Namespaces
Variants
Actions

Difference between revisions of "User:Maximilian Janisch/latexlist/latex/NoNroff/28"

From Encyclopedia of Mathematics
Jump to: navigation, search
(AUTOMATIC EDIT of page 28 out of 77 with 300 lines: Updated image/latex database (currently 22833 images latexified; order by Length, ascending: False.)
 
(AUTOMATIC EDIT of page 28 out of 77 with 300 lines: Updated image/latex database (currently 22833 images latexified; order by Confidence, ascending: False.)
Line 1: Line 1:
 
== List ==
 
== List ==
1. https://www.encyclopediaofmath.org/legacyimages/o/o120/o120060/o12006023.png ; $\| . \| _ { L _ { \Phi } } ( \Omega )$ ; confidence 0.724
+
1. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120030/h1200303.png ; $| d \varphi$ ; confidence 0.948
  
2. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120130/p12013038.png ; $S ^ { \prime \prime } = S ^ { ( 2 ) }$ ; confidence 0.446
+
2. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130040/c13004031.png ; $\sum _ { k = 1 } ^ { \infty } \frac { \zeta ( 2 k ) } { k ( 2 k + 1 ) 2 ^ { 4 k } } = \operatorname { log } ( \frac { \pi } { 2 } ) - 1 + \frac { 2 G } { \pi }$ ; confidence 0.948
  
3. https://www.encyclopediaofmath.org/legacyimages/p/p110/p110150/p11015062.png ; $\tau : G \rightarrow G \nmid H$ ; confidence 0.290
+
3. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120120/a12012063.png ; $y ^ { * } = \lambda ^ { * } x ^ { * }$ ; confidence 0.948
  
4. https://www.encyclopediaofmath.org/legacyimages/p/p110/p110150/p11015069.png ; $N = \{ x \in G : \varphi ( x ) = e \}$ ; confidence 0.982
+
4. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120040/i12004027.png ; $- 2 * \partial _ { \zeta } N ( \zeta , z )$ ; confidence 0.948
  
5. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130100/p13010078.png ; $f : \Delta \rightarrow C ^ { n }$ ; confidence 0.909
+
5. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130120/a13012049.png ; $d = 2$ ; confidence 0.948
  
6. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130130/p13013040.png ; $\zeta _ { \lambda } ^ { \prime }$ ; confidence 0.922
+
6. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130070/z13007023.png ; $x ^ { - 1 } H x \subseteq G$ ; confidence 0.948
  
7. https://www.encyclopediaofmath.org/legacyimages/p/p075/p075480/p0754805.png ; $p \supset ( q \supset ( p \& q ) )$ ; confidence 0.892
+
7. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130050/f13005019.png ; $p _ { 1 } p _ { 2 } p _ { 3 }$ ; confidence 0.948
  
8. https://www.encyclopediaofmath.org/legacyimages/p/p075/p075480/p07548027.png ; $( \alpha \supset ^ { * } b ) \in D$ ; confidence 0.799
+
8. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130060/k1300604.png ; $\left( \begin{array} { c } { [ n ] } \\ { k } \end{array} \right)$ ; confidence 0.948
  
9. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120170/p12017042.png ; $X \in ker \delta _ { A } * _ { , B } *$ ; confidence 0.222
+
9. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130050/i13005069.png ; $q ( x ) \in L _ { 1,1 } ( R )$ ; confidence 0.947
  
10. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120020/q12002029.png ; $| T _ { 1 } ^ { 1 , \ldots , k } | _ { q }$ ; confidence 0.468
+
10. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130270/a1302706.png ; $\{ X _ { n } \} \subset X$ ; confidence 0.947
  
11. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120010/q12001010.png ; $U ( g ) \varphi ; ( f ) U ( g ^ { - 1 } )$ ; confidence 0.505
+
11. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013014.png ; $\Leftrightarrow [ \frac { \partial } { \partial x } - P , \frac { \partial } { \partial t _ { n } } - Q ^ { ( n ) } ] = 0$ ; confidence 0.947
  
12. https://www.encyclopediaofmath.org/legacyimages/q/q130/q130030/q13003018.png ; $P _ { 0 } | 1 \rangle = | 0 \rangle$ ; confidence 0.717
+
12. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120060/t120060135.png ; $| i \nabla + A ( x ) | ^ { 2 } + \sigma . B ( x )$ ; confidence 0.947
  
13. https://www.encyclopediaofmath.org/legacyimages/q/q130/q130030/q13003017.png ; $P _ { 0 } | 0 \rangle = | 0 \rangle$ ; confidence 0.708
+
13. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010240/a01024029.png ; $g = 0$ ; confidence 0.947
  
14. https://www.encyclopediaofmath.org/legacyimages/q/q130/q130040/q13004042.png ; $w : G \rightarrow G ^ { \prime }$ ; confidence 0.728
+
14. https://www.encyclopediaofmath.org/legacyimages/i/i050/i050650/i050650269.png ; $M \times M$ ; confidence 0.947
  
15. https://www.encyclopediaofmath.org/legacyimages/q/q130/q130040/q1300404.png ; $f : G \rightarrow R ^ { \kappa }$ ; confidence 0.262
+
15. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120120/h12012056.png ; $Y = \operatorname { ker } ( \pi ) \oplus \operatorname { im } ( \pi )$ ; confidence 0.947
  
16. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130090/r13009021.png ; $w \in R ^ { x } \backslash \{ 0 \}$ ; confidence 0.277
+
16. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120020/j12002077.png ; $X = M ^ { 1 } - \operatorname { lim } _ { N \rightarrow \infty } \sum _ { n = - N } ^ { n = N } c _ { n } A ^ { n }$ ; confidence 0.947
  
17. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130090/r1300905.png ; $a \in R ^ { n } \backslash \{ 0 \}$ ; confidence 0.944
+
17. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120190/e120190161.png ; $[ x , y ] \backslash \{ x , y \}$ ; confidence 0.947
  
18. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130160/r13016032.png ; $C ^ { \infty } ( \Omega ) / I _ { S }$ ; confidence 0.887
+
18. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035000/e03500081.png ; $I ( \xi , \xi ^ { \prime } )$ ; confidence 0.947
  
19. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130160/r1301601.png ; $c ^ { \infty } ( \Omega ) ^ { N }$ ; confidence 0.774
+
19. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130040/r13004062.png ; $\Delta ^ { 2 } u _ { 1 } = \Lambda _ { 1 } u _ { 1 } \text { in } \Omega$ ; confidence 0.947
  
20. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130020/s13002026.png ; $G : S N \times R \rightarrow U M$ ; confidence 0.907
+
20. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130110/w13011016.png ; $K ^ { \perp }$ ; confidence 0.947
  
21. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130110/s13011029.png ; $w \in S _ { \infty } = \cup S _ { X }$ ; confidence 0.136
+
21. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120020/f12002042.png ; $P , Q \in A [ X ]$ ; confidence 0.947
  
22. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130140/s13014038.png ; $x ^ { T } = x _ { 1 } ^ { 3 } x _ { 2 } ^ { 4 }$ ; confidence 0.784
+
22. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130070/m13007014.png ; $s \in ( 1 / 2 ) Z$ ; confidence 0.947
  
23. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120040/s120040139.png ; $\chi ^ { \lambda } \chi ^ { \mu }$ ; confidence 0.988
+
23. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130080/o13008070.png ; $q _ { 1 } ( x ) = q _ { 2 } ( x )$ ; confidence 0.947
  
24. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120040/s12004025.png ; $x ^ { T } = \prod _ { i \in T } x _ { i }$ ; confidence 0.915
+
24. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013030.png ; $( \partial / \partial x ) - P _ { 0 } z$ ; confidence 0.947
  
25. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130360/s1303604.png ; $X _ { t } ^ { + } = | X _ { t } | , t \geq 0$ ; confidence 0.912
+
25. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013093.png ; $P _ { n + 1 } = \sum _ { i = 0 } ^ { n + 1 } u _ { i } ( \frac { d } { d x } ) ^ { i }$ ; confidence 0.947
  
26. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120150/s12015078.png ; $( X \backslash \Omega ) \geq 1$ ; confidence 1.000
+
26. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012090/a0120907.png ; $\alpha \neq 0$ ; confidence 0.947
  
27. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130410/s13041060.png ; $\phi ( z ) = z + \sqrt { z ^ { 2 } - 1 }$ ; confidence 1.000
+
27. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130090/f1300908.png ; $U _ { n } ( x ) = \frac { \alpha ^ { n } ( x ) - \beta ^ { n } ( x ) } { \alpha ( x ) - \beta ( x ) }$ ; confidence 0.947
  
28. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120170/s12017049.png ; $f ( d ) = 3 | \{ i : d _ { i } = 1 \} | - 2 n$ ; confidence 0.991
+
28. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840272.png ; $E ( \Delta ) K \subset D ( A )$ ; confidence 0.947
  
29. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130450/s13045015.png ; $U = \sum _ { i j } u ( u ^ { 2 } - 1 ) / 12$ ; confidence 0.165
+
29. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h12002069.png ; $\| \phi - f \| _ { L } \infty = \| H _ { \phi } \|$ ; confidence 0.947
  
30. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130470/s1304707.png ; $0 \neq \lambda \in \sigma ( T )$ ; confidence 0.996
+
30. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120510/b12051093.png ; $( n - 1 , \{ s _ { k } \} , \{ y _ { k } \} , H _ { 0 } ^ { - 1 } , d )$ ; confidence 0.947
  
31. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120230/s120230124.png ; $V = E ( x _ { 1 } x _ { 1 } ^ { \prime } )$ ; confidence 0.689
+
31. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w12011020.png ; $( J ^ { t } a ) ( x , \xi ) =$ ; confidence 0.947
  
32. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120230/s120230148.png ; $f _ { 1 } ( T ) = W ^ { ( n - k ) / 2 } f ( T )$ ; confidence 0.880
+
32. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120220/b12022074.png ; $G ( u ) = \int a ( \xi ) H ( M ( u , \xi ) , \xi ) d \xi$ ; confidence 0.947
  
33. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130510/s13051010.png ; $F ( u ) = \{ v \in V : ( u , v ) \in E \}$ ; confidence 0.877
+
33. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120110/m1201102.png ; $T ( h ) = F \times [ 0,1 ] / \{ ( x , 0 ) \sim ( h ( x ) , 1 ) : x \in F \}$ ; confidence 0.947
  
34. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120240/s12024052.png ; $z _ { i } ^ { n } \sim z _ { i + 1 } ^ { n }$ ; confidence 0.193
+
34. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120140/b1201403.png ; $\omega ( z )$ ; confidence 0.947
  
35. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130540/s13054081.png ; $b = p ^ { \alpha } r , p ^ { \beta } s$ ; confidence 0.785
+
35. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120110/n1201102.png ; $y _ { i } = x _ { i } + \epsilon _ { i }$ ; confidence 0.947
  
36. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130540/s13054032.png ; $x ( \alpha ) = x _ { 12 } ( \alpha )$ ; confidence 0.871
+
36. https://www.encyclopediaofmath.org/legacyimages/o/o120/o120060/o12006056.png ; $W ^ { k } E _ { \Phi } ( R ^ { n } )$ ; confidence 0.947
  
37. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130590/s1305905.png ; $\{ c _ { n } \} _ { n = 0 } ^ { \infty }$ ; confidence 0.343
+
37. https://www.encyclopediaofmath.org/legacyimages/b/b016/b016120/b01612010.png ; $x y$ ; confidence 0.947
  
38. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130590/s1305909.png ; $\Lambda _ { 2 m } = \Lambda - m , m$ ; confidence 0.702
+
38. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130060/b13006068.png ; $V ^ { H } V = I$ ; confidence 0.947
  
39. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130620/s13062080.png ; $\mu _ { s } = \mu _ { sc } + \mu _ { d }$ ; confidence 0.846
+
39. https://www.encyclopediaofmath.org/legacyimages/c/c110/c110260/c11026097.png ; $V ^ { G }$ ; confidence 0.947
  
40. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120320/s12032013.png ; $L = L _ { \square } \oplus L _ { I }$ ; confidence 0.118
+
40. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120490/b12049039.png ; $\{ A _ { j } \}$ ; confidence 0.947
  
41. https://www.encyclopediaofmath.org/legacyimages/s/s091/s091190/s0911904.png ; $V = V _ { \square } \oplus V _ { T }$ ; confidence 0.340
+
41. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a1106807.png ; $p \leq q$ ; confidence 0.947
  
42. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120340/s120340107.png ; $\overline { X } + = ( X _ { + } , u + )$ ; confidence 0.062
+
42. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120120/l120120177.png ; $O _ { K _ { S } } [ \sigma ]$ ; confidence 0.947
  
43. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120340/s120340114.png ; $\operatorname { grad } S _ { H }$ ; confidence 0.898
+
43. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120430/b120430112.png ; $\beta \gamma = \gamma \beta + ( 1 - q ^ { - 2 } ) \alpha ( \delta - \alpha ) , \delta \beta = \beta \delta + ( 1 - q ^ { - 2 } ) \alpha \beta$ ; confidence 0.947
  
44. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120340/s12034096.png ; $\alpha _ { H } : X \rightarrow Z$ ; confidence 0.954
+
44. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120520/b12052075.png ; $u _ { n } = \frac { y _ { n } } { \| s _ { n } \| _ { 2 } } \text { and } v _ { n } = \frac { s _ { n } } { \| s _ { n } \| _ { 2 } }$ ; confidence 0.947
  
45. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120340/s120340145.png ; $M ( \tilde { x } , \tilde { y } ) / R$ ; confidence 0.169
+
45. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130070/p130070103.png ; $\leq - \operatorname { log } ( \operatorname { max } \{ \operatorname { dist } ( z , \partial \Omega ) , \operatorname { dist } ( w , \partial \Omega ) \} )$ ; confidence 0.947
  
46. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130650/s13065044.png ; $F _ { n } = - \psi _ { n } / \phi _ { n }$ ; confidence 0.986
+
46. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130080/r130080109.png ; $A u = \sum _ { j = 1 } ^ { \infty } \lambda _ { j } ( u , \varphi _ { j } ) \varphi _ { j } ( x )$ ; confidence 0.947
  
47. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120030/t1200301.png ; $f : R \rightarrow R ^ { \prime }$ ; confidence 0.998
+
47. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120220/b12022034.png ; $Q ( f ) = \psi ( \rho _ { f } , T _ { f } ) ( M _ { f } - f )$ ; confidence 0.947
  
48. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120050/t12005090.png ; $\mu _ { i _ { 1 } , \ldots , i _ { s } }$ ; confidence 0.241
+
48. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w130080199.png ; $\frac { d f } { d t _ { s } } = \kappa \partial _ { s } f + \{ H _ { s } , f \}$ ; confidence 0.947
  
49. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120050/t12005077.png ; $\sum ^ { i _ { 1 } } , \dots , i _ { r }$ ; confidence 0.153
+
49. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120270/b12027064.png ; $b ( . )$ ; confidence 0.947
  
50. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120050/t12005082.png ; $\sum ^ { i _ { 1 } } , \dots , i _ { s }$ ; confidence 0.173
+
50. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130010/i13001057.png ; $\chi _ { \lambda ^ { \prime } } \preceq \chi _ { \lambda }$ ; confidence 0.947
  
51. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130090/t1300902.png ; $( T _ { X } , \pi _ { X } , \rho _ { X } )$ ; confidence 0.981
+
51. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130070/b13007022.png ; $b ^ { - 1 } a ^ { - 1 } b a b ^ { - 1 } a ^ { - 1 } b a b ^ { - 1 }$ ; confidence 0.947
  
52. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120080/t12008048.png ; $( x , y ) \in O _ { S } \times O _ { S }$ ; confidence 0.668
+
52. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120300/c12030029.png ; $( H , H )$ ; confidence 0.946
  
53. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130130/t130130117.png ; $K ^ { \hat { b } } ( P _ { \Lambda } )$ ; confidence 0.410
+
53. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130010/z13001045.png ; $K _ { i } = \operatorname { lim } _ { z \rightarrow z _ { i } } [ ( z - z _ { i } ) \frac { h ( z ) } { g ( z ) } ]$ ; confidence 0.946
  
54. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130150/t13015067.png ; $C ^ { * } E ( S ) \supset C ^ { * } ( S )$ ; confidence 0.994
+
54. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110320/a11032025.png ; $R _ { 1 } ^ { ( i ) } ( z ) = \frac { R _ { 0 } ^ { ( i ) } ( z ) - 1 } { z }$ ; confidence 0.946
  
55. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120150/t12015056.png ; $A \subset A ^ { \prime \prime }$ ; confidence 0.981
+
55. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130180/a130180117.png ; $c _ { 1 } ( R ) = \operatorname { Dom } ( R ) \times U$ ; confidence 0.946
  
56. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130210/t13021029.png ; $w _ { i } ( x ) = \delta ( x - x _ { i } )$ ; confidence 0.994
+
56. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130050/o13005033.png ; $\mathfrak { H } _ { + } \subset \mathfrak { H } \subset \mathfrak { H } _ { - }$ ; confidence 0.946
  
57. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t120200203.png ; $I = [ m + 1 , m + ( n + k ) ( 3 + \pi / k ) ]$ ; confidence 0.948
+
57. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120210/f12021068.png ; $( \frac { \partial } { \partial \lambda } ) ^ { n _ { 1 } + l } [ u ( z , \lambda ) ( \lambda - \lambda _ { 2 } ) ^ { n _ { 1 } } ] =$ ; confidence 0.946
  
58. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130060/v1300602.png ; $C [ y _ { 1 } / 2 , y _ { 3 } / 2 , \dots ]$ ; confidence 0.353
+
58. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w120090344.png ; $\beta \in \Sigma$ ; confidence 0.946
  
59. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130050/v13005093.png ; $Y ( L ( - 1 ) v , x ) = ( d / d x ) Y ( v , x )$ ; confidence 0.112
+
59. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120170/s12017044.png ; $f ( d ) = \sum w _ { i } d _ { i }$ ; confidence 0.946
  
60. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120020/v1200206.png ; $f * : H * ( X ) \rightarrow H * ( Y )$ ; confidence 0.858
+
60. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120090/e12009021.png ; $g _ { \mu \nu } = \left( \begin{array} { c c c c } { 1 } & { 0 } & { 0 } & { 0 } \\ { 0 } & { - 1 } & { 0 } & { 0 } \\ { 0 } & { 0 } & { - 1 } & { 0 } \\ { 0 } & { 0 } & { 0 } & { - 1 } \end{array} \right)$ ; confidence 0.946
  
61. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120030/v12003018.png ; $| \mu _ { N } ( E ) | < \varepsilon$ ; confidence 0.818
+
61. https://www.encyclopediaofmath.org/legacyimages/l/l060/l060020/l06002018.png ; $L ( \pi - x ) = \pi \operatorname { ln } 2 - L ( x )$ ; confidence 0.946
  
62. https://www.encyclopediaofmath.org/legacyimages/v/v110/v110060/v1100606.png ; $D \Delta ^ { 2 } w - h [ \Phi , w ] = f$ ; confidence 0.999
+
62. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130510/s1305106.png ; $S \subset Z ^ { 0 }$ ; confidence 0.946
  
63. https://www.encyclopediaofmath.org/legacyimages/v/v096/v096900/v09690074.png ; $\phi ( U T U ^ { - 1 } ) = \phi ( T )$ ; confidence 0.999
+
63. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120040/l1200406.png ; $x \in [ 0 , L ]$ ; confidence 0.946
  
64. https://www.encyclopediaofmath.org/legacyimages/v/v096/v096900/v096900166.png ; $\zeta \mapsto \| T ( \zeta ) \|$ ; confidence 0.995
+
64. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130290/f130290156.png ; $( f , \phi ) ^ { \leftarrow } | _ { \sigma } : \tau \leftarrow \sigma$ ; confidence 0.946
  
65. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120030/w1200309.png ; $K = \{ f : \int | f | ^ { 2 } \leq 1 \}$ ; confidence 0.972
+
65. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130130/t130130105.png ; $0 \rightarrow \Lambda \rightarrow T _ { 1 } \rightarrow \ldots \rightarrow T _ { n } \rightarrow 0$ ; confidence 0.946
  
66. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120050/w12005037.png ; $A = R [ x _ { 1 } , \dots , x _ { N } ] / A$ ; confidence 0.280
+
66. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120030/m12003085.png ; $H _ { \vec { \theta } }$ ; confidence 0.946
  
67. https://www.encyclopediaofmath.org/legacyimages/h/h047/h047560/h04756054.png ; $f : M \rightarrow M ^ { \prime }$ ; confidence 0.992
+
67. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130020/d13002014.png ; $E \subset S$ ; confidence 0.946
  
68. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120060/w12006016.png ; $g : M ^ { \prime } \rightarrow R$ ; confidence 0.891
+
68. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w120110264.png ; $g _ { 1 } \leq \ldots \leq g _ { k }$ ; confidence 0.946
  
69. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120060/w12006059.png ; $T _ { A } ( M \times M ^ { \prime } )$ ; confidence 0.999
+
69. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030250/d0302508.png ; $p _ { k } ( x ) \in C [ a , b ]$ ; confidence 0.946
  
70. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130070/w13007027.png ; $( \alpha _ { k } | \beta _ { l } ) = 0$ ; confidence 0.999
+
70. https://www.encyclopediaofmath.org/legacyimages/d/d110/d110180/d1101803.png ; $\rho ( u )$ ; confidence 0.946
  
71. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120070/w12007056.png ; $\sigma \mapsto \sigma ( D , X )$ ; confidence 0.474
+
71. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130140/a13014020.png ; $R ^ { 3 }$ ; confidence 0.946
  
72. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w12011033.png ; $S ( R ^ { n } ) \times S ( R ^ { n } )$ ; confidence 0.944
+
72. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001029.png ; $C ( S )$ ; confidence 0.946
  
73. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w120110264.png ; $g _ { 1 } \leq \ldots \leq g _ { k }$ ; confidence 0.946
+
73. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240218.png ; $z = \Gamma y$ ; confidence 0.946
  
74. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w12011087.png ; $( x , \xi ) \mapsto ( x , \xi + S x )$ ; confidence 0.960
+
74. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130040/i1300404.png ; $\sum _ { k = 1 } ^ { \infty } b _ { k } \operatorname { sin } k x$ ; confidence 0.946
  
75. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w120110250.png ; $q _ { \alpha } \in S ( H ^ { - 1 } , G )$ ; confidence 0.721
+
75. https://www.encyclopediaofmath.org/legacyimages/g/g043/g043810/g043810196.png ; $D ^ { \alpha } f$ ; confidence 0.946
  
76. https://www.encyclopediaofmath.org/legacyimages/p/p075/p075660/p075660137.png ; $0 \leq \delta \leq \rho \leq 1$ ; confidence 0.999
+
76. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130070/c130070230.png ; $T _ { 2 } \in \Re ( C _ { 2 } )$ ; confidence 0.946
  
77. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w130080149.png ; $( \kappa \partial + A ) \psi = 0$ ; confidence 0.966
+
77. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120280/c12028051.png ; $\pi ( X * )$ ; confidence 0.946
  
78. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w13008027.png ; $\{ \alpha _ { j } , \beta _ { j } \}$ ; confidence 0.954
+
78. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130050/e13005020.png ; $= \frac { \Gamma ( \alpha + \beta ) } { \Gamma ( \alpha ) \Gamma ( \beta ) } \int _ { 0 } ^ { 1 } \tau ( x + ( y - x ) t ) t ^ { \beta - 1 } ( 1 - t ) ^ { \alpha - 1 } d t +$ ; confidence 0.946
  
79. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w130080181.png ; $( \kappa \partial + L ) \psi = 0$ ; confidence 0.976
+
79. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130250/a13025024.png ; $i = 1,2$ ; confidence 0.946
  
80. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120170/w12017087.png ; $\iota \omega ( G ) = \omega ( G )$ ; confidence 0.980
+
80. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120230/e120230141.png ; $\Delta = \pi ^ { k ^ { * } } ( \Delta )$ ; confidence 0.946
  
81. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120170/w12017038.png ; $\omega ^ { \prime \prime } ( G )$ ; confidence 0.975
+
81. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k05584079.png ; $[ f , g ] = \int _ { - \infty } ^ { - \infty } f g d \sigma$ ; confidence 0.946
  
82. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130090/w13009055.png ; $\{ f _ { n } \} _ { n = 0 } ^ { \infty }$ ; confidence 0.874
+
82. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130160/c130160158.png ; $NP = SO ( \exists )$ ; confidence 0.946
  
83. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130090/w13009019.png ; $\{ F _ { n } \} _ { n = 0 } ^ { \infty }$ ; confidence 0.631
+
83. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130130/w1301304.png ; $H = ( \kappa _ { 1 } + \kappa _ { 2 } ) / 2$ ; confidence 0.946
  
84. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130090/w130090105.png ; $\{ g _ { n } \} _ { n = 0 } ^ { \infty }$ ; confidence 0.512
+
84. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120030/v12003011.png ; $\mu ( E ) | < \varepsilon$ ; confidence 0.946
  
85. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130090/w130090106.png ; $g _ { n } \in L ^ { 2 } ( [ 0,1 ] ^ { n } )$ ; confidence 0.585
+
85. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025830/c02583034.png ; $u \in H ^ { \infty }$ ; confidence 0.946
  
86. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130170/w13017043.png ; $H _ { y } ( t ) = H _ { \epsilon } ( t )$ ; confidence 0.992
+
86. https://www.encyclopediaofmath.org/legacyimages/s/s090/s090670/s09067098.png ; $GL ^ { 2 } ( n ) \rightarrow GL ^ { 1 } ( n )$ ; confidence 0.946
  
87. https://www.encyclopediaofmath.org/legacyimages/x/x120/x120020/x12002032.png ; $0 \neq I _ { \delta } \lessdot R$ ; confidence 0.348
+
87. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130230/m130230137.png ; $f ( C )$ ; confidence 0.946
  
88. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130100/z13010023.png ; $( \varphi \rightarrow \psi )$ ; confidence 1.000
+
88. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130130/z13013027.png ; $H ( r , 0 ) = \sum _ { n = 0 } ^ { \infty } a _ { n } H _ { n } ( r , 0 )$ ; confidence 0.946
  
89. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130050/z1300505.png ; $R = k [ x _ { 1 } , \dots , x _ { n } ] / I$ ; confidence 0.211
+
89. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120180/d12018092.png ; $( X , R )$ ; confidence 0.946
  
90. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130080/z13008037.png ; $R _ { k + l } ^ { k - l } ( r , \alpha ) =$ ; confidence 0.852
+
90. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130290/a13029081.png ; $Y _ { id } = \Sigma \times S ^ { 1 }$ ; confidence 0.946
  
91. https://www.encyclopediaofmath.org/legacyimages/c/c021/c021110/c02111015.png ; $( \alpha , \alpha ^ { \prime } )$ ; confidence 0.993
+
91. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120170/a12017012.png ; $\Pi ( \alpha ) = \operatorname { exp } ( - \int _ { 0 } ^ { \alpha } \mu ( \sigma ) d \sigma )$ ; confidence 0.946
  
92. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001028.png ; $\{ I ^ { 1 } , R ^ { 2 } , \hat { P } \}$ ; confidence 0.143
+
92. https://www.encyclopediaofmath.org/legacyimages/m/m063/m063670/m06367019.png ; $K = 1$ ; confidence 0.946
  
93. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t120010136.png ; $p = ( p _ { 1 } , \dots , p _ { n } + 2 )$ ; confidence 0.447
+
93. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130170/b1301707.png ; $d _ { 1 } = \frac { \operatorname { log } ( S ( t ) / K ) + ( r + \sigma ^ { 2 } / 2 ) ( T - t ) } { \sigma \sqrt { T - t } }$ ; confidence 0.946
  
94. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013027.png ; $\phi = \phi _ { - } \phi _ { + }$ ; confidence 0.996
+
94. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120060/t12006096.png ; $Z ^ { 7 / 3 }$ ; confidence 0.946
  
95. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240252.png ; $F > F _ { \alpha ; q , n - \gamma }$ ; confidence 0.546
+
95. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120070/q120070107.png ; $\Delta g = g \otimes g$ ; confidence 0.946
  
96. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120040/a12004016.png ; $x _ { 0 } \in \overline { D ( A ) }$ ; confidence 0.898
+
96. https://www.encyclopediaofmath.org/legacyimages/e/e036/e036400/e03640011.png ; $p ^ { k }$ ; confidence 0.945
  
97. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040486.png ; $c _ { \{ \Phi \} } = c _ { \Gamma }$ ; confidence 0.558
+
97. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a110680253.png ; $R = Z$ ; confidence 0.945
  
98. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040461.png ; $^ { \times } L D ( K ) = S P P _ { U } K$ ; confidence 0.152
+
98. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130250/m13025080.png ; $( x , \varepsilon ) \in R ^ { n } \times ( 0 , \infty )$ ; confidence 0.945
  
99. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040114.png ; $T , \psi \vdash _ { D } \varphi$ ; confidence 0.220
+
99. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120150/d12015030.png ; $= ( 4 q ^ { 2 t } \frac { q ^ { 2 t } - 1 } { q ^ { 2 } - 1 } , q ^ { 2 t - 1 } [ \frac { 2 ( q ^ { 2 t } - 1 ) } { q + 1 } + 1 ] , q ^ { 2 t - 1 } ( q - 1 ) \frac { q ^ { 2 t - 1 } + 1 } { q + 1 } , q ^ { 4 t - 2 } )$ ; confidence 0.945
  
100. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040373.png ; $\Omega F \subseteq \Omega G$ ; confidence 0.968
+
100. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120430/b12043025.png ; $S : B \rightarrow B$ ; confidence 0.945
  
101. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120070/a12007029.png ; $f \in C ^ { \alpha } ( [ 0 , T ] ; X )$ ; confidence 0.961
+
101. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120280/s12028038.png ; $\overline { f } ( [ g ] ) : X \rightarrow P$ ; confidence 0.945
  
102. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120070/a12007056.png ; $D _ { A ( t ) } ( \alpha , \infty )$ ; confidence 0.967
+
102. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120210/b12021046.png ; $V ( a , p )$ ; confidence 0.945
  
103. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120070/a12007049.png ; $B ( D _ { A } ( \alpha , \infty ) )$ ; confidence 0.995
+
103. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120340/s1203406.png ; $SH ^ { * } ( M , \omega , \phi )$ ; confidence 0.945
  
104. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120070/a12007014.png ; $U ( t , s ) , 0 \leq s \leq t \leq T$ ; confidence 1.000
+
104. https://www.encyclopediaofmath.org/legacyimages/o/o120/o120050/o12005024.png ; $\varphi ( u ) = u ^ { p }$ ; confidence 0.945
  
105. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120070/a12007087.png ; $D _ { A ( 0 ) } ( \delta , \infty )$ ; confidence 0.953
+
105. https://www.encyclopediaofmath.org/legacyimages/c/c024/c024850/c02485060.png ; $a + b$ ; confidence 0.945
  
106. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120070/a12007084.png ; $f \in C ^ { \delta } ( [ 0 , T ] ; X )$ ; confidence 0.870
+
106. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120210/f12021088.png ; $a ^ { 2 } 0 \neq 0$ ; confidence 0.945
  
107. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130060/a13006087.png ; $\partial ( \overline { H } ) =$ ; confidence 0.995
+
107. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130060/d13006025.png ; $m ( \Xi ) = 1$ ; confidence 0.945
  
108. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120080/a12008034.png ; $S ( s + t ) + S ( s - t ) = 2 S ( s ) S ( t )$ ; confidence 0.964
+
108. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130190/b13019079.png ; $\beta > 9 / 56 = 0.1607$ ; confidence 0.945
  
109. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130070/a13007064.png ; $- ( \sqrt { 2 } + \varepsilon )$ ; confidence 1.000
+
109. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130290/b130290124.png ; $i \neq 1 , \operatorname { dim } A$ ; confidence 0.945
  
110. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130070/a13007060.png ; $- ( \sqrt { 6 } + \varepsilon )$ ; confidence 0.999
+
110. https://www.encyclopediaofmath.org/legacyimages/c/c021/c021570/c02157039.png ; $L _ { 2 } ( G )$ ; confidence 0.945
  
111. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120120/a12012084.png ; $c _ { t } ^ { \prime } \geq c _ { t }$ ; confidence 0.400
+
111. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130030/h13003057.png ; $s _ { i } + j - 1$ ; confidence 0.945
  
112. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120130/a12013046.png ; $P _ { \theta } * ( X _ { n } - 1 , d x )$ ; confidence 0.207
+
112. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240417.png ; $( n - r ) ^ { - 1 } M _ { E }$ ; confidence 0.945
  
113. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120160/a12016074.png ; $\frac { c _ { 1 } } { 1 - \lambda }$ ; confidence 0.862
+
113. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120030/t12003041.png ; $\Psi \circ f = F _ { K } \circ \Phi$ ; confidence 0.945
  
114. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130120/a13012039.png ; $2 - ( 4 \mu - 1,2 \mu - 1 , \mu - 1 )$ ; confidence 0.999
+
114. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240213.png ; $7$ ; confidence 0.945
  
115. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130120/a13012053.png ; $e ^ { k \operatorname { ln } k }$ ; confidence 0.201
+
115. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130300/b130300112.png ; $F _ { m }$ ; confidence 0.945
  
116. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130140/a1301406.png ; $2 ( f ( x ) , f ( y ) ) = d _ { 1 } ( x , y )$ ; confidence 0.765
+
116. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120120/n12012057.png ; $F ^ { 4 } \in N P$ ; confidence 0.945
  
117. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130200/a13020011.png ; $\langle x y | u v w \rangle \} =$ ; confidence 0.541
+
117. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130080/r13008093.png ; $( u , v ) _ { + } = ( A ^ { - 1 / 2 } u , A ^ { - 1 / 2 } v ) _ { 0 }$ ; confidence 0.945
  
118. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130220/a13022028.png ; $\tilde { j } : B \rightarrow X$ ; confidence 0.314
+
118. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130010/z13001050.png ; $K _ { i } = \frac { 1 } { ( r - 1 ) ! } \operatorname { lim } _ { z \rightarrow z _ { i } } \frac { d ^ { n } } { d z ^ { - 1 } } [ ( z - z _ { i } ) ^ { r } \frac { h ( z ) } { g ( z ) } ]$ ; confidence 0.945
  
119. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130220/a13022022.png ; $\tilde { h } : Z \rightarrow B$ ; confidence 0.503
+
119. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130110/c1301102.png ; $f : H \rightarrow R \cup \{ \infty \}$ ; confidence 0.945
  
120. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130230/a13023023.png ; $P _ { i } : H \rightarrow U _ { i }$ ; confidence 0.550
+
120. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130070/a13007092.png ; $\sigma ^ { 0 } ( p ^ { \alpha } ) = \sigma ( p ^ { \alpha } )$ ; confidence 0.945
  
121. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120230/a1202307.png ; $H ( D ) \cap C ( \overline { D } )$ ; confidence 0.997
+
121. https://www.encyclopediaofmath.org/legacyimages/f/f042/f042230/f04223042.png ; $1$ ; confidence 0.945
  
122. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130270/a13027011.png ; $Q _ { n } : Y \rightarrow X _ { r }$ ; confidence 0.338
+
122. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120230/e120230180.png ; $\sigma ^ { 2 k ^ { * } } E ( L ) = 0$ ; confidence 0.945
  
123. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130280/a1302806.png ; $\operatorname { agm } ( a , b )$ ; confidence 0.839
+
123. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030240/d03024025.png ; $f ( r ) ( x _ { 0 } ) = f ^ { ( r ) } ( x _ { 0 } )$ ; confidence 0.945
  
124. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120270/a12027064.png ; $\operatorname { Gal } ( N / E )$ ; confidence 0.365
+
124. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120050/s1200502.png ; $| S ( z ) | \leq 1$ ; confidence 0.945
  
125. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120280/a120280166.png ; $( \pi , \{ U _ { t } \} _ { t \in G } )$ ; confidence 0.983
+
125. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120150/a1201507.png ; $\operatorname { Int } ( g ) : G \rightarrow G$ ; confidence 0.945
  
126. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120280/a120280171.png ; $( \pi , \{ U _ { t } \} _ { t \in R } )$ ; confidence 0.672
+
126. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130020/o1300207.png ; $M ( r _ { 1 } , r _ { 2 } ) > ( \frac { \pi } { 4 } ) ^ { 2 r _ { 2 } } ( \frac { n ^ { n } } { n ! } ) ^ { 2 }$ ; confidence 0.945
  
127. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130290/a13029084.png ; $w _ { 2 } ( Q _ { id } ) = PD [ S ^ { 1 } ]$ ; confidence 0.595
+
127. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l11004041.png ; $H \in X$ ; confidence 0.945
  
128. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130290/a13029072.png ; $\tilde { f } : Q \rightarrow Q$ ; confidence 0.704
+
128. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130070/i13007081.png ; $\forall \alpha ^ { \prime } , \alpha \in S ^ { 2 }$ ; confidence 0.945
  
129. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130320/a13032029.png ; $\operatorname { log } ( q / p )$ ; confidence 0.973
+
129. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120130/a12013037.png ; $h ( \theta ) = E _ { \theta } [ H ( \theta , X ) ]$ ; confidence 0.945
  
130. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120210/b12021011.png ; $\Delta ^ { + } \subset \Delta$ ; confidence 0.996
+
130. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120060/k12006051.png ; $[ q ]$ ; confidence 0.945
  
131. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120020/b1200201.png ; $U _ { 1 } , \dots , U _ { n } , \dots$ ; confidence 0.567
+
131. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130080/a13008057.png ; $g ( x ; m , s ) = \left\{ \begin{array} { l l } { \frac { 1 } { s } - \frac { m - x } { s ^ { 2 } } } & { \text { if } m - s \leq x \leq m } \\ { \frac { 1 } { s } - \frac { x - m } { s ^ { 2 } } } & { \text { if } m \leq x \leq m + s } \end{array} \right.$ ; confidence 0.945
  
132. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130010/b130010100.png ; $\operatorname { Sp } ( 2 n , R )$ ; confidence 0.585
+
132. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120060/a12006058.png ; $S A ( t ) S ^ { - 1 } = A ( t ) + B ( t )$ ; confidence 0.945
  
133. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130020/b1300202.png ; $| x \circ y | | \leq \| x \| \| y |$ ; confidence 0.117
+
133. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030330/d03033030.png ; $A _ { d R } ( X )$ ; confidence 0.945
  
134. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120040/b120040126.png ; $0 \leq f _ { n } \uparrow f \in X$ ; confidence 0.958
+
134. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023720/c02372092.png ; $U ( a , R )$ ; confidence 0.945
  
135. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120040/b120040127.png ; $x ^ { \prime } \in X ^ { \prime }$ ; confidence 0.527
+
135. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120070/m12007033.png ; $L ( s , \chi - 3 )$ ; confidence 0.945
  
136. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120040/b12004079.png ; $T : L _ { 1 } \rightarrow L _ { 1 }$ ; confidence 0.958
+
136. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120020/n12002058.png ; $X _ { n } = 1 / n ( X _ { 1 } + \ldots + X _ { n } )$ ; confidence 0.945
  
137. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120090/b12009062.png ; $\operatorname { Re } h ( z ) > 0$ ; confidence 0.639
+
137. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130050/a130050151.png ; $= \prod _ { m = 2 } ^ { \infty } ( 1 - m ^ { - z } ) ^ { - P ( m ) }$ ; confidence 0.945
  
138. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b11022015.png ; $n = \operatorname { dim } ( X )$ ; confidence 0.995
+
138. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120240/e12024035.png ; $F / Q$ ; confidence 0.945
  
139. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b110220184.png ; $L ^ { * } ( h ^ { 2 } ( X ) , s ) _ { s = 1 }$ ; confidence 0.757
+
139. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130070/i13007026.png ; $k \rightarrow \infty$ ; confidence 0.945
  
140. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130100/b13010050.png ; $\tilde { \varphi } = \varphi$ ; confidence 0.483
+
140. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120260/s12026018.png ; $f \in \Gamma ( L ^ { 2 } ( R ) )$ ; confidence 0.944
  
141. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130100/b13010015.png ; $k _ { z } = K _ { z } / \| K _ { z } \|$ ; confidence 0.674
+
141. https://www.encyclopediaofmath.org/legacyimages/z/z120/z120010/z12001057.png ; $p ^ { m } - 1$ ; confidence 0.944
  
142. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120150/b120150121.png ; $\Omega = ( N \cup \{ 0 \} ) ^ { m }$ ; confidence 0.925
+
142. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120170/f12017028.png ; $d = n - m > 0$ ; confidence 0.944
  
143. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120200/b12020023.png ; $\theta ( z ) = b ( z ) \cdot s ( z )$ ; confidence 0.648
+
143. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120080/f12008088.png ; $M _ { \varphi }$ ; confidence 0.944
  
144. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130120/b130120120.png ; $F \in \operatorname { Lip } 1$ ; confidence 0.657
+
144. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120340/b12034049.png ; $( \varphi _ { n } ) _ { n = 0 } ^ { \infty }$ ; confidence 0.944
  
145. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130120/b13012075.png ; $\varepsilon \in ( 0 , \pi / 2 )$ ; confidence 0.999
+
145. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130070/a13007045.png ; $d < n$ ; confidence 0.944
  
146. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130120/b1301208.png ; $| a _ { \pm } n | \leq a _ { n } ^ { * }$ ; confidence 0.086
+
146. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130310/a13031039.png ; $\rho ( X _ { 1 } )$ ; confidence 0.944
  
147. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130120/b13012085.png ; $f \in \operatorname { Lip } 1$ ; confidence 0.502
+
147. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120070/c12007012.png ; $d ^ { n } : C ^ { n } ( C , M ) \rightarrow C ^ { n + 1 } ( C , M )$ ; confidence 0.944
  
148. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130120/b13012087.png ; $\operatorname { lip } ( 1 / 2 )$ ; confidence 0.888
+
148. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130070/c13007061.png ; $g = \frac { ( n - 1 ) ( n - 2 ) } { 2 } -$ ; confidence 0.944
  
149. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120220/b12022025.png ; $\varepsilon \rightarrow 0$ ; confidence 0.989
+
149. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120240/m12024011.png ; $d \Omega = \varphi \psi _ { x } d x + \psi \varphi y d y$ ; confidence 0.944
  
150. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120270/b12027094.png ; $0 \leq T _ { 0 } < T _ { 1 } < \ldots$ ; confidence 0.597
+
150. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120070/q120070120.png ; $\{ a , b , c , d \}$ ; confidence 0.944
  
151. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120270/b12027074.png ; $: [ 0 , \infty ) \rightarrow R$ ; confidence 0.784
+
151. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520207.png ; $\epsilon _ { 1 } = \ldots \epsilon _ { p } = 1$ ; confidence 0.944
  
152. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120270/b12027082.png ; $\{ b ( t ) : n h \leq t < ( n + 1 ) h \}$ ; confidence 0.995
+
152. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130040/j1300403.png ; $P _ { L } ( \square )$ ; confidence 0.944
  
153. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120270/b12027083.png ; $\int _ { 0 } ^ { \infty } b ( u ) d u$ ; confidence 0.999
+
153. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130620/s130620195.png ; $[ - g , g ]$ ; confidence 0.944
  
154. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120300/b12030023.png ; $D ( - \Delta ) = H ^ { 2 } ( R ^ { N } )$ ; confidence 0.997
+
154. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130140/p1301403.png ; $\hat { f } ( \alpha , p ) : = R f$ ; confidence 0.944
  
155. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120310/b12031038.png ; $1 / p \geq ( n + 1 + 2 \delta ) / 2 n$ ; confidence 0.989
+
155. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120020/c12002073.png ; $R ^ { k }$ ; confidence 0.944
  
156. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120310/b12031037.png ; $1 / p \leq ( n - 1 - 2 \delta ) / 2 n$ ; confidence 0.995
+
156. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120010/b12001032.png ; $\frac { \partial v } { \partial t } - 6 v ^ { 2 } \frac { \partial v } { \partial x } + \frac { \partial ^ { 3 } v } { \partial x ^ { 3 } } = 0$ ; confidence 0.944
  
157. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120320/b12032060.png ; $F ( r , F ( s , t ) ) = F ( F ( r , s ) , t )$ ; confidence 0.997
+
157. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w12011033.png ; $S ( R ^ { n } ) \times S ( R ^ { n } )$ ; confidence 0.944
  
158. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120340/b12034075.png ; $\operatorname { Re } f ( z ) > 0$ ; confidence 0.681
+
158. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015660/b01566013.png ; $X$ ; confidence 0.944
  
159. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120370/b12037061.png ; $C _ { B _ { 2 } } ( f ) \geq 2 ^ { n } / n$ ; confidence 0.921
+
159. https://www.encyclopediaofmath.org/legacyimages/b/b016/b016950/b01695036.png ; $q - 1$ ; confidence 0.944
  
160. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b130200179.png ; $\Lambda ( h _ { i } ) \in Z \geq 0$ ; confidence 0.687
+
160. https://www.encyclopediaofmath.org/legacyimages/v/v096/v096030/v0960308.png ; $y = - x + ( x ^ { 3 } / 3 ) + ( \dot { x } / \mu )$ ; confidence 0.944
  
161. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b130200186.png ; $\rho \in \mathfrak { h } ^ { * }$ ; confidence 0.496
+
161. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130070/b13007085.png ; $BS ( 1 , n )$ ; confidence 0.944
  
162. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b120400108.png ; $H ^ { 0 } ( G / B , G \times ^ { R } V )$ ; confidence 0.955
+
162. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130130/d1301308.png ; $y = r \operatorname { sin } \theta \operatorname { sin } \phi$ ; confidence 0.944
  
163. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b12040014.png ; $f : E _ { 1 } \rightarrow E _ { 2 }$ ; confidence 0.996
+
163. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520139.png ; $e _ { j } ^ { n _ { i j } } \in E _ { A , K [ \lambda ] }$ ; confidence 0.944
  
164. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130210/b13021015.png ; $f _ { b } = \sum _ { r \ni b } F _ { r }$ ; confidence 0.345
+
164. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110960/b11096050.png ; $G ( K )$ ; confidence 0.944
  
165. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130220/b13022071.png ; $K = \{ \gamma : | \gamma | = m \}$ ; confidence 0.994
+
165. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130070/b13007082.png ; $BS ( 1 , m )$ ; confidence 0.944
  
166. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130220/b13022067.png ; $\overline { \Omega } = \cup T$ ; confidence 0.994
+
166. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120150/p12015031.png ; $\alpha \nmid \beta$ ; confidence 0.944
  
167. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130260/b13026083.png ; $g ( \partial B [ R ] ) \subset B$ ; confidence 0.995
+
167. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130200/a13020018.png ; $K ( a , b )$ ; confidence 0.944
  
168. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130260/b13026043.png ; $\Omega _ { 2 } \subset \Omega$ ; confidence 0.995
+
168. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b12005033.png ; $A _ { b } ( B _ { E } ) \equiv$ ; confidence 0.944
  
169. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130260/b13026042.png ; $\Omega _ { 1 } \subset \Omega$ ; confidence 0.609
+
169. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023250/c02325041.png ; $k = n + 1$ ; confidence 0.944
  
170. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130260/b13026094.png ; $f : S ^ { n } \rightarrow S ^ { n }$ ; confidence 0.981
+
170. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130070/r130070150.png ; $= \int \int _ { T } d m ( t ) d m ( s ) F ( t ) \overline { G ( s ) } ( h ( s , x ) , h ( t , x ) ) _ { H } =$ ; confidence 0.944
  
171. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130260/b1302609.png ; $\chi [ f _ { 0 } , \dots , f _ { n } ]$ ; confidence 0.407
+
171. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120320/b12032037.png ; $x , y \in E$ ; confidence 0.944
  
172. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015020/b01502010.png ; $\operatorname { Ext } ( A , B )$ ; confidence 0.933
+
172. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130010/c1300108.png ; $N _ { V }$ ; confidence 0.944
  
173. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120520/b1205202.png ; $F : R ^ { N } \rightarrow R ^ { N }$ ; confidence 0.993
+
173. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130090/r1300905.png ; $a \in R ^ { n } \backslash \{ 0 \}$ ; confidence 0.944
  
174. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130290/b130290121.png ; $\operatorname { dim } A = 2$ ; confidence 0.998
+
174. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120050/f12005039.png ; $F _ { q } [ T ]$ ; confidence 0.943
  
175. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130290/b1302903.png ; $d = \operatorname { dim } A$ ; confidence 0.989
+
175. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120160/a120160129.png ; $W E$ ; confidence 0.943
  
176. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120530/b12053025.png ; $( h _ { N } ) _ { N = 1 } ^ { \infty } 1$ ; confidence 0.537
+
176. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130070/r13007073.png ; $( f ( x ) , K ( x , y ) ) = ( \sum _ { j = 1 } ^ { J } K ( x , y _ { j } ) c _ { j } , K ( x , y ) ) =$ ; confidence 0.943
  
177. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120530/b12053024.png ; $( f _ { n } ) _ { n = 1 } ^ { \infty } 1$ ; confidence 0.456
+
177. https://www.encyclopediaofmath.org/legacyimages/m/m110/m110110/m11011041.png ; $L =$ ; confidence 0.943
  
178. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130300/b13030019.png ; $\phi : B ( m , n ) \rightarrow G$ ; confidence 0.995
+
178. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120080/f120080122.png ; $B _ { 2 } ( G )$ ; confidence 0.943
  
179. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120550/b12055045.png ; $\iota : M \rightarrow C * ( M )$ ; confidence 0.488
+
179. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130620/s130620142.png ; $\theta ( . , \lambda )$ ; confidence 0.943
  
180. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120030/c1200309.png ; $f ( , x ) : J \rightarrow R ^ { m }$ ; confidence 0.225
+
180. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130120/r13012021.png ; $u , v \in A$ ; confidence 0.943
  
181. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130050/c13005011.png ; $\operatorname { cay } ( G , S )$ ; confidence 0.466
+
181. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120060/a12006035.png ; $u ( 0 ) = u _ { 0 } \in D ( A ) , f \in C ( [ 0 , T ] ; D ( A ) )$ ; confidence 0.943
  
182. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130070/c13007061.png ; $g = \frac { ( n - 1 ) ( n - 2 ) } { 2 } -$ ; confidence 0.944
+
182. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120090/c1200907.png ; $G / C _ { G } ( \langle x \rangle ^ { G } )$ ; confidence 0.943
  
183. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130070/c130070208.png ; $\sum _ { \text { ord } T } ( u d v )$ ; confidence 0.264
+
183. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120180/w12018064.png ; $H ( A ^ { c } )$ ; confidence 0.943
  
184. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022110/c02211059.png ; $X ^ { 2 } ( \hat { \theta } _ { n } )$ ; confidence 0.936
+
184. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120270/e12027033.png ; $E _ { m } + 1$ ; confidence 0.943
  
185. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022110/c02211061.png ; $\xi _ { 1 } , \dots , \xi _ { k - 1 }$ ; confidence 0.682
+
185. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120220/b12022077.png ; $a ( \xi ) = \xi$ ; confidence 0.943
  
186. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130140/c13014016.png ; $A \circ B = ( a _ { i } , b _ { i } , j )$ ; confidence 0.393
+
186. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130070/c130070245.png ; $2 g - 2 = \nu _ { i } ( 2 g _ { i } - 2 ) + \mathfrak { D } _ { i }$ ; confidence 0.943
  
187. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130150/c1301504.png ; $C ^ { \infty } ( D ( \Omega ) )$ ; confidence 0.935
+
187. https://www.encyclopediaofmath.org/legacyimages/e/e036/e036910/e03691021.png ; $0 < a < 1$ ; confidence 0.943
  
188. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120170/c12017022.png ; $R = \{ r _ { 1 } , \dots , r _ { m } \}$ ; confidence 0.514
+
188. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130290/a13029027.png ; $x ^ { \pm } \in L _ { 0 } \cap L _ { 1 }$ ; confidence 0.943
  
189. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180420.png ; $C ^ { \infty } ( \tilde { N } )$ ; confidence 0.330
+
189. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120040/g120040153.png ; $L ^ { m } + Q$ ; confidence 0.943
  
190. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130190/c13019034.png ; $( N ^ { \prime } , L ^ { \prime } )$ ; confidence 0.995
+
190. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130100/c13010035.png ; $( f _ { 1 } ( x ) - f _ { 1 } ( y ) ) \cdot ( f _ { 2 } ( x ) - f _ { 2 } ( y ) ) \geq 0$ ; confidence 0.943
  
191. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120220/c1202208.png ; $p : ( X , * ) \rightarrow ( * , * )$ ; confidence 0.709
+
191. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120210/f120210108.png ; $+ z ^ { \lambda } \sum _ { j = 1 } ^ { \infty } z ^ { j } [ c _ { j } ( \lambda ) \pi ( \lambda + j ) + \sum _ { k = 0 } ^ { j - 1 } c _ { k } ( \lambda ) p _ { j - k } ( \lambda + k ) ]$ ; confidence 0.943
  
192. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120230/c1202303.png ; $f : S ^ { 1 } \rightarrow R ^ { n }$ ; confidence 0.987
+
192. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130250/b13025018.png ; $\omega = \pi / 6$ ; confidence 0.943
  
193. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130210/c13021013.png ; $( \alpha ^ { * } b ) | \dot { b } = a$ ; confidence 0.294
+
193. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120080/c12008097.png ; $T _ { p q }$ ; confidence 0.943
  
194. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130210/c13021012.png ; $( \alpha | b ) ^ { * } \dot { b } = a$ ; confidence 0.278
+
194. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120100/b12010023.png ; $- F _ { n + 1 } ( X , q _ { i } + \sigma \eta , p _ { n + 1 } ) )$ ; confidence 0.943
  
195. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130210/c13021011.png ; $( a * b ) * ( c * d ) = ( a * c ) * ( b * d )$ ; confidence 0.348
+
195. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130050/c13005045.png ; $( G )$ ; confidence 0.943
  
196. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130210/c1302109.png ; $( a | b ) | ( c | d ) = ( a | c ) | ( b | d )$ ; confidence 0.574
+
196. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120290/c1202908.png ; $\mu ( \square ^ { g } m ) = g \mu ( m ) g ^ { - 1 } , \square ^ { \mu ( m ) } m ^ { \prime } = m m ^ { \prime } m ^ { - 1 }$ ; confidence 0.943
  
197. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120260/c12026032.png ; $V _ { 0 } ^ { n } = V _ { j } ^ { n } = 0$ ; confidence 0.626
+
197. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120140/d12014024.png ; $= 2 \operatorname { cos } ( n \alpha ) = 2 T _ { n } ( \operatorname { cos } \alpha ) = 2 T _ { n } ( \frac { x } { 2 } )$ ; confidence 0.943
  
198. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120270/c12027012.png ; $\Omega _ { p } \subset T _ { p } M$ ; confidence 0.984
+
198. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120190/e12019021.png ; $X = R ^ { 2 }$ ; confidence 0.943
  
199. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120290/c12029029.png ; $\operatorname { Ker } ( \mu )$ ; confidence 0.817
+
199. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w13008098.png ; $N _ { f } = 0$ ; confidence 0.943
  
200. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120300/c12030062.png ; $B _ { i } \rightarrow B _ { i } + 1$ ; confidence 0.737
+
200. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120100/f12010058.png ; $J = 60 G _ { 4 } ^ { 3 } / \Delta$ ; confidence 0.943
  
201. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120300/c1203008.png ; $S _ { i } ^ { * } S _ { j } = 0 , i \neq j$ ; confidence 0.340
+
201. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130070/b13007079.png ; $m | \neq | n$ ; confidence 0.943
  
202. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130260/c1302604.png ; $D = \oplus _ { j = 0 } ^ { n } D ^ { j }$ ; confidence 0.719
+
202. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130120/p13012038.png ; $K >$ ; confidence 0.943
  
203. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120310/c12031034.png ; $f : [ 0,1 ] ^ { d } \rightarrow R$ ; confidence 0.800
+
203. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130120/f13012022.png ; $h ( G )$ ; confidence 0.943
  
204. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120020/d120020200.png ; $\gamma ( \tilde { u } _ { 1 } ) > 0$ ; confidence 0.165
+
204. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b130200139.png ; $i \neq - j$ ; confidence 0.943
  
205. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130060/d13006061.png ; $X = \{ X _ { 1 } , \dots , X _ { n } \}$ ; confidence 0.800
+
205. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130130/m13013059.png ; $L ^ { + } = D ^ { + } - A ^ { \prime }$ ; confidence 0.943
  
206. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130080/d13008026.png ; $\alpha \in \partial \Delta$ ; confidence 0.362
+
206. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120130/p1201307.png ; $P ( x )$ ; confidence 0.943
  
207. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120140/d12014048.png ; $f : F _ { p } \rightarrow F _ { p }$ ; confidence 0.990
+
207. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012540/a0125405.png ; $S \subset G$ ; confidence 0.943
  
208. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120160/d12016070.png ; $F \subset L _ { 1 } ( S \times T )$ ; confidence 0.589
+
208. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120530/b12053021.png ; $( T f _ { n } ) _ { n = 1 } ^ { \infty } \subset M$ ; confidence 0.943
  
209. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120230/d120230100.png ; $\nabla _ { F } , A R = R - F R A ^ { * }$ ; confidence 0.604
+
209. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130050/t130050137.png ; $0 \in \sigma _ { T } ( A , H )$ ; confidence 0.943
  
210. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130180/d13018035.png ; $\| \hat { f } \| = \| f \| _ { 1 }$ ; confidence 0.870
+
210. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120080/k12008067.png ; $\kappa _ { p } ( f ) = K _ { p } ( \operatorname { Re } ( f ) ) + i K _ { p } ( \operatorname { Im } ( f ) )$ ; confidence 0.943
  
211. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130180/d13018034.png ; $A ( \hat { G } ) \cong L ^ { 1 } ( G )$ ; confidence 0.995
+
211. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120010/c1200108.png ; $1 \cup \{ \infty \}$ ; confidence 0.942
  
212. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120240/d12024088.png ; $U ( \operatorname { si } ( n ) )$ ; confidence 0.660
+
212. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035000/e03500030.png ; $\{ C _ { i } \}$ ; confidence 0.942
  
213. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120260/d12026010.png ; $X _ { n } ( t ) \Rightarrow w ( t )$ ; confidence 0.974
+
213. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120010/h12001010.png ; $X ^ { ( r ) }$ ; confidence 0.942
  
214. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130210/d13021025.png ; $x \rightarrow G ( x , \alpha )$ ; confidence 0.950
+
214. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130290/f1302906.png ; $\otimes : L \times L \rightarrow L$ ; confidence 0.942
  
215. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120120/e12012026.png ; $Y _ { \operatorname { allg } }$ ; confidence 0.125
+
215. https://www.encyclopediaofmath.org/legacyimages/v/v096/v096900/v09690066.png ; $A = x _ { i \in I } A$ ; confidence 0.942
  
216. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120120/e120120118.png ; $\int f ( \theta , \phi ) d \phi$ ; confidence 0.999
+
216. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520486.png ; $\Phi ^ { ( j ) } = O ( | Z | )$ ; confidence 0.942
  
217. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120060/e12006030.png ; $T _ { y } Y = V _ { y } Y + \Gamma ( y )$ ; confidence 0.753
+
217. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110370/b11037026.png ; $\hat { \theta }$ ; confidence 0.942
  
218. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120070/e120070110.png ; $f \in C ^ { 0 } ( \Gamma , k + 2 , v )$ ; confidence 0.852
+
218. https://www.encyclopediaofmath.org/legacyimages/p/p073/p073040/p07304033.png ; $X$ ; confidence 0.942
  
219. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120070/e120070114.png ; $g \in C ^ { 0 } ( \Gamma , k + 2 , v )$ ; confidence 0.970
+
219. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130070/b13007061.png ; $BS ( 1,2 )$ ; confidence 0.942
  
220. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035000/e03500057.png ; $P = \{ B ( y _ { i } , \epsilon ) \}$ ; confidence 0.963
+
220. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120060/e1200606.png ; $T _ { y } Y$ ; confidence 0.942
  
221. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120150/e12015020.png ; $\dot { X } \square ^ { \gamma }$ ; confidence 0.598
+
221. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240228.png ; $\zeta _ { 1 } = \ldots = \zeta _ { q } = 0$ ; confidence 0.942
  
222. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120210/e1202105.png ; $x \rightarrow \frac { 1 } { x }$ ; confidence 0.997
+
222. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120060/w12006097.png ; $F : M f \rightarrow M f$ ; confidence 0.942
  
223. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130050/e13005035.png ; $= f ( t , x , u , u _ { t } , \nabla u )$ ; confidence 0.998
+
223. https://www.encyclopediaofmath.org/legacyimages/g/g043/g043970/g04397072.png ; $V \times V$ ; confidence 0.942
  
224. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120230/e12023032.png ; $A : \Gamma ( E ) \rightarrow R$ ; confidence 0.997
+
224. https://www.encyclopediaofmath.org/legacyimages/q/q130/q130030/q13003049.png ; $GF _ { 4 }$ ; confidence 0.942
  
225. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120240/e12024098.png ; $[ H _ { f } ^ { 1 } ( K ; T ) : Z _ { p } y ]$ ; confidence 0.948
+
225. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130100/r13010054.png ; $\alpha : y \rightarrow x$ ; confidence 0.942
  
226. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120260/e120260141.png ; $\alpha ( d \theta ) = d \theta$ ; confidence 0.998
+
226. https://www.encyclopediaofmath.org/legacyimages/c/c020/c020920/c02092025.png ; $B ( x )$ ; confidence 0.942
  
227. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120260/e12026066.png ; $\theta _ { 1 } = m / \sigma ^ { 2 }$ ; confidence 0.998
+
227. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120100/a12010072.png ; $\partial \phi$ ; confidence 0.942
  
228. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120260/e120260113.png ; $q \delta _ { 0 } + p \delta _ { 1 }$ ; confidence 0.990
+
228. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012950/a012950122.png ; $( a , b )$ ; confidence 0.942
  
229. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120260/e120260139.png ; $( v ^ { \prime } , p ^ { \prime } )$ ; confidence 0.998
+
229. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120120/a12012060.png ; $\lambda ( x , y ) = \operatorname { sup } \{ \lambda : y \geq \lambda x \}$ ; confidence 0.942
  
230. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130060/e13006066.png ; $( q , r ) : ( Q , R ) \rightarrow B$ ; confidence 0.994
+
230. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130450/s13045079.png ; $= 6 \int _ { 0 } ^ { 1 } C _ { X , Y } ( u , u ) d u - 2$ ; confidence 0.942
  
231. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130100/f13010077.png ; $\lambda ^ { p } ( M ^ { 1 } ( G ) )$ ; confidence 0.996
+
231. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001075.png ; $s ^ { 2 }$ ; confidence 0.942
  
232. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130100/f13010096.png ; $L _ { C } ^ { \infty } ( \hat { G } )$ ; confidence 0.669
+
232. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130080/w130080127.png ; $S _ { n } = s _ { n } + \theta ^ { 2 } F _ { n }$ ; confidence 0.942
  
233. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130100/f1301008.png ; $( l _ { N } ) _ { N = 1 } ^ { \infty } 1$ ; confidence 0.185
+
233. https://www.encyclopediaofmath.org/legacyimages/c/c020/c020280/c02028095.png ; $C ( K )$ ; confidence 0.942
  
234. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130100/f130100106.png ; $\phi , \psi \in C _ { 00 } ( G ; C )$ ; confidence 0.558
+
234. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b11022032.png ; $\Lambda ( M , s ) = \varepsilon ( M , s ) \Lambda ( M ^ { \vee } , 1 - s )$ ; confidence 0.942
  
235. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130100/f13010038.png ; $A _ { 2 } ( G ) \subset A _ { p } ( G )$ ; confidence 0.929
+
235. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130050/r13005010.png ; $g a = b$ ; confidence 0.942
  
236. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120090/f12009016.png ; $\mu \in H ( C ^ { n } ) ^ { \prime }$ ; confidence 0.443
+
236. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120110/l12011024.png ; $A v = \lambda M v$ ; confidence 0.942
  
237. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130210/f13021037.png ; $B ( G ) = B ( G _ { d } ) \cap C ( G ; C )$ ; confidence 0.924
+
237. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110660/b11066061.png ; $| y ^ { \prime } - y | \leq | x - y | / 2$ ; confidence 0.942
  
238. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120100/f12010047.png ; $\tau ( m n ) = \tau ( m ) \tau ( n )$ ; confidence 0.998
+
238. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120070/t12007058.png ; $g \mapsto a _ { n } ( g )$ ; confidence 0.942
  
239. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120100/f12010099.png ; $\operatorname { PSL } ( 2 , Z )$ ; confidence 0.682
+
239. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180312.png ; $\nabla g = 0 \in \otimes ^ { 3 } E$ ; confidence 0.942
  
240. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120110/f12011081.png ; $\Omega \subset D ^ { \gamma }$ ; confidence 0.411
+
240. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110030/l11003064.png ; $M ( E ) = L ( E ) ^ { * }$ ; confidence 0.942
  
241. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120110/f12011018.png ; $P \times \hookrightarrow S$ ; confidence 0.783
+
241. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120110/a1201103.png ; $\varphi ( \alpha , 0,1 ) = 0 , \varphi ( \alpha , 0,2 ) = 1$ ; confidence 0.942
  
242. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120110/f120110203.png ; $f ( x ) \in \tilde { Q } ( D ^ { n } )$ ; confidence 0.487
+
242. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120130/t12013019.png ; $\Psi _ { 1 } ( z ) = e ^ { \sum _ { 1 } ^ { \infty } x _ { i } z ^ { i } } S _ { 1 } \chi ( z ) =$ ; confidence 0.942
  
243. https://www.encyclopediaofmath.org/legacyimages/f/f110/f110160/f110160167.png ; $\psi _ { \mathfrak { A } } ^ { l }$ ; confidence 0.236
+
243. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130140/t13014066.png ; $( h _ { j } ) ^ { * } ( M _ { i j } ^ { \beta } ) = ( h _ { i } ^ { - 1 } M _ { i j } ^ { \beta } h _ { j } )$ ; confidence 0.942
  
244. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120150/f12015023.png ; $i ( A ) = \alpha ( A ) - \beta ( A )$ ; confidence 1.000
+
244. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120120/e12012096.png ; $\mu ^ { ( t + 1 ) } = \frac { \sum _ { i } w _ { i } ^ { ( t + 1 ) } y _ { i } } { \sum _ { i } w _ { i } ^ { ( t + 1 ) } }$ ; confidence 0.942
  
245. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120150/f12015046.png ; $( Y ^ { \prime } , X ^ { \prime } )$ ; confidence 0.998
+
245. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120370/b12037078.png ; $L \in N P$ ; confidence 0.942
  
246. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120170/f12017013.png ; $W = \operatorname { lin } ( w )$ ; confidence 0.872
+
246. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040266.png ; $K ( x ) \approx L ( x ) = \{ x \approx T \}$ ; confidence 0.942
  
247. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120210/f12021039.png ; $\lambda _ { i } - \lambda _ { j }$ ; confidence 0.899
+
247. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040242.png ; $K ( \Gamma ) \approx L ( \Gamma ) = \{ \kappa _ { j } ( \psi ) \approx \lambda _ { j } ( \psi ) : \psi \in \Gamma , j \in J \}$ ; confidence 0.942
  
248. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120210/f12021032.png ; $\mathfrak { c } _ { 0 } \equiv 1$ ; confidence 0.347
+
248. https://www.encyclopediaofmath.org/legacyimages/h/h046/h046010/h046010141.png ; $M _ { 0 } \times S ^ { 1 } \approx M _ { 1 } \times S ^ { 1 }$ ; confidence 0.942
  
249. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120230/f12023034.png ; $\varphi \in \Omega ^ { l } ( M )$ ; confidence 0.999
+
249. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057540/l057540111.png ; $\beta ( t )$ ; confidence 0.942
  
250. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120240/f12024041.png ; $t - h ( t ) \rightarrow \infty$ ; confidence 0.997
+
250. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120420/b12042080.png ; $\Psi ^ { - 1 }$ ; confidence 0.942
  
251. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130290/f13029015.png ; $T _ { m } ( a , b ) = ( a + b - 1 ) \vee 0$ ; confidence 0.901
+
251. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120190/m12019022.png ; $( f ^ { * } g ) ( x ) = \int _ { 1 } ^ { \infty } \int _ { 1 } ^ { \infty } S ( x , y , t ) f ( t ) g ( y ) d t d y$ ; confidence 0.942
  
252. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120030/g12003014.png ; $\xi _ { 1 } , \dots , \xi _ { n } + 1$ ; confidence 0.440
+
252. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130130/d1301307.png ; $x = r \operatorname { sin } \theta \operatorname { cos } \phi$ ; confidence 0.941
  
253. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120030/g12003013.png ; $( Q _ { N } ^ { G } , Q _ { 2 N } ^ { G K } )$ ; confidence 0.727
+
253. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130260/m130260248.png ; $z \dot { b } = x \dot { b }$ ; confidence 0.941
  
254. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130030/g13003090.png ; $C _ { n d } ^ { \infty } ( \Omega )$ ; confidence 0.415
+
254. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130400/s13040052.png ; $X _ { G } E G \rightarrow B G$ ; confidence 0.941
  
255. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130030/g13003089.png ; $R _ { nd } ( \Omega ) = B / I _ { nd }$ ; confidence 0.876
+
255. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130030/e13003018.png ; $\Gamma \backslash X$ ; confidence 0.941
  
256. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130030/g13003041.png ; $I _ { 0 } = \{ ( u _ { j } ) _ { j \in N }$ ; confidence 0.758
+
256. https://www.encyclopediaofmath.org/legacyimages/s/s090/s090670/s09067070.png ; $S ( g u ^ { k } ) = g S ( u ^ { k } ) , \quad g \in GL ^ { k } ( n ) , \quad u ^ { k } \in M _ { k }$ ; confidence 0.941
  
257. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130040/g13004071.png ; $\mu ( R ^ { n } \backslash E ) = 0$ ; confidence 0.981
+
257. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130510/s13051071.png ; $G = ( V , E )$ ; confidence 0.941
  
258. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130040/g13004012.png ; $f : R ^ { m } \rightarrow R ^ { n }$ ; confidence 0.198
+
258. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120340/b1203401.png ; $\sum _ { k = 0 } ^ { \infty } c _ { k } z ^ { k }$ ; confidence 0.941
  
259. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120040/g120040183.png ; $T ^ { N } = R ^ { N } / ( 2 \pi Z ) ^ { N }$ ; confidence 0.249
+
259. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120210/c120210139.png ; $\{ \alpha _ { n } \} \subseteq \{ n \}$ ; confidence 0.941
  
260. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120050/g1200509.png ; $\psi ( x , y , t ) = \psi _ { 0 } ( y )$ ; confidence 0.972
+
260. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130050/o13005076.png ; $\frac { I - \Theta _ { \Delta } ( z ) \Theta _ { \Delta } ( w ) ^ { * } } { 1 - z \overline { w } } = G ( I - z T ) ^ { - 1 } ( I - \overline { w } T ^ { * } ) ^ { - 1 } G ^ { * }$ ; confidence 0.941
  
261. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120050/g12005036.png ; $R = R _ { c } + \varepsilon ^ { 2 }$ ; confidence 0.318
+
261. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120320/b120320102.png ; $F ( t , 1 - t ) = \| t x + ( 1 - t ) y \| \leq 1$ ; confidence 0.941
  
262. https://www.encyclopediaofmath.org/legacyimages/g/g043/g043370/g04337013.png ; $( x , h ) \rightarrow D f ( x , h )$ ; confidence 0.998
+
262. https://www.encyclopediaofmath.org/legacyimages/l/l061/l061050/l06105038.png ; $P \subset [ a , b ]$ ; confidence 0.941
  
263. https://www.encyclopediaofmath.org/legacyimages/g/g043/g043370/g0433709.png ; $h \rightarrow D f ( x _ { 0 } , h )$ ; confidence 0.999
+
263. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120210/f12021082.png ; $( \frac { \partial } { \partial \lambda } ) ^ { m _ { j } + l } [ u ( z , \lambda ) ( \lambda - \lambda _ { j } ) ^ { m _ { j } } ] =$ ; confidence 0.941
  
264. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120010/h1200107.png ; $\varphi : T V \rightarrow T W$ ; confidence 0.994
+
264. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120070/w12007064.png ; $L ^ { 2 } ( R ^ { 2 n } )$ ; confidence 0.941
  
265. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130020/h1300201.png ; $A = \{ a _ { 1 } , \dots , a _ { y } \}$ ; confidence 0.399
+
265. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120170/l120170229.png ; $x _ { i } = x _ { j } x _ { k } x _ { j } ^ { - 1 }$ ; confidence 0.941
  
266. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h12002045.png ; $H ^ { 2 } = L ^ { 2 } \ominus H ^ { 2 }$ ; confidence 0.960
+
266. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120370/b12037040.png ; $L _ { \Omega } ( f )$ ; confidence 0.941
  
267. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120030/h12003026.png ; $\operatorname { dim } M = 2$ ; confidence 0.993
+
267. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120120/m120120128.png ; $C = Z ( Q )$ ; confidence 0.941
  
268. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120040/h12004018.png ; $\{ V _ { \xi } : \xi < \lambda \}$ ; confidence 0.997
+
268. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130070/a13007099.png ; $n ^ { 10 }$ ; confidence 0.941
  
269. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120040/h12004020.png ; $U _ { \xi } \subset * U _ { \eta }$ ; confidence 0.919
+
269. https://www.encyclopediaofmath.org/legacyimages/b/b016/b016950/b01695087.png ; $R ( G )$ ; confidence 0.941
  
270. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120040/h12004031.png ; $W \cap U _ { \xi } = * \emptyset$ ; confidence 0.972
+
270. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120200/c1202007.png ; $S ^ { k } \times D ^ { m - k }$ ; confidence 0.941
  
271. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120040/h12004022.png ; $V _ { \xi } \subset * V _ { \eta }$ ; confidence 0.745
+
271. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120040/g120040163.png ; $P ( t , x ; D _ { t } , D _ { x } ) u =$ ; confidence 0.941
  
272. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130060/h13006019.png ; $T _ { n } ( L ) = \sum L ^ { \prime }$ ; confidence 0.751
+
272. https://www.encyclopediaofmath.org/legacyimages/k/k120/k120120/k12012020.png ; $\alpha _ { k } = \int _ { - \infty } ^ { \infty } x ^ { k } f ( x ) d x$ ; confidence 0.941
  
273. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130070/h1300704.png ; $R : = k [ X _ { 1 } , \dots , X _ { n } ]$ ; confidence 0.315
+
273. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120040/n12004023.png ; $J ^ { k } F$ ; confidence 0.941
  
274. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130070/h13007026.png ; $k ( t ) [ X _ { 1 } , \dots , X _ { n } ]$ ; confidence 0.536
+
274. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120040/g120040107.png ; $L = L _ { 1 } = D _ { x _ { 1 } }$ ; confidence 0.941
  
275. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120070/h12007023.png ; $A _ { m } \rightarrow A _ { m - 1 }$ ; confidence 0.542
+
275. https://www.encyclopediaofmath.org/legacyimages/m/m064/m064410/m06441016.png ; $\Gamma _ { 0 } ( N )$ ; confidence 0.941
  
276. https://www.encyclopediaofmath.org/legacyimages/h/h048/h048070/h04807017.png ; $T ^ { 2 } = Y ^ { \prime } S ^ { - 1 } Y$ ; confidence 0.977
+
276. https://www.encyclopediaofmath.org/legacyimages/v/v130/v130050/v13005040.png ; $v \mapsto Y ( v , x )$ ; confidence 0.941
  
277. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130120/h13012029.png ; $a : E _ { 1 } \rightarrow E _ { 2 }$ ; confidence 0.863
+
277. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120050/h1200507.png ; $u _ { \Phi }$ ; confidence 0.941
  
278. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130120/h1301209.png ; $H : G _ { 1 } \rightarrow G _ { 2 }$ ; confidence 0.985
+
278. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120230/m12023057.png ; $f _ { t , s } ( x ) = \operatorname { sup } _ { z \in H } \operatorname { inf } _ { y \in H } ( f ( y ) + \frac { 1 } { 2 t } \| z - y \| ^ { 2 } - \frac { 1 } { 2 s } \| x - z \| ^ { 2 } )$ ; confidence 0.941
  
279. https://www.encyclopediaofmath.org/legacyimages/h/h130/h130120/h1301206.png ; $h : G _ { 1 } \rightarrow G _ { 2 }$ ; confidence 0.987
+
279. https://www.encyclopediaofmath.org/legacyimages/o/o120/o120010/o12001032.png ; $O ( 1 )$ ; confidence 0.941
  
280. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120010/i12001015.png ; $C ^ { 0 , \sigma ( t ) } ( \Omega )$ ; confidence 0.955
+
280. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015660/b01566046.png ; $p < q$ ; confidence 0.941
  
281. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130010/i13001029.png ; $\overline { d } _ { \chi } ^ { G }$ ; confidence 0.958
+
281. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120030/m12003069.png ; $\vec { x }$ ; confidence 0.941
  
282. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120040/i12004024.png ; $[ d \overline { \zeta _ { j } } ]$ ; confidence 0.851
+
282. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130050/z13005022.png ; $\mathfrak { D } = \operatorname { Hom } _ { R } ( \Omega _ { k } ( R ) , R )$ ; confidence 0.941
  
283. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120060/i12006023.png ; $L : X _ { P } \rightarrow Y _ { Q }$ ; confidence 0.592
+
283. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130070/a13007082.png ; $H ( x )$ ; confidence 0.941
  
284. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120060/i12006024.png ; $U : X _ { P } \rightarrow Y _ { Q }$ ; confidence 0.863
+
284. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t120200138.png ; $| z _ { 1 } | \geq \ldots \geq | z _ { k _ { 1 } } | > \frac { m + 2 n } { m + n } \geq$ ; confidence 0.941
  
285. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130050/i13005019.png ; $t _ { - } ( k ) = t _ { + } ( k ) : = t ( k )$ ; confidence 0.913
+
285. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130190/b13019076.png ; $\zeta ( \frac { 1 } { 2 } + i t ) \ll t ^ { \beta }$ ; confidence 0.941
  
286. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130050/i1300503.png ; $x \in R : = ( - \infty , \infty )$ ; confidence 0.834
+
286. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120070/q120070124.png ; $a d - q ^ { - 1 } b c$ ; confidence 0.941
  
287. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130050/i13005026.png ; $| t ( k ) | ^ { 2 } + | r ( k ) | ^ { 2 } = 1$ ; confidence 0.960
+
287. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120100/w12010022.png ; $\square ^ { \prime } \Gamma = \square ^ { \prime \prime } \Gamma$ ; confidence 0.941
  
288. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130060/i13006096.png ; $A ( x ) = 2 \Gamma _ { 2 x } ( 2 x , 0 )$ ; confidence 0.992
+
288. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120040/b12004090.png ; $f ^ { * }$ ; confidence 0.941
  
289. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130070/i13007055.png ; $u : = u ( x , y ) : = u ( x , y , k _ { 0 } )$ ; confidence 0.948
+
289. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240546.png ; $7$ ; confidence 0.941
  
290. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120100/i12010028.png ; $\{ \pm i C ( t ) , 0 , \ldots , 0 \}$ ; confidence 0.678
+
290. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120070/a12007074.png ; $K _ { 2 } > 0$ ; confidence 0.941
  
291. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i13009094.png ; $r , s , l _ { i } , t , m ; \in Z \geq 0$ ; confidence 0.243
+
291. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120130/t12013054.png ; $L _ { 1 } = L _ { 2 } = : L = L ( x - y )$ ; confidence 0.941
  
292. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i130090137.png ; $\mu _ { p } ( k _ { \infty } / k ) = 0$ ; confidence 0.987
+
292. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130050/i13005054.png ; $S : = \{ r _ { + } ( k ) , i k _ { j } , ( m _ { j } ^ { + } ) ^ { 2 } : \forall k > 0,1 \leq j \leq J \}$ ; confidence 0.940
  
293. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130030/j13003031.png ; $\alpha \square \alpha ^ { * }$ ; confidence 0.759
+
293. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130070/i13007092.png ; $| x | > R$ ; confidence 0.940
  
294. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120010/j12001064.png ; $F : R ^ { n } \rightarrow R ^ { n }$ ; confidence 0.986
+
294. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120180/a12018014.png ; $S _ { n } = S + \alpha \lambda ^ { n }$ ; confidence 0.940
  
295. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120010/j12001038.png ; $\operatorname { deg } F _ { 1 }$ ; confidence 0.885
+
295. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120240/f12024046.png ; $t - h ( t ) + \infty$ ; confidence 0.940
  
296. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120010/j12001057.png ; $F : C ^ { n } \rightarrow C ^ { n }$ ; confidence 0.974
+
296. https://www.encyclopediaofmath.org/legacyimages/d/d033/d033190/d03319031.png ; $\Lambda _ { 1 }$ ; confidence 0.940
  
297. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120010/j12001039.png ; $\operatorname { log } F _ { 2 }$ ; confidence 0.853
+
297. https://www.encyclopediaofmath.org/legacyimages/u/u130/u130020/u13002031.png ; $| \hat { f } ( y ) | \leq B e ^ { - \pi b y ^ { 2 } }$ ; confidence 0.940
  
298. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130020/j1300204.png ; $P ( i \in \Gamma _ { p } ) = p _ { i }$ ; confidence 0.458
+
298. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130110/m130110104.png ; $v ( x , t )$ ; confidence 0.940
  
299. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130040/j130040109.png ; $z ( ( ( v ^ { - 1 } - v ) / z ) ^ { 2 } - 1 )$ ; confidence 0.985
+
299. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840125.png ; $L \cap L ^ { \perp } = \{ 0 \}$ ; confidence 0.940
  
300. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130070/j13007033.png ; $\omega \in \partial \Delta$ ; confidence 0.994
+
300. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130140/t13014042.png ; $K _ { 0 } ( Q ) = K _ { 0 } ( \operatorname { rep } _ { K } ( Q ) )$ ; confidence 0.940

Revision as of 00:10, 13 February 2020

List

1. h1200303.png ; $| d \varphi$ ; confidence 0.948

2. c13004031.png ; $\sum _ { k = 1 } ^ { \infty } \frac { \zeta ( 2 k ) } { k ( 2 k + 1 ) 2 ^ { 4 k } } = \operatorname { log } ( \frac { \pi } { 2 } ) - 1 + \frac { 2 G } { \pi }$ ; confidence 0.948

3. a12012063.png ; $y ^ { * } = \lambda ^ { * } x ^ { * }$ ; confidence 0.948

4. i12004027.png ; $- 2 * \partial _ { \zeta } N ( \zeta , z )$ ; confidence 0.948

5. a13012049.png ; $d = 2$ ; confidence 0.948

6. z13007023.png ; $x ^ { - 1 } H x \subseteq G$ ; confidence 0.948

7. f13005019.png ; $p _ { 1 } p _ { 2 } p _ { 3 }$ ; confidence 0.948

8. k1300604.png ; $\left( \begin{array} { c } { [ n ] } \\ { k } \end{array} \right)$ ; confidence 0.948

9. i13005069.png ; $q ( x ) \in L _ { 1,1 } ( R )$ ; confidence 0.947

10. a1302706.png ; $\{ X _ { n } \} \subset X$ ; confidence 0.947

11. a13013014.png ; $\Leftrightarrow [ \frac { \partial } { \partial x } - P , \frac { \partial } { \partial t _ { n } } - Q ^ { ( n ) } ] = 0$ ; confidence 0.947

12. t120060135.png ; $| i \nabla + A ( x ) | ^ { 2 } + \sigma . B ( x )$ ; confidence 0.947

13. a01024029.png ; $g = 0$ ; confidence 0.947

14. i050650269.png ; $M \times M$ ; confidence 0.947

15. h12012056.png ; $Y = \operatorname { ker } ( \pi ) \oplus \operatorname { im } ( \pi )$ ; confidence 0.947

16. j12002077.png ; $X = M ^ { 1 } - \operatorname { lim } _ { N \rightarrow \infty } \sum _ { n = - N } ^ { n = N } c _ { n } A ^ { n }$ ; confidence 0.947

17. e120190161.png ; $[ x , y ] \backslash \{ x , y \}$ ; confidence 0.947

18. e03500081.png ; $I ( \xi , \xi ^ { \prime } )$ ; confidence 0.947

19. r13004062.png ; $\Delta ^ { 2 } u _ { 1 } = \Lambda _ { 1 } u _ { 1 } \text { in } \Omega$ ; confidence 0.947

20. w13011016.png ; $K ^ { \perp }$ ; confidence 0.947

21. f12002042.png ; $P , Q \in A [ X ]$ ; confidence 0.947

22. m13007014.png ; $s \in ( 1 / 2 ) Z$ ; confidence 0.947

23. o13008070.png ; $q _ { 1 } ( x ) = q _ { 2 } ( x )$ ; confidence 0.947

24. a13013030.png ; $( \partial / \partial x ) - P _ { 0 } z$ ; confidence 0.947

25. a13013093.png ; $P _ { n + 1 } = \sum _ { i = 0 } ^ { n + 1 } u _ { i } ( \frac { d } { d x } ) ^ { i }$ ; confidence 0.947

26. a0120907.png ; $\alpha \neq 0$ ; confidence 0.947

27. f1300908.png ; $U _ { n } ( x ) = \frac { \alpha ^ { n } ( x ) - \beta ^ { n } ( x ) } { \alpha ( x ) - \beta ( x ) }$ ; confidence 0.947

28. k055840272.png ; $E ( \Delta ) K \subset D ( A )$ ; confidence 0.947

29. h12002069.png ; $\| \phi - f \| _ { L } \infty = \| H _ { \phi } \|$ ; confidence 0.947

30. b12051093.png ; $( n - 1 , \{ s _ { k } \} , \{ y _ { k } \} , H _ { 0 } ^ { - 1 } , d )$ ; confidence 0.947

31. w12011020.png ; $( J ^ { t } a ) ( x , \xi ) =$ ; confidence 0.947

32. b12022074.png ; $G ( u ) = \int a ( \xi ) H ( M ( u , \xi ) , \xi ) d \xi$ ; confidence 0.947

33. m1201102.png ; $T ( h ) = F \times [ 0,1 ] / \{ ( x , 0 ) \sim ( h ( x ) , 1 ) : x \in F \}$ ; confidence 0.947

34. b1201403.png ; $\omega ( z )$ ; confidence 0.947

35. n1201102.png ; $y _ { i } = x _ { i } + \epsilon _ { i }$ ; confidence 0.947

36. o12006056.png ; $W ^ { k } E _ { \Phi } ( R ^ { n } )$ ; confidence 0.947

37. b01612010.png ; $x y$ ; confidence 0.947

38. b13006068.png ; $V ^ { H } V = I$ ; confidence 0.947

39. c11026097.png ; $V ^ { G }$ ; confidence 0.947

40. b12049039.png ; $\{ A _ { j } \}$ ; confidence 0.947

41. a1106807.png ; $p \leq q$ ; confidence 0.947

42. l120120177.png ; $O _ { K _ { S } } [ \sigma ]$ ; confidence 0.947

43. b120430112.png ; $\beta \gamma = \gamma \beta + ( 1 - q ^ { - 2 } ) \alpha ( \delta - \alpha ) , \delta \beta = \beta \delta + ( 1 - q ^ { - 2 } ) \alpha \beta$ ; confidence 0.947

44. b12052075.png ; $u _ { n } = \frac { y _ { n } } { \| s _ { n } \| _ { 2 } } \text { and } v _ { n } = \frac { s _ { n } } { \| s _ { n } \| _ { 2 } }$ ; confidence 0.947

45. p130070103.png ; $\leq - \operatorname { log } ( \operatorname { max } \{ \operatorname { dist } ( z , \partial \Omega ) , \operatorname { dist } ( w , \partial \Omega ) \} )$ ; confidence 0.947

46. r130080109.png ; $A u = \sum _ { j = 1 } ^ { \infty } \lambda _ { j } ( u , \varphi _ { j } ) \varphi _ { j } ( x )$ ; confidence 0.947

47. b12022034.png ; $Q ( f ) = \psi ( \rho _ { f } , T _ { f } ) ( M _ { f } - f )$ ; confidence 0.947

48. w130080199.png ; $\frac { d f } { d t _ { s } } = \kappa \partial _ { s } f + \{ H _ { s } , f \}$ ; confidence 0.947

49. b12027064.png ; $b ( . )$ ; confidence 0.947

50. i13001057.png ; $\chi _ { \lambda ^ { \prime } } \preceq \chi _ { \lambda }$ ; confidence 0.947

51. b13007022.png ; $b ^ { - 1 } a ^ { - 1 } b a b ^ { - 1 } a ^ { - 1 } b a b ^ { - 1 }$ ; confidence 0.947

