _ { i j } x _ { j } ) \frac { \partial _ { v } } { \partial x _ { i } } = U$ ; confidence 0.813
276.
; $v ( M ) | = 1$ ; confidence 0.813
277.
; $D v$ ; confidence 0.813
278.
; $( MP )$ ; confidence 0.813
279.
; $p = o ( n ^ { - 1 / 2 } )$ ; confidence 0.813
280.
; $4 ^ { - k }$ ; confidence 0.813
281.
; $S ( g ) = 0 \in C ^ { \infty } ( \hat { M } )$ ; confidence 0.813
282.
; $F \mu$ ; confidence 0.813
283.
; $A \in M _ { n \times n } ( K )$ ; confidence 0.813
284.
; $x _ { i } y$ ; confidence 0.813
285.
; $< x$ ; confidence 0.813
286.
; $| x ^ { \prime } - x | \leq | x - y | / 2$ ; confidence 0.813
287.
; $2 ^ { - n ^ { k } }$ ; confidence 0.813
288.
; $\langle x , x \rangle > 0$ ; confidence 0.813
289.
; $M ^ { U } ( E ) = \{ x \in X : \operatorname { sp } _ { U } ( x ) \subseteq E \}$ ; confidence 0.813
290.
; $p = [ cn ]$ ; confidence 0.813
291.
; $A ( . )$ ; confidence 0.813
292.
; $\{ c _ { x } , j \}$ ; confidence 0.813
293.
; $Z ( C ) = Z$ ; confidence 0.813
294.
; $( f _ { n } ) _ { n = 1 } ^ { \infty } \subset L _ { + }$ ; confidence 0.813
295.
; $x \in [ a , b ]$ ; confidence 0.813
296.
; $L _ { \gamma , \gamma } ^ { 1 }$ ; confidence 0.813
297.
; $\frac { \phi } { | \phi | } = \operatorname { exp } ( \xi + \tilde { \eta } + c )$ ; confidence 0.812
298.
; $\phi _ { k } = d ( a _ { k } )$ ; confidence 0.812
299.
; $\{ P _ { N } \}$ ; confidence 0.812
300.
; $P _ { A } = \{ \mathfrak { p } : F _ { L } / K ( \mathfrak { p } ) = A \}$ ; confidence 0.812
Maximilian Janisch/latexlist/latex/NoNroff/39. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Maximilian_Janisch/latexlist/latex/NoNroff/39&oldid=44527