|
|
Line 1: |
Line 1: |
− | ''of a connected reductive algebraic group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081030/r0810301.png" /> defined over a field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081030/r0810302.png" />'' | + | {{TEX|done}} |
| + | ''of a connected reductive algebraic group $ G $ |
| + | defined over a field $ k $ '' |
| | | |
− | A system <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081030/r0810303.png" /> of non-zero weights of the adjoint representation of a maximal <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081030/r0810304.png" />-split torus <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081030/r0810305.png" /> of the group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081030/r0810306.png" /> in the Lie algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081030/r0810307.png" /> of this group (cf. [[Weight of a representation of a Lie algebra|Weight of a representation of a Lie algebra]]). The weights themselves are called the roots of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081030/r0810308.png" /> relative to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081030/r0810309.png" />. The relative root system <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081030/r08103010.png" />, which can be seen as a subset of its linear envelope <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081030/r08103011.png" /> in the space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081030/r08103012.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081030/r08103013.png" /> is the group of rational characters of the torus <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081030/r08103014.png" />, is a [[Root system|root system]]. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081030/r08103015.png" /> be the normalizer and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081030/r08103016.png" /> the centralizer of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081030/r08103017.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081030/r08103018.png" />. Then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081030/r08103019.png" /> is the connected component of the unit of the group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081030/r08103020.png" />; the finite group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081030/r08103021.png" /> is called the Weyl group of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081030/r08103022.png" /> over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081030/r08103023.png" />, or the relative Weyl group. The adjoint representation of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081030/r08103024.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081030/r08103025.png" /> defines a linear representation of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081030/r08103026.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081030/r08103027.png" />. This representation is faithful and its image is the [[Weyl group|Weyl group]] of the root system <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081030/r08103028.png" />, which enables one to identify these two groups. Since two maximal <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081030/r08103029.png" />-split tori <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081030/r08103030.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081030/r08103031.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081030/r08103032.png" /> are conjugate over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081030/r08103033.png" />, the relative root systems <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081030/r08103034.png" /> and the relative Weyl groups <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081030/r08103035.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081030/r08103036.png" />, are isomorphic, respectively. Hence they are often denoted simply by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081030/r08103037.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081030/r08103038.png" />. When <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081030/r08103039.png" /> is split over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081030/r08103040.png" />, the relative root system and the relative Weyl group coincide, respectively, with the usual (absolute) root system and Weyl group of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081030/r08103041.png" />. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081030/r08103042.png" /> be the weight subspace in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081030/r08103043.png" /> relative to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081030/r08103044.png" />, corresponding to the root <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081030/r08103045.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081030/r08103046.png" /> is split over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081030/r08103047.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081030/r08103048.png" /> for any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081030/r08103049.png" />, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081030/r08103050.png" /> is a reduced root system; this is not so in general: <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081030/r08103051.png" /> does not have to be reduced and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081030/r08103052.png" /> can be greater than 1. The relative root system <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081030/r08103053.png" /> is irreducible if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081030/r08103054.png" /> is simple over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081030/r08103055.png" />.
