Namespaces
Variants
Actions

Difference between revisions of "Relative root system"

From Encyclopedia of Mathematics
Jump to: navigation, search
m (MR/ZBL numbers added)
m (tex done)
 
Line 1: Line 1:
''of a connected reductive algebraic group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081030/r0810301.png" /> defined over a field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081030/r0810302.png" />''
+
{{TEX|done}}
 +
''of a connected reductive algebraic group
 +
defined over a field   k ''
  
A system <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081030/r0810303.png" /> of non-zero weights of the adjoint representation of a maximal <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081030/r0810304.png" />-split torus <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081030/r0810305.png" /> of the group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081030/r0810306.png" /> in the Lie algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081030/r0810307.png" /> of this group (cf. [[Weight of a representation of a Lie algebra|Weight of a representation of a Lie algebra]]). The weights themselves are called the roots of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081030/r0810308.png" /> relative to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081030/r0810309.png" />. The relative root system <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081030/r08103010.png" />, which can be seen as a subset of its linear envelope <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081030/r08103011.png" /> in the space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081030/r08103012.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081030/r08103013.png" /> is the group of rational characters of the torus <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081030/r08103014.png" />, is a [[Root system|root system]]. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081030/r08103015.png" /> be the normalizer and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081030/r08103016.png" /> the centralizer of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081030/r08103017.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081030/r08103018.png" />. Then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081030/r08103019.png" /> is the connected component of the unit of the group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081030/r08103020.png" />; the finite group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081030/r08103021.png" /> is called the Weyl group of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081030/r08103022.png" /> over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081030/r08103023.png" />, or the relative Weyl group. The adjoint representation of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081030/r08103024.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081030/r08103025.png" /> defines a linear representation of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081030/r08103026.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081030/r08103027.png" />. This representation is faithful and its image is the [[Weyl group|Weyl group]] of the root system <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081030/r08103028.png" />, which enables one to identify these two groups. Since two maximal <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081030/r08103029.png" />-split tori <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081030/r08103030.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081030/r08103031.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081030/r08103032.png" /> are conjugate over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081030/r08103033.png" />, the relative root systems <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081030/r08103034.png" /> and the relative Weyl groups <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081030/r08103035.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081030/r08103036.png" />, are isomorphic, respectively. Hence they are often denoted simply by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081030/r08103037.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081030/r08103038.png" />. When <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081030/r08103039.png" /> is split over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081030/r08103040.png" />, the relative root system and the relative Weyl group coincide, respectively, with the usual (absolute) root system and Weyl group of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081030/r08103041.png" />. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081030/r08103042.png" /> be the weight subspace in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081030/r08103043.png" /> relative to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081030/r08103044.png" />, corresponding to the root <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081030/r08103045.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081030/r08103046.png" /> is split over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081030/r08103047.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081030/r08103048.png" /> for any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081030/r08103049.png" />, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081030/r08103050.png" /> is a reduced root system; this is not so in general: <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081030/r08103051.png" /> does not have to be reduced and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081030/r08103052.png" /> can be greater than 1. The relative root system <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081030/r08103053.png" /> is irreducible if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081030/r08103054.png" /> is simple over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081030/r08103055.png" />.
 