52. c12030029.png ; $( H , H )$ ; confidence 0.946

53. z13001045.png ; $K _ { i } = \operatorname { lim } _ { z \rightarrow z _ { i } } [ ( z - z _ { i } ) \frac { h ( z ) } { g ( z ) } ]$ ; confidence 0.946

54. a11032025.png ; $R _ { 1 } ^ { ( i ) } ( z ) = \frac { R _ { 0 } ^ { ( i ) } ( z ) - 1 } { z }$ ; confidence 0.946

55. a130180117.png ; $c _ { 1 } ( R ) = \operatorname { Dom } ( R ) \times U$ ; confidence 0.946

56. o13005033.png ; $\mathfrak { H } _ { + } \subset \mathfrak { H } \subset \mathfrak { H } _ { - }$ ; confidence 0.946

57. f12021068.png ; $( \frac { \partial } { \partial \lambda } ) ^ { n _ { 1 } + l } [ u ( z , \lambda ) ( \lambda - \lambda _ { 2 } ) ^ { n _ { 1 } } ] =$ ; confidence 0.946

58. w120090344.png ; $\beta \in \Sigma$ ; confidence 0.946

59. s12017044.png ; $f ( d ) = \sum w _ { i } d _ { i }$ ; confidence 0.946

60. e12009021.png ; $g _ { \mu \nu } = \left( \begin{array} { c c c c } { 1 } & { 0 } & { 0 } & { 0 } \\ { 0 } & { - 1 } & { 0 } & { 0 } \\ { 0 } & { 0 } & { - 1 } & { 0 } \\ { 0 } & { 0 } & { 0 } & { - 1 } \end{array} \right)$ ; confidence 0.946

61. l06002018.png ; $L ( \pi - x ) = \pi \operatorname { ln } 2 - L ( x )$ ; confidence 0.946

62. s1305106.png ; $S \subset Z ^ { 0 }$ ; confidence 0.946

63. l1200406.png ; $x \in [ 0 , L ]$ ; confidence 0.946

64. f130290156.png ; $( f , \phi ) ^ { \leftarrow } | _ { \sigma } : \tau \leftarrow \sigma$ ; confidence 0.946

65. t130130105.png ; $0 \rightarrow \Lambda \rightarrow T _ { 1 } \rightarrow \ldots \rightarrow T _ { n } \rightarrow 0$ ; confidence 0.946

66. m12003085.png ; $H _ { \vec { \theta } }$ ; confidence 0.946

67. d13002014.png ; $E \subset S$ ; confidence 0.946

68. w120110264.png ; $g _ { 1 } \leq \ldots \leq g _ { k }$ ; confidence 0.946

69. d0302508.png ; $p _ { k } ( x ) \in C [ a , b ]$ ; confidence 0.946

70. d1101803.png ; $\rho ( u )$ ; confidence 0.946

71. a13014020.png ; $R ^ { 3 }$ ; confidence 0.946

72. t12001029.png ; $C ( S )$ ; confidence 0.946

73. a130240218.png ; $z = \Gamma y$ ; confidence 0.946

74. i1300404.png ; $\sum _ { k = 1 } ^ { \infty } b _ { k } \operatorname { sin } k x$ ; confidence 0.946

75. g043810196.png ; $D ^ { \alpha } f$ ; confidence 0.946

76. c130070230.png ; $T _ { 2 } \in \Re ( C _ { 2 } )$ ; confidence 0.946

77. c12028051.png ; $\pi ( X * )$ ; confidence 0.946

78. e13005020.png ; $= \frac { \Gamma ( \alpha + \beta ) } { \Gamma ( \alpha ) \Gamma ( \beta ) } \int _ { 0 } ^ { 1 } \tau ( x + ( y - x ) t ) t ^ { \beta - 1 } ( 1 - t ) ^ { \alpha - 1 } d t +$ ; confidence 0.946

79. a13025024.png ; $i = 1,2$ ; confidence 0.946

80. e120230141.png ; $\Delta = \pi ^ { k ^ { * } } ( \Delta )$ ; confidence 0.946

81. k05584079.png ; $[ f , g ] = \int _ { - \infty } ^ { - \infty } f g d \sigma$ ; confidence 0.946

82. c130160158.png ; $NP = SO ( \exists )$ ; confidence 0.946

83. w1301304.png ; $H = ( \kappa _ { 1 } + \kappa _ { 2 } ) / 2$ ; confidence 0.946

84. v12003011.png ; $\mu ( E ) | < \varepsilon$ ; confidence 0.946

85. c02583034.png ; $u \in H ^ { \infty }$ ; confidence 0.946

86. s09067098.png ; $GL ^ { 2 } ( n ) \rightarrow GL ^ { 1 } ( n )$ ; confidence 0.946

87. m130230137.png ; $f ( C )$ ; confidence 0.946

88. z13013027.png ; $H ( r , 0 ) = \sum _ { n = 0 } ^ { \infty } a _ { n } H _ { n } ( r , 0 )$ ; confidence 0.946

89. d12018092.png ; $( X , R )$ ; confidence 0.946

90. a13029081.png ; $Y _ { id } = \Sigma \times S ^ { 1 }$ ; confidence 0.946

91. a12017012.png ; $\Pi ( \alpha ) = \operatorname { exp } ( - \int _ { 0 } ^ { \alpha } \mu ( \sigma ) d \sigma )$ ; confidence 0.946

92. m06367019.png ; $K = 1$ ; confidence 0.946

93. b1301707.png ; $d _ { 1 } = \frac { \operatorname { log } ( S ( t ) / K ) + ( r + \sigma ^ { 2 } / 2 ) ( T - t ) } { \sigma \sqrt { T - t } }$ ; confidence 0.946

94. t12006096.png ; $Z ^ { 7 / 3 }$ ; confidence 0.946

95. q120070107.png ; $\Delta g = g \otimes g$ ; confidence 0.946

96. e03640011.png ; $p ^ { k }$ ; confidence 0.945

97. a110680253.png ; $R = Z$ ; confidence 0.945

98. m13025080.png ; $( x , \varepsilon ) \in R ^ { n } \times ( 0 , \infty )$ ; confidence 0.945

99. d12015030.png ; $= ( 4 q ^ { 2 t } \frac { q ^ { 2 t } - 1 } { q ^ { 2 } - 1 } , q ^ { 2 t - 1 } [ \frac { 2 ( q ^ { 2 t } - 1 ) } { q + 1 } + 1 ] , q ^ { 2 t - 1 } ( q - 1 ) \frac { q ^ { 2 t - 1 } + 1 } { q + 1 } , q ^ { 4 t - 2 } )$ ; confidence 0.945

100. b12043025.png ; $S : B \rightarrow B$ ; confidence 0.945

101. s12028038.png ; $\overline { f } ( [ g ] ) : X \rightarrow P$ ; confidence 0.945

102. b12021046.png ; $V ( a , p )$ ; confidence 0.945

103. s1203406.png ; $SH ^ { * } ( M , \omega , \phi )$ ; confidence 0.945

104. o12005024.png ; $\varphi ( u ) = u ^ { p }$ ; confidence 0.945

105. c02485060.png ; $a + b$ ; confidence 0.945

106. f12021088.png ; $a ^ { 2 } 0 \neq 0$ ; confidence 0.945

107. d13006025.png ; $m ( \Xi ) = 1$ ; confidence 0.945

108. b13019079.png ; $\beta > 9 / 56 = 0.1607$ ; confidence 0.945

109. b130290124.png ; $i \neq 1 , \operatorname { dim } A$ ; confidence 0.945

110. c02157039.png ; $L _ { 2 } ( G )$ ; confidence 0.945

111. h13003057.png ; $s _ { i } + j - 1$ ; confidence 0.945

112. a130240417.png ; $( n - r ) ^ { - 1 } M _ { E }$ ; confidence 0.945

113. t12003041.png ; $\Psi \circ f = F _ { K } \circ \Phi$ ; confidence 0.945

114. a130240213.png ; $7$ ; confidence 0.945

115. b130300112.png ; $F _ { m }$ ; confidence 0.945

116. n12012057.png ; $F ^ { 4 } \in N P$ ; confidence 0.945

117. r13008093.png ; $( u , v ) _ { + } = ( A ^ { - 1 / 2 } u , A ^ { - 1 / 2 } v ) _ { 0 }$ ; confidence 0.945

118. z13001050.png ; $K _ { i } = \frac { 1 } { ( r - 1 ) ! } \operatorname { lim } _ { z \rightarrow z _ { i } } \frac { d ^ { n } } { d z ^ { - 1 } } [ ( z - z _ { i } ) ^ { r } \frac { h ( z ) } { g ( z ) } ]$ ; confidence 0.945

119. c1301102.png ; $f : H \rightarrow R \cup \{ \infty \}$ ; confidence 0.945

120. a13007092.png ; $\sigma ^ { 0 } ( p ^ { \alpha } ) = \sigma ( p ^ { \alpha } )$ ; confidence 0.945

121. f04223042.png ; $1$ ; confidence 0.945

122. e120230180.png ; $\sigma ^ { 2 k ^ { * } } E ( L ) = 0$ ; confidence 0.945

123. d03024025.png ; $f ( r ) ( x _ { 0 } ) = f ^ { ( r ) } ( x _ { 0 } )$ ; confidence 0.945

124. s1200502.png ; $| S ( z ) | \leq 1$ ; confidence 0.945

125. a1201507.png ; $\operatorname { Int } ( g ) : G \rightarrow G$ ; confidence 0.945

126. o1300207.png ; $M ( r _ { 1 } , r _ { 2 } ) > ( \frac { \pi } { 4 } ) ^ { 2 r _ { 2 } } ( \frac { n ^ { n } } { n ! } ) ^ { 2 }$ ; confidence 0.945

127. l11004041.png ; $H \in X$ ; confidence 0.945

128. i13007081.png ; $\forall \alpha ^ { \prime } , \alpha \in S ^ { 2 }$ ; confidence 0.945

129. a12013037.png ; $h ( \theta ) = E _ { \theta } [ H ( \theta , X ) ]$ ; confidence 0.945

130. k12006051.png ; $[ q ]$ ; confidence 0.945

131. a13008057.png ; $g ( x ; m , s ) = \left\{ \begin{array} { l l } { \frac { 1 } { s } - \frac { m - x } { s ^ { 2 } } } & { \text { if } m - s \leq x \leq m } \\ { \frac { 1 } { s } - \frac { x - m } { s ^ { 2 } } } & { \text { if } m \leq x \leq m + s } \end{array} \right.$ ; confidence 0.945

132. a12006058.png ; $S A ( t ) S ^ { - 1 } = A ( t ) + B ( t )$ ; confidence 0.945

133. d03033030.png ; $A _ { d R } ( X )$ ; confidence 0.945

134. c02372092.png ; $U ( a , R )$ ; confidence 0.945

135. m12007033.png ; $L ( s , \chi - 3 )$ ; confidence 0.945

136. n12002058.png ; $X _ { n } = 1 / n ( X _ { 1 } + \ldots + X _ { n } )$ ; confidence 0.945

137. a130050151.png ; $= \prod _ { m = 2 } ^ { \infty } ( 1 - m ^ { - z } ) ^ { - P ( m ) }$ ; confidence 0.945

138. e12024035.png ; $F / Q$ ; confidence 0.945

139. i13007026.png ; $k \rightarrow \infty$ ; confidence 0.945

140. s12026018.png ; $f \in \Gamma ( L ^ { 2 } ( R ) )$ ; confidence 0.944

141. z12001057.png ; $p ^ { m } - 1$ ; confidence 0.944

142. f12017028.png ; $d = n - m > 0$ ; confidence 0.944

143. f12008088.png ; $M _ { \varphi }$ ; confidence 0.944

144. b12034049.png ; $( \varphi _ { n } ) _ { n = 0 } ^ { \infty }$ ; confidence 0.944

145. a13007045.png ; $d < n$ ; confidence 0.944

146. a13031039.png ; $\rho ( X _ { 1 } )$ ; confidence 0.944

147. c12007012.png ; $d ^ { n } : C ^ { n } ( C , M ) \rightarrow C ^ { n + 1 } ( C , M )$ ; confidence 0.944

148. c13007061.png ; $g = \frac { ( n - 1 ) ( n - 2 ) } { 2 } -$ ; confidence 0.944

149. m12024011.png ; $d \Omega = \varphi \psi _ { x } d x + \psi \varphi y d y$ ; confidence 0.944

150. q120070120.png ; $\{ a , b , c , d \}$ ; confidence 0.944

151. n067520207.png ; $\epsilon _ { 1 } = \ldots \epsilon _ { p } = 1$ ; confidence 0.944

152. j1300403.png ; $P _ { L } ( \square )$ ; confidence 0.944

153. s130620195.png ; $[ - g , g ]$ ; confidence 0.944

154. p1301403.png ; $\hat { f } ( \alpha , p ) : = R f$ ; confidence 0.944

155. c12002073.png ; $R ^ { k }$ ; confidence 0.944

156. b12001032.png ; $\frac { \partial v } { \partial t } - 6 v ^ { 2 } \frac { \partial v } { \partial x } + \frac { \partial ^ { 3 } v } { \partial x ^ { 3 } } = 0$ ; confidence 0.944

157. w12011033.png ; $S ( R ^ { n } ) \times S ( R ^ { n } )$ ; confidence 0.944

158. b01566013.png ; $X$ ; confidence 0.944

159. b01695036.png ; $q - 1$ ; confidence 0.944

160. v0960308.png ; $y = - x + ( x ^ { 3 } / 3 ) + ( \dot { x } / \mu )$ ; confidence 0.944

161. b13007085.png ; $BS ( 1 , n )$ ; confidence 0.944

162. d1301308.png ; $y = r \operatorname { sin } \theta \operatorname { sin } \phi$ ; confidence 0.944

163. n067520139.png ; $e _ { j } ^ { n _ { i j } } \in E _ { A , K [ \lambda ] }$ ; confidence 0.944

164. b11096050.png ; $G ( K )$ ; confidence 0.944

165. b13007082.png ; $BS ( 1 , m )$ ; confidence 0.944

166. p12015031.png ; $\alpha \nmid \beta$ ; confidence 0.944

167. a13020018.png ; $K ( a , b )$ ; confidence 0.944

168. b12005033.png ; $A _ { b } ( B _ { E } ) \equiv$ ; confidence 0.944

169. c02325041.png ; $k = n + 1$ ; confidence 0.944

170. r130070150.png ; $= \int \int _ { T } d m ( t ) d m ( s ) F ( t ) \overline { G ( s ) } ( h ( s , x ) , h ( t , x ) ) _ { H } =$ ; confidence 0.944

171. b12032037.png ; $x , y \in E$ ; confidence 0.944

172. c1300108.png ; $N _ { V }$ ; confidence 0.944

173. r1300905.png ; $a \in R ^ { n } \backslash \{ 0 \}$ ; confidence 0.944

174. f12005039.png ; $F _ { q } [ T ]$ ; confidence 0.943

175. a120160129.png ; $W E$ ; confidence 0.943

176. r13007073.png ; $( f ( x ) , K ( x , y ) ) = ( \sum _ { j = 1 } ^ { J } K ( x , y _ { j } ) c _ { j } , K ( x , y ) ) =$ ; confidence 0.943

177. m11011041.png ; $L =$ ; confidence 0.943

178. f120080122.png ; $B _ { 2 } ( G )$ ; confidence 0.943

179. s130620142.png ; $\theta ( . , \lambda )$ ; confidence 0.943

180. r13012021.png ; $u , v \in A$ ; confidence 0.943

181. a12006035.png ; $u ( 0 ) = u _ { 0 } \in D ( A ) , f \in C ( [ 0 , T ] ; D ( A ) )$ ; confidence 0.943

182. c1200907.png ; $G / C _ { G } ( \langle x \rangle ^ { G } )$ ; confidence 0.943

183. w12018064.png ; $H ( A ^ { c } )$ ; confidence 0.943

184. e12027033.png ; $E _ { m } + 1$ ; confidence 0.943

185. b12022077.png ; $a ( \xi ) = \xi$ ; confidence 0.943

186. c130070245.png ; $2 g - 2 = \nu _ { i } ( 2 g _ { i } - 2 ) + \mathfrak { D } _ { i }$ ; confidence 0.943

187. e03691021.png ; $0 < a < 1$ ; confidence 0.943

188. a13029027.png ; $x ^ { \pm } \in L _ { 0 } \cap L _ { 1 }$ ; confidence 0.943

189. g120040153.png ; $L ^ { m } + Q$ ; confidence 0.943

190. c13010035.png ; $( f _ { 1 } ( x ) - f _ { 1 } ( y ) ) \cdot ( f _ { 2 } ( x ) - f _ { 2 } ( y ) ) \geq 0$ ; confidence 0.943

191. f120210108.png ; $+ z ^ { \lambda } \sum _ { j = 1 } ^ { \infty } z ^ { j } [ c _ { j } ( \lambda ) \pi ( \lambda + j ) + \sum _ { k = 0 } ^ { j - 1 } c _ { k } ( \lambda ) p _ { j - k } ( \lambda + k ) ]$ ; confidence 0.943

192. b13025018.png ; $\omega = \pi / 6$ ; confidence 0.943

193. c12008097.png ; $T _ { p q }$ ; confidence 0.943

194. b12010023.png ; $- F _ { n + 1 } ( X , q _ { i } + \sigma \eta , p _ { n + 1 } ) )$ ; confidence 0.943

195. c13005045.png ; $( G )$ ; confidence 0.943

196. c1202908.png ; $\mu ( \square ^ { g } m ) = g \mu ( m ) g ^ { - 1 } , \square ^ { \mu ( m ) } m ^ { \prime } = m m ^ { \prime } m ^ { - 1 }$ ; confidence 0.943

197. d12014024.png ; $= 2 \operatorname { cos } ( n \alpha ) = 2 T _ { n } ( \operatorname { cos } \alpha ) = 2 T _ { n } ( \frac { x } { 2 } )$ ; confidence 0.943

198. e12019021.png ; $X = R ^ { 2 }$ ; confidence 0.943

199. w13008098.png ; $N _ { f } = 0$ ; confidence 0.943

200. f12010058.png ; $J = 60 G _ { 4 } ^ { 3 } / \Delta$ ; confidence 0.943

201. b13007079.png ; $m | \neq | n$ ; confidence 0.943

202. p13012038.png ; $K >$ ; confidence 0.943

203. f13012022.png ; $h ( G )$ ; confidence 0.943

204. b130200139.png ; $i \neq - j$ ; confidence 0.943

205. m13013059.png ; $L ^ { + } = D ^ { + } - A ^ { \prime }$ ; confidence 0.943

206. p1201307.png ; $P ( x )$ ; confidence 0.943

207. a0125405.png ; $S \subset G$ ; confidence 0.943

208. b12053021.png ; $( T f _ { n } ) _ { n = 1 } ^ { \infty } \subset M$ ; confidence 0.943

209. t130050137.png ; $0 \in \sigma _ { T } ( A , H )$ ; confidence 0.943

210. k12008067.png ; $\kappa _ { p } ( f ) = K _ { p } ( \operatorname { Re } ( f ) ) + i K _ { p } ( \operatorname { Im } ( f ) )$ ; confidence 0.943

211. c1200108.png ; $1 \cup \{ \infty \}$ ; confidence 0.942

212. e03500030.png ; $\{ C _ { i } \}$ ; confidence 0.942

213. h12001010.png ; $X ^ { ( r ) }$ ; confidence 0.942

214. f1302906.png ; $\otimes : L \times L \rightarrow L$ ; confidence 0.942

215. v09690066.png ; $A = x _ { i \in I } A$ ; confidence 0.942

216. n067520486.png ; $\Phi ^ { ( j ) } = O ( | Z | )$ ; confidence 0.942

217. b11037026.png ; $\hat { \theta }$ ; confidence 0.942

218. p07304033.png ; $X$ ; confidence 0.942

219. b13007061.png ; $BS ( 1,2 )$ ; confidence 0.942

220. e1200606.png ; $T _ { y } Y$ ; confidence 0.942

221. a130240228.png ; $\zeta _ { 1 } = \ldots = \zeta _ { q } = 0$ ; confidence 0.942

222. w12006097.png ; $F : M f \rightarrow M f$ ; confidence 0.942

223. g04397072.png ; $V \times V$ ; confidence 0.942

224. q13003049.png ; $GF _ { 4 }$ ; confidence 0.942

225. r13010054.png ; $\alpha : y \rightarrow x$ ; confidence 0.942

226. c02092025.png ; $B ( x )$ ; confidence 0.942

227. a12010072.png ; $\partial \phi$ ; confidence 0.942

228. a012950122.png ; $( a , b )$ ; confidence 0.942

229. a12012060.png ; $\lambda ( x , y ) = \operatorname { sup } \{ \lambda : y \geq \lambda x \}$ ; confidence 0.942

230. s13045079.png ; $= 6 \int _ { 0 } ^ { 1 } C _ { X , Y } ( u , u ) d u - 2$ ; confidence 0.942

231. t12001075.png ; $s ^ { 2 }$ ; confidence 0.942

232. w130080127.png ; $S _ { n } = s _ { n } + \theta ^ { 2 } F _ { n }$ ; confidence 0.942

233. c02028095.png ; $C ( K )$ ; confidence 0.942

234. b11022032.png ; $\Lambda ( M , s ) = \varepsilon ( M , s ) \Lambda ( M ^ { \vee } , 1 - s )$ ; confidence 0.942

235. r13005010.png ; $g a = b$ ; confidence 0.942

236. l12011024.png ; $A v = \lambda M v$ ; confidence 0.942

237. b11066061.png ; $| y ^ { \prime } - y | \leq | x - y | / 2$ ; confidence 0.942

238. t12007058.png ; $g \mapsto a _ { n } ( g )$ ; confidence 0.942

239. c120180312.png ; $\nabla g = 0 \in \otimes ^ { 3 } E$ ; confidence 0.942

240. l11003064.png ; $M ( E ) = L ( E ) ^ { * }$ ; confidence 0.942

241. a1201103.png ; $\varphi ( \alpha , 0,1 ) = 0 , \varphi ( \alpha , 0,2 ) = 1$ ; confidence 0.942

242. t12013019.png ; $\Psi _ { 1 } ( z ) = e ^ { \sum _ { 1 } ^ { \infty } x _ { i } z ^ { i } } S _ { 1 } \chi ( z ) =$ ; confidence 0.942

243. t13014066.png ; $( h _ { j } ) ^ { * } ( M _ { i j } ^ { \beta } ) = ( h _ { i } ^ { - 1 } M _ { i j } ^ { \beta } h _ { j } )$ ; confidence 0.942

244. e12012096.png ; $\mu ^ { ( t + 1 ) } = \frac { \sum _ { i } w _ { i } ^ { ( t + 1 ) } y _ { i } } { \sum _ { i } w _ { i } ^ { ( t + 1 ) } }$ ; confidence 0.942

245. b12037078.png ; $L \in N P$ ; confidence 0.942

246. a130040266.png ; $K ( x ) \approx L ( x ) = \{ x \approx T \}$ ; confidence 0.942

247. a130040242.png ; $K ( \Gamma ) \approx L ( \Gamma ) = \{ \kappa _ { j } ( \psi ) \approx \lambda _ { j } ( \psi ) : \psi \in \Gamma , j \in J \}$ ; confidence 0.942

248. h046010141.png ; $M _ { 0 } \times S ^ { 1 } \approx M _ { 1 } \times S ^ { 1 }$ ; confidence 0.942

249. l057540111.png ; $\beta ( t )$ ; confidence 0.942

250. b12042080.png ; $\Psi ^ { - 1 }$ ; confidence 0.942

251. m12019022.png ; $( f ^ { * } g ) ( x ) = \int _ { 1 } ^ { \infty } \int _ { 1 } ^ { \infty } S ( x , y , t ) f ( t ) g ( y ) d t d y$ ; confidence 0.942

252. d1301307.png ; $x = r \operatorname { sin } \theta \operatorname { cos } \phi$ ; confidence 0.941

253. m130260248.png ; $z \dot { b } = x \dot { b }$ ; confidence 0.941

254. s13040052.png ; $X _ { G } E G \rightarrow B G$ ; confidence 0.941

255. e13003018.png ; $\Gamma \backslash X$ ; confidence 0.941

256. s09067070.png ; $S ( g u ^ { k } ) = g S ( u ^ { k } ) , \quad g \in GL ^ { k } ( n ) , \quad u ^ { k } \in M _ { k }$ ; confidence 0.941

257. s13051071.png ; $G = ( V , E )$ ; confidence 0.941

258. b1203401.png ; $\sum _ { k = 0 } ^ { \infty } c _ { k } z ^ { k }$ ; confidence 0.941

259. c120210139.png ; $\{ \alpha _ { n } \} \subseteq \{ n \}$ ; confidence 0.941

260. o13005076.png ; $\frac { I - \Theta _ { \Delta } ( z ) \Theta _ { \Delta } ( w ) ^ { * } } { 1 - z \overline { w } } = G ( I - z T ) ^ { - 1 } ( I - \overline { w } T ^ { * } ) ^ { - 1 } G ^ { * }$ ; confidence 0.941

261. b120320102.png ; $F ( t , 1 - t ) = \| t x + ( 1 - t ) y \| \leq 1$ ; confidence 0.941

262. l06105038.png ; $P \subset [ a , b ]$ ; confidence 0.941

263. f12021082.png ; $( \frac { \partial } { \partial \lambda } ) ^ { m _ { j } + l } [ u ( z , \lambda ) ( \lambda - \lambda _ { j } ) ^ { m _ { j } } ] =$ ; confidence 0.941

264. w12007064.png ; $L ^ { 2 } ( R ^ { 2 n } )$ ; confidence 0.941

265. l120170229.png ; $x _ { i } = x _ { j } x _ { k } x _ { j } ^ { - 1 }$ ; confidence 0.941

266. b12037040.png ; $L _ { \Omega } ( f )$ ; confidence 0.941

267. m120120128.png ; $C = Z ( Q )$ ; confidence 0.941

268. a13007099.png ; $n ^ { 10 }$ ; confidence 0.941

269. b01695087.png ; $R ( G )$ ; confidence 0.941

270. c1202007.png ; $S ^ { k } \times D ^ { m - k }$ ; confidence 0.941

271. g120040163.png ; $P ( t , x ; D _ { t } , D _ { x } ) u =$ ; confidence 0.941

272. k12012020.png ; $\alpha _ { k } = \int _ { - \infty } ^ { \infty } x ^ { k } f ( x ) d x$ ; confidence 0.941

273. n12004023.png ; $J ^ { k } F$ ; confidence 0.941

274. g120040107.png ; $L = L _ { 1 } = D _ { x _ { 1 } }$ ; confidence 0.941

275. m06441016.png ; $\Gamma _ { 0 } ( N )$ ; confidence 0.941

276. v13005040.png ; $v \mapsto Y ( v , x )$ ; confidence 0.941

277. h1200507.png ; $u _ { \Phi }$ ; confidence 0.941

278. m12023057.png ; $f _ { t , s } ( x ) = \operatorname { sup } _ { z \in H } \operatorname { inf } _ { y \in H } ( f ( y ) + \frac { 1 } { 2 t } \| z - y \| ^ { 2 } - \frac { 1 } { 2 s } \| x - z \| ^ { 2 } )$ ; confidence 0.941

279. o12001032.png ; $O ( 1 )$ ; confidence 0.941

280. b01566046.png ; $p < q$ ; confidence 0.941

281. m12003069.png ; $\vec { x }$ ; confidence 0.941

282. z13005022.png ; $\mathfrak { D } = \operatorname { Hom } _ { R } ( \Omega _ { k } ( R ) , R )$ ; confidence 0.941

283. a13007082.png ; $H ( x )$ ; confidence 0.941

284. t120200138.png ; $| z _ { 1 } | \geq \ldots \geq | z _ { k _ { 1 } } | > \frac { m + 2 n } { m + n } \geq$ ; confidence 0.941

285. b13019076.png ; $\zeta ( \frac { 1 } { 2 } + i t ) \ll t ^ { \beta }$ ; confidence 0.941

286. q120070124.png ; $a d - q ^ { - 1 } b c$ ; confidence 0.941

287. w12010022.png ; $\square ^ { \prime } \Gamma = \square ^ { \prime \prime } \Gamma$ ; confidence 0.941

288. b12004090.png ; $f ^ { * }$ ; confidence 0.941

289. a130240546.png ; $7$ ; confidence 0.941

290. a12007074.png ; $K _ { 2 } > 0$ ; confidence 0.941

291. t12013054.png ; $L _ { 1 } = L _ { 2 } = : L = L ( x - y )$ ; confidence 0.941

292. i13005054.png ; $S : = \{ r _ { + } ( k ) , i k _ { j } , ( m _ { j } ^ { + } ) ^ { 2 } : \forall k > 0,1 \leq j \leq J \}$ ; confidence 0.940

293. i13007092.png ; $| x | > R$ ; confidence 0.940

294. a12018014.png ; $S _ { n } = S + \alpha \lambda ^ { n }$ ; confidence 0.940

295. f12024046.png ; $t - h ( t ) + \infty$ ; confidence 0.940

296. d03319031.png ; $\Lambda _ { 1 }$ ; confidence 0.940

297. u13002031.png ; $| \hat { f } ( y ) | \leq B e ^ { - \pi b y ^ { 2 } }$ ; confidence 0.940

298. m130110104.png ; $v ( x , t )$ ; confidence 0.940

299. k055840125.png ; $L \cap L ^ { \perp } = \{ 0 \}$ ; confidence 0.940

300. t13014042.png ; $K _ { 0 } ( Q ) = K _ { 0 } ( \operatorname { rep } _ { K } ( Q ) )$ ; confidence 0.940

How to Cite This Entry:
Maximilian Janisch/latexlist/latex/NoNroff/28. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Maximilian_Janisch/latexlist/latex/NoNroff/28&oldid=44516