| |
| | | |
− | The relative root system plays an important role in the description of the structure and in the classification of semi-simple algebraic groups over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081030/r08103056.png" />. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081030/r08103057.png" /> be semi-simple, and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081030/r08103058.png" /> be a maximal torus defined over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081030/r08103059.png" /> and containing <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081030/r08103060.png" />. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081030/r08103061.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081030/r08103062.png" /> be the groups of rational characters of the tori <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081030/r08103063.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081030/r08103064.png" /> with fixed compatible order relations, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081030/r08103065.png" /> be a corresponding system of simple roots of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081030/r08103066.png" /> relative to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081030/r08103067.png" />, and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081030/r08103068.png" /> be the subsystem in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081030/r08103069.png" /> consisting of the characters which are trivial on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081030/r08103070.png" />. Moreover, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081030/r08103071.png" /> be the system of simple roots in the relative root system <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081030/r08103072.png" /> defined by the order relation chosen on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081030/r08103073.png" />; it consists of the restrictions to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081030/r08103074.png" /> of the characters of the system <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081030/r08103075.png" />. The Galois group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081030/r08103076.png" /> acts naturally on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081030/r08103077.png" />, and the set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081030/r08103078.png" /> is called the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081030/r08103080.png" />-index of the semi-simple group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081030/r08103081.png" />. The role of the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081030/r08103082.png" />-index is explained by the following theorem: Every semi-simple group over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081030/r08103083.png" /> is uniquely defined, up to a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081030/r08103084.png" />-isomorphism, by its class relative to an isomorphism over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081030/r08103085.png" />, its <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081030/r08103086.png" />-index and its [[Anisotropic kernel|anisotropic kernel]]. The relative root system <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081030/r08103087.png" /> is completely defined by the system <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081030/r08103088.png" /> and by the set of natural numbers <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081030/r08103089.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081030/r08103090.png" /> (equal to 1 or 2), such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081030/r08103091.png" /> but <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081030/r08103092.png" />. Conversely, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081030/r08103093.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081030/r08103094.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081030/r08103095.png" />, can be determined from the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081030/r08103096.png" />-index. In particular, two elements from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081030/r08103097.png" /> have one and the same restriction to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081030/r08103098.png" /> if and only if they are located in the same orbit of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081030/r08103099.png" />; this defines a bijection between <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081030/r081030100.png" /> and the set of orbits of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081030/r081030101.png" /> into <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081030/r081030102.png" />.