  
The relative root system plays an important role in the description of the structure and in the classification of semi-simple algebraic groups over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081030/r08103056.png" />. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081030/r08103057.png" /> be semi-simple, and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081030/r08103058.png" /> be a maximal torus defined over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081030/r08103059.png" /> and containing <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081030/r08103060.png" />. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081030/r08103061.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081030/r08103062.png" /> be the groups of rational characters of the tori <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081030/r08103063.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081030/r08103064.png" /> with fixed compatible order relations, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081030/r08103065.png" /> be a corresponding system of simple roots of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081030/r08103066.png" /> relative to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081030/r08103067.png" />, and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081030/r08103068.png" /> be the subsystem in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081030/r08103069.png" /> consisting of the characters which are trivial on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081030/r08103070.png" />. Moreover, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081030/r08103071.png" /> be the system of simple roots in the relative root system <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081030/r08103072.png" /> defined by the order relation chosen on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081030/r08103073.png" />; it consists of the restrictions to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081030/r08103074.png" /> of the characters of the system <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081030/r08103075.png" />. The Galois group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081030/r08103076.png" /> acts naturally on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081030/r08103077.png" />, and the set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081030/r08103078.png" /> is called the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081030/r08103080.png" />-index of the semi-simple group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081030/r08103081.png" />. The role of the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081030/r08103082.png" />-index is explained by the following theorem: Every semi-simple group over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081030/r08103083.png" /> is uniquely defined, up to a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081030/r08103084.png" />-isomorphism, by its class relative to an isomorphism over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081030/r08103085.png" />, its <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081030/r08103086.png" />-index and its [[Anisotropic kernel|anisotropic kernel]]. The relative root system <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081030/r08103087.png" /> is completely defined by the system <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081030/r08103088.png" /> and by the set of natural numbers <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081030/r08103089.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081030/r08103090.png" /> (equal to 1 or 2), such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081030/r08103091.png" /> but <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081030/r08103092.png" />. Conversely, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081030/r08103093.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081030/r08103094.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081030/r08103095.png" />, can be determined from the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081030/r08103096.png" />-index. In particular, two elements from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081030/r08103097.png" /> have one and the same restriction to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081030/r08103098.png" /> if and only if they are located in the same orbit of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081030/r08103099.png" />; this defines a bijection between <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081030/r081030100.png" /> and the set of orbits of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081030/r081030101.png" /> into <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081030/r081030102.png" />.
+
A system   \Phi _{k} (S,\  G)
 +
of non-zero weights of the adjoint representation of a maximal    k -
 +
split torus    S
 +
of the group    G
 +
in the Lie algebra    \mathfrak g
 +
of this group (cf. [[Weight of a representation of a Lie algebra|Weight of a representation of a Lie algebra]]). The weights themselves are called the roots of   G
 +
relative to   S .  
 +
The relative root system    \Phi _{k} (S,\  G) ,  
 +
which can be seen as a subset of its linear envelope    L
 +
in the space    X(S) \otimes _ {\mathbf Z} \mathbf R ,
 +
where    X(S)
 +
is the group of rational characters of the torus    S ,  
 +
is a [[Root system|root system]]. Let    N(S)
 +
be the normalizer and    Z(S)
 +
the centralizer of   S
 +
in   G .  
 +
Then    Z(S)
 +
is the connected component of the unit of the group    N(S) ;
 +
the finite group $  W _{k} (S,\  G) = N(S)/Z(S) $
 +
is called the Weyl group of   G
 +
over    k ,
 +
or the relative Weyl group. The adjoint representation of   N(S)
 +
in    \mathfrak g
 +
defines a linear representation of  $  W _{k} (S,\  G) $
 +
in    L .  
 +
This representation is faithful and its image is the [[Weyl group|Weyl group]] of the root system   \Phi _{k} (S,\  G) ,
 +
which enables one to identify these two groups. Since two maximal    k -
 +
split tori    S _{1}
 +
and    S _{2}
 +
in    G
 +
are conjugate over    k ,
 +
the relative root systems    \Phi _{k} (S _{i} ,\  G)
 +
and the relative Weyl groups    W _{k} (S _{i} ,\  G) ,  
 +
$  i=1,\  2 $ ,
 +
are isomorphic, respectively. Hence they are often denoted simply by    \Phi _{k} (G)
 +
and    W _{k} (G) .  
 +
When    G
 +
is split over    k ,  
 +
the relative root system and the relative Weyl group coincide, respectively, with the usual (absolute) root system and Weyl group of    G .  
 +
Let    g _ \alpha 
 +
be the weight subspace in    \mathfrak g
 +
relative to    S ,  
 +
corresponding to the root    \alpha \in \Phi _{k} (S,\  G) .  
 +
If    G
 +
is split over    k ,  
 +
then  $  \mathop{\rm dim}\nolimits \  g _ \alpha  = 1 $
 +
for any    \alpha ,
 +
and   \Phi _{k} (G)
 +
is a reduced root system; this is not so in general:   \Phi _{k} (G)
 +
does not have to be reduced and   \mathop{\rm dim}\nolimits \  g _ \alpha 
 +
can be greater than 1. The relative root system    \Phi _{k} (G)
 +
is irreducible if    G
 +
is simple over    k .
  
If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081030/r081030103.png" />, if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081030/r081030104.png" /> is the corresponding orbit, if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081030/r081030105.png" /> is any connected component in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081030/r081030106.png" /> not all vertices of which lie in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081030/r081030107.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081030/r081030108.png" /> is the sum of the coefficients of the roots <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081030/r081030109.png" /> in the decomposition of the highest root of the system <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081030/r081030110.png" /> in simple roots.
 
  
If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081030/r081030111.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081030/r081030112.png" />, then the above relative root system and relative Weyl group are naturally identified with the root system and Weyl group, respectively, of the corresponding symmetric space.
+
The relative root system plays an important role in the description of the structure and in the classification of semi-simple algebraic groups over    k .
 +
Let    G
 +
be semi-simple, and let    T
 +
be a maximal torus defined over    k
 +
and containing    S .
 +
Let    X(S)
 +
and    X(T)
 +
be the groups of rational characters of the tori    S
 +
and    T
 +
with fixed compatible order relations, let    \Delta
 +
be a corresponding system of simple roots of    G
 +
relative to    T ,
 +
and let    \Delta _{0}
 +
be the subsystem in    \Delta
 +
consisting of the characters which are trivial on    S .
 +
Moreover, let    \Delta _{k}
 +
be the system of simple roots in the relative root system    \Phi _{k} (S,\  G)
 +
defined by the order relation chosen on    X(S) ;
 +
it consists of the restrictions to    S
 +
of the characters of the system    \Delta .
 +
The Galois group  $  \Gamma = \mathop{\rm Gal}\nolimits (k _{s} /k) $
 +
acts naturally on    \Delta ,
 +
and the set  $  \{ \Delta ,\  \Delta _{0} ,  \textrm{ the  action  of }  \Gamma  \textrm{ on }  \Delta \} $
 +
is called the    k -
 +
index of the semi-simple group    G .
 +
The role of the    k -
 +
index is explained by the following theorem: Every semi-simple group over    k
 +
is uniquely defined, up to a    k -
 +
isomorphism, by its class relative to an isomorphism over    k _{s} ,
 +
its    k -
 +
index and its [[Anisotropic kernel|anisotropic kernel]]. The relative root system    \Phi _{k} (G)
 +
is completely defined by the system    \Delta _{k}
 +
and by the set of natural numbers    n _ \alpha  ,
 +
  \alpha \in \Delta _{k} (
 +
equal to 1 or 2), such that    n _ \alpha  \alpha \in \Phi _{k} (G)
 +
but    (n _ \alpha  + 1) \alpha \notin \Phi _{k} (G) .  
 +
Conversely,    \Delta _{k}
 +
and    n _ \alpha  ,
 +
  \alpha \in \Delta _{k} ,
 +
can be determined from the    k -
 +
index. In particular, two elements from    \Delta \setminus \Delta _{0}
 +
have one and the same restriction to    S
 +
if and only if they are located in the same orbit of    \Gamma ;
 +
this defines a bijection between    \Delta _{k}
 +
and the set of orbits of    \Gamma
 +
into  $  \Delta \setminus \Delta _{0} $ .
 +
 
 +
 
 +
If    \gamma \in \Delta _{k} ,
 +
if    O _ \gamma  \subset \Delta \setminus \Delta _{0}
 +
is the corresponding orbit, if    \Delta ( \gamma )
 +
is any connected component in    \Delta _{0} \cup O _ \gamma 
 +
not all vertices of which lie in    \Delta _{0} ,
 +
then    n _ \gamma 
 +
is the sum of the coefficients of the roots    \alpha \in \Delta ( \gamma ) \cap O _ \gamma 
 +
in the decomposition of the highest root of the system    \Delta ( \gamma )
 +
in simple roots.
 +
 
 +
If    k = \mathbf R ,
 +
  \overline{k}  = \mathbf C ,  
 +
then the above relative root system and relative Weyl group are naturally identified with the root system and Weyl group, respectively, of the corresponding symmetric space.
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> J. Tits, "Sur la classification des groupes algébriques semi-simples" ''C.R. Acad. Sci. Paris'' , '''249''' (1959) pp. 1438–1440 {{MR|0106967}} {{ZBL|}} </TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> A. Borel, J. Tits, "Groupes réductifs" ''Publ. Math. IHES'' , '''27''' (1965) pp. 55–150 {{MR|0207712}} {{ZBL|0145.17402}} </TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> J. Tits, "Classification of algebraic simple groups" , ''Algebraic Groups and Discontinuous Subgroups'' , ''Proc. Symp. Pure Math.'' , '''9''' , Amer. Math. Soc. (1966) pp. 33–62 {{MR|}} {{ZBL|}} </TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> J. Tits, "Sur la classification des groupes algébriques semi-simples" ''C.R. Acad. Sci. Paris'' , '''249''' (1959) pp. 1438–1440 {{MR|0106967}} {{ZBL|}} </TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> A. Borel, J. Tits, "Groupes réductifs" ''Publ. Math. IHES'' , '''27''' (1965) pp. 55–150 {{MR|0207712}} {{ZBL|0145.17402}} </TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> J. Tits, "Classification of algebraic simple groups" , ''Algebraic Groups and Discontinuous Subgroups'' , ''Proc. Symp. Pure Math.'' , '''9''' , Amer. Math. Soc. (1966) pp. 33–62 {{MR|}} {{ZBL|}} </TD></TR></table>

Latest revision as of 16:30, 17 December 2019

of a connected reductive algebraic group G defined over a field k


A system \Phi _{k} (S,\ G) of non-zero weights of the adjoint representation of a maximal k - split torus S of the group G in the Lie algebra \mathfrak g of this group (cf. Weight of a representation of a Lie algebra). The weights themselves are called the roots of G relative to S . The relative root system \Phi _{k} (S,\ G) , which can be seen as a subset of its linear envelope L in the space X(S) \otimes _ {\mathbf Z} \mathbf R , where X(S) is the group of rational characters of the torus S , is a root system. Let N(S) be the normalizer and Z(S) the centralizer of S in G . Then Z(S) is the connected component of the unit of the group N(S)  ; the finite group W _{k} (S,\ G) = N(S)/Z(S) is called the Weyl group of G over k , or the relative Weyl group. The adjoint representation of N(S) in \mathfrak g defines a linear representation of W _{k} (S,\ G) in L . This representation is faithful and its image is the Weyl group of the root system \Phi _{k} (S,\ G) , which enables one to identify these two groups. Since two maximal k - split tori S _{1} and S _{2} in G are conjugate over k , the relative root systems \Phi _{k} (S _{i} ,\ G) and the relative Weyl groups W _{k} (S _{i} ,\ G) , i=1,\ 2 , are isomorphic, respectively. Hence they are often denoted simply by \Phi _{k} (G) and W _{k} (G) . When G is split over k , the relative root system and the relative Weyl group coincide, respectively, with the usual (absolute) root system and Weyl group of G . Let g _ \alpha be the weight subspace in \mathfrak g relative to S , corresponding to the root \alpha \in \Phi _{k} (S,\ G) . If G is split over k , then \mathop{\rm dim}\nolimits \ g _ \alpha = 1 for any \alpha , and \Phi _{k} (G) is a reduced root system; this is not so in general: \Phi _{k} (G) does not have to be reduced and \mathop{\rm dim}\nolimits \ g _ \alpha can be greater than 1. The relative root system \Phi _{k} (G) is irreducible if G is simple over k .


The relative root system plays an important role in the description of the structure and in the classification of semi-simple algebraic groups over k . Let G be semi-simple, and let T be a maximal torus defined over k and containing S . Let X(S) and X(T) be the groups of rational characters of the tori S and T with fixed compatible order relations, let \Delta be a corresponding system of simple roots of G relative to T , and let \Delta _{0} be the subsystem in \Delta consisting of the characters which are trivial on S . Moreover, let \Delta _{k} be the system of simple roots in the relative root system \Phi _{k} (S,\ G) defined by the order relation chosen on X(S)  ; it consists of the restrictions to S of the characters of the system \Delta . The Galois group \Gamma = \mathop{\rm Gal}\nolimits (k _{s} /k) acts naturally on \Delta , and the set \{ \Delta ,\ \Delta _{0} , \textrm{ the action of } \Gamma \textrm{ on } \Delta \} is called the k - index of the semi-simple group G . The role of the k - index is explained by the following theorem: Every semi-simple group over k is uniquely defined, up to a k - isomorphism, by its class relative to an isomorphism over k _{s} , its k - index and its anisotropic kernel. The relative root system \Phi _{k} (G) is completely defined by the system \Delta _{k} and by the set of natural numbers n _ \alpha , \alpha \in \Delta _{k} ( equal to 1 or 2), such that n _ \alpha \alpha \in \Phi _{k} (G) but (n _ \alpha + 1) \alpha \notin \Phi _{k} (G) . Conversely, \Delta _{k} and n _ \alpha , \alpha \in \Delta _{k} , can be determined from the k - index. In particular, two elements from \Delta \setminus \Delta _{0} have one and the same restriction to S if and only if they are located in the same orbit of \Gamma  ; this defines a bijection between \Delta _{k} and the set of orbits of \Gamma into \Delta \setminus \Delta _{0} .


If \gamma \in \Delta _{k} , if O _ \gamma \subset \Delta \setminus \Delta _{0} is the corresponding orbit, if \Delta ( \gamma ) is any connected component in \Delta _{0} \cup O _ \gamma not all vertices of which lie in \Delta _{0} , then n _ \gamma is the sum of the coefficients of the roots \alpha \in \Delta ( \gamma ) \cap O _ \gamma in the decomposition of the highest root of the system \Delta ( \gamma ) in simple roots.

If k = \mathbf R , \overline{k} = \mathbf C , then the above relative root system and relative Weyl group are naturally identified with the root system and Weyl group, respectively, of the corresponding symmetric space.

References

[1] J. Tits, "Sur la classification des groupes algébriques semi-simples" C.R. Acad. Sci. Paris , 249 (1959) pp. 1438–1440 MR0106967
[2] A. Borel, J. Tits, "Groupes réductifs" Publ. Math. IHES , 27 (1965) pp. 55–150 MR0207712 Zbl 0145.17402
[3] J. Tits, "Classification of algebraic simple groups" , Algebraic Groups and Discontinuous Subgroups , Proc. Symp. Pure Math. , 9 , Amer. Math. Soc. (1966) pp. 33–62
How to Cite This Entry:
Relative root system. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Relative_root_system&oldid=44284
This article was adapted from an original article by V.L. Popov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article