| + | A system $ \Phi _{k} (S,\ G) $ |
| + | of non-zero weights of the adjoint representation of a maximal $ k $ - |
| + | split torus $ S $ |
| + | of the group $ G $ |
| + | in the Lie algebra $ \mathfrak g $ |
| + | of this group (cf. [[Weight of a representation of a Lie algebra|Weight of a representation of a Lie algebra]]). The weights themselves are called the roots of $ G $ |
| + | relative to $ S $ . |
| + | The relative root system $ \Phi _{k} (S,\ G) $ , |
| + | which can be seen as a subset of its linear envelope $ L $ |
| + | in the space $ X(S) \otimes _ {\mathbf Z} \mathbf R $ , |
| + | where $ X(S) $ |
| + | is the group of rational characters of the torus $ S $ , |
| + | is a [[Root system|root system]]. Let $ N(S) $ |
| + | be the normalizer and $ Z(S) $ |
| + | the centralizer of $ S $ |
| + | in $ G $ . |
| + | Then $ Z(S) $ |
| + | is the connected component of the unit of the group $ N(S) $ ; |
| + | the finite group $ W _{k} (S,\ G) = N(S)/Z(S) $ |
| + | is called the Weyl group of $ G $ |
| + | over $ k $ , |
| + | or the relative Weyl group. The adjoint representation of $ N(S) $ |
| + | in $ \mathfrak g $ |
| + | defines a linear representation of $ W _{k} (S,\ G) $ |
| + | in $ L $ . |
| + | This representation is faithful and its image is the [[Weyl group|Weyl group]] of the root system $ \Phi _{k} (S,\ G) $ , |
| + | which enables one to identify these two groups. Since two maximal $ k $ - |
| + | split tori $ S _{1} $ |
| + | and $ S _{2} $ |
| + | in $ G $ |
| + | are conjugate over $ k $ , |
| + | the relative root systems $ \Phi _{k} (S _{i} ,\ G) $ |
| + | and the relative Weyl groups $ W _{k} (S _{i} ,\ G) $ , |
| + | $ i=1,\ 2 $ , |
| + | are isomorphic, respectively. Hence they are often denoted simply by $ \Phi _{k} (G) $ |
| + | and $ W _{k} (G) $ . |
| + | When $ G $ |
| + | is split over $ k $ , |
| + | the relative root system and the relative Weyl group coincide, respectively, with the usual (absolute) root system and Weyl group of $ G $ . |
| + | Let $ g _ \alpha $ |
| + | be the weight subspace in $ \mathfrak g $ |
| + | relative to $ S $ , |
| + | corresponding to the root $ \alpha \in \Phi _{k} (S,\ G) $ . |
| + | If $ G $ |
| + | is split over $ k $ , |
| + | then $ \mathop{\rm dim}\nolimits \ g _ \alpha = 1 $ |
| + | for any $ \alpha $ , |
| + | and $ \Phi _{k} (G) $ |
| + | is a reduced root system; this is not so in general: $ \Phi _{k} (G) $ |
| + | does not have to be reduced and $ \mathop{\rm dim}\nolimits \ g _ \alpha $ |
| + | can be greater than 1. The relative root system $ \Phi _{k} (G) $ |
| + | is irreducible if $ G $ |
| + | is simple over $ k $ . |
| | | |
− | If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081030/r081030103.png" />, if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081030/r081030104.png" /> is the corresponding orbit, if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081030/r081030105.png" /> is any connected component in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081030/r081030106.png" /> not all vertices of which lie in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081030/r081030107.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081030/r081030108.png" /> is the sum of the coefficients of the roots <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081030/r081030109.png" /> in the decomposition of the highest root of the system <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081030/r081030110.png" /> in simple roots.
| |
| | | |
− | If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081030/r081030111.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081030/r081030112.png" />, then the above relative root system and relative Weyl group are naturally identified with the root system and Weyl group, respectively, of the corresponding symmetric space.
| + | The relative root system plays an important role in the description of the structure and in the classification of semi-simple algebraic groups over $ k $ . |
| + | Let $ G $ |
| + | be semi-simple, and let $ T $ |
| + | be a maximal torus defined over $ k $ |
| + | and containing $ S $ . |
| + | Let $ X(S) $ |
| + | and $ X(T) $ |
| + | be the groups of rational characters of the tori $ S $ |
| + | and $ T $ |
| + | with fixed compatible order relations, let $ \Delta $ |
| + | be a corresponding system of simple roots of $ G $ |
| + | relative to $ T $ , |
| + | and let $ \Delta _{0} $ |
| + | be the subsystem in $ \Delta $ |
| + | consisting of the characters which are trivial on $ S $ . |
| + | Moreover, let $ \Delta _{k} $ |
| + | be the system of simple roots in the relative root system $ \Phi _{k} (S,\ G) $ |
| + | defined by the order relation chosen on $ X(S) $ ; |
| + | it consists of the restrictions to $ S $ |
| + | of the characters of the system $ \Delta $ . |
| + | The Galois group $ \Gamma = \mathop{\rm Gal}\nolimits (k _{s} /k) $ |
| + | acts naturally on $ \Delta $ , |
| + | and the set $ \{ \Delta ,\ \Delta _{0} , \textrm{ the action of } \Gamma \textrm{ on } \Delta \} $ |
| + | is called the $ k $ - |
| + | index of the semi-simple group $ G $ . |
| + | The role of the $ k $ - |
| + | index is explained by the following theorem: Every semi-simple group over $ k $ |
| + | is uniquely defined, up to a $ k $ - |
| + | isomorphism, by its class relative to an isomorphism over $ k _{s} $ , |
| + | its $ k $ - |
| + | index and its [[Anisotropic kernel|anisotropic kernel]]. The relative root system $ \Phi _{k} (G) $ |
| + | is completely defined by the system $ \Delta _{k} $ |
| + | and by the set of natural numbers $ n _ \alpha $ , |
| + | $ \alpha \in \Delta _{k} $ ( |
| + | equal to 1 or 2), such that $ n _ \alpha \alpha \in \Phi _{k} (G) $ |
| + | but $ (n _ \alpha + 1) \alpha \notin \Phi _{k} (G) $ . |
| + | Conversely, $ \Delta _{k} $ |
| + | and $ n _ \alpha $ , |
| + | $ \alpha \in \Delta _{k} $ , |
| + | can be determined from the $ k $ - |
| + | index. In particular, two elements from $ \Delta \setminus \Delta _{0} $ |
| + | have one and the same restriction to $ S $ |
| + | if and only if they are located in the same orbit of $ \Gamma $ ; |
| + | this defines a bijection between $ \Delta _{k} $ |
| + | and the set of orbits of $ \Gamma $ |
| + | into $ \Delta \setminus \Delta _{0} $ . |
| + | |
| + | |
| + | If $ \gamma \in \Delta _{k} $ , |
| + | if $ O _ \gamma \subset \Delta \setminus \Delta _{0} $ |
| + | is the corresponding orbit, if $ \Delta ( \gamma ) $ |
| + | is any connected component in $ \Delta _{0} \cup O _ \gamma $ |
| + | not all vertices of which lie in $ \Delta _{0} $ , |
| + | then $ n _ \gamma $ |
| + | is the sum of the coefficients of the roots $ \alpha \in \Delta ( \gamma ) \cap O _ \gamma $ |
| + | in the decomposition of the highest root of the system $ \Delta ( \gamma ) $ |
| + | in simple roots. |
| + | |
| + | If $ k = \mathbf R $ , |
| + | $ \overline{k} = \mathbf C $ , |
| + | then the above relative root system and relative Weyl group are naturally identified with the root system and Weyl group, respectively, of the corresponding symmetric space. |
| | | |
| ====References==== | | ====References==== |
| <table><TR><TD valign="top">[1]</TD> <TD valign="top"> J. Tits, "Sur la classification des groupes algébriques semi-simples" ''C.R. Acad. Sci. Paris'' , '''249''' (1959) pp. 1438–1440 {{MR|0106967}} {{ZBL|}} </TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> A. Borel, J. Tits, "Groupes réductifs" ''Publ. Math. IHES'' , '''27''' (1965) pp. 55–150 {{MR|0207712}} {{ZBL|0145.17402}} </TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> J. Tits, "Classification of algebraic simple groups" , ''Algebraic Groups and Discontinuous Subgroups'' , ''Proc. Symp. Pure Math.'' , '''9''' , Amer. Math. Soc. (1966) pp. 33–62 {{MR|}} {{ZBL|}} </TD></TR></table> | | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> J. Tits, "Sur la classification des groupes algébriques semi-simples" ''C.R. Acad. Sci. Paris'' , '''249''' (1959) pp. 1438–1440 {{MR|0106967}} {{ZBL|}} </TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> A. Borel, J. Tits, "Groupes réductifs" ''Publ. Math. IHES'' , '''27''' (1965) pp. 55–150 {{MR|0207712}} {{ZBL|0145.17402}} </TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> J. Tits, "Classification of algebraic simple groups" , ''Algebraic Groups and Discontinuous Subgroups'' , ''Proc. Symp. Pure Math.'' , '''9''' , Amer. Math. Soc. (1966) pp. 33–62 {{MR|}} {{ZBL|}} </TD></TR></table> |
of a connected reductive algebraic group $ G $
defined over a field $ k $
A system $ \Phi _{k} (S,\ G) $
of non-zero weights of the adjoint representation of a maximal $ k $ -
split torus $ S $
of the group $ G $
in the Lie algebra $ \mathfrak g $
of this group (cf. Weight of a representation of a Lie algebra). The weights themselves are called the roots of $ G $
relative to $ S $ .
The relative root system $ \Phi _{k} (S,\ G) $ ,
which can be seen as a subset of its linear envelope $ L $
in the space $ X(S) \otimes _ {\mathbf Z} \mathbf R $ ,
where $ X(S) $
is the group of rational characters of the torus $ S $ ,
is a root system. Let $ N(S) $
be the normalizer and $ Z(S) $
the centralizer of $ S $
in $ G $ .
Then $ Z(S) $
is the connected component of the unit of the group $ N(S) $ ;
the finite group $ W _{k} (S,\ G) = N(S)/Z(S) $
is called the Weyl group of $ G $
over $ k $ ,
or the relative Weyl group. The adjoint representation of $ N(S) $
in $ \mathfrak g $
defines a linear representation of $ W _{k} (S,\ G) $
in $ L $ .
This representation is faithful and its image is the Weyl group of the root system $ \Phi _{k} (S,\ G) $ ,
which enables one to identify these two groups. Since two maximal $ k $ -
split tori $ S _{1} $
and $ S _{2} $
in $ G $
are conjugate over $ k $ ,
the relative root systems $ \Phi _{k} (S _{i} ,\ G) $
and the relative Weyl groups $ W _{k} (S _{i} ,\ G) $ ,
$ i=1,\ 2 $ ,
are isomorphic, respectively. Hence they are often denoted simply by $ \Phi _{k} (G) $
and $ W _{k} (G) $ .
When $ G $
is split over $ k $ ,
the relative root system and the relative Weyl group coincide, respectively, with the usual (absolute) root system and Weyl group of $ G $ .
Let $ g _ \alpha $
be the weight subspace in $ \mathfrak g $
relative to $ S $ ,
corresponding to the root $ \alpha \in \Phi _{k} (S,\ G) $ .
If $ G $
is split over $ k $ ,
then $ \mathop{\rm dim}\nolimits \ g _ \alpha = 1 $
for any $ \alpha $ ,
and $ \Phi _{k} (G) $
is a reduced root system; this is not so in general: $ \Phi _{k} (G) $
does not have to be reduced and $ \mathop{\rm dim}\nolimits \ g _ \alpha $
can be greater than 1. The relative root system $ \Phi _{k} (G) $
is irreducible if $ G $
is simple over $ k $ .
The relative root system plays an important role in the description of the structure and in the classification of semi-simple algebraic groups over $ k $ .
Let $ G $
be semi-simple, and let $ T $
be a maximal torus defined over $ k $
and containing $ S $ .
Let $ X(S) $
and $ X(T) $
be the groups of rational characters of the tori $ S $
and $ T $
with fixed compatible order relations, let $ \Delta $
be a corresponding system of simple roots of $ G $
relative to $ T $ ,
and let $ \Delta _{0} $
be the subsystem in $ \Delta $
consisting of the characters which are trivial on $ S $ .
Moreover, let $ \Delta _{k} $
be the system of simple roots in the relative root system $ \Phi _{k} (S,\ G) $
defined by the order relation chosen on $ X(S) $ ;
it consists of the restrictions to $ S $
of the characters of the system $ \Delta $ .
The Galois group $ \Gamma = \mathop{\rm Gal}\nolimits (k _{s} /k) $
acts naturally on $ \Delta $ ,
and the set $ \{ \Delta ,\ \Delta _{0} , \textrm{ the action of } \Gamma \textrm{ on } \Delta \} $
is called the $ k $ -
index of the semi-simple group $ G $ .
The role of the $ k $ -
index is explained by the following theorem: Every semi-simple group over $ k $
is uniquely defined, up to a $ k $ -
isomorphism, by its class relative to an isomorphism over $ k _{s} $ ,
its $ k $ -
index and its anisotropic kernel. The relative root system $ \Phi _{k} (G) $
is completely defined by the system $ \Delta _{k} $
and by the set of natural numbers $ n _ \alpha $ ,
$ \alpha \in \Delta _{k} $ (
equal to 1 or 2), such that $ n _ \alpha \alpha \in \Phi _{k} (G) $
but $ (n _ \alpha + 1) \alpha \notin \Phi _{k} (G) $ .
Conversely, $ \Delta _{k} $
and $ n _ \alpha $ ,
$ \alpha \in \Delta _{k} $ ,
can be determined from the $ k $ -
index. In particular, two elements from $ \Delta \setminus \Delta _{0} $
have one and the same restriction to $ S $
if and only if they are located in the same orbit of $ \Gamma $ ;
this defines a bijection between $ \Delta _{k} $
and the set of orbits of $ \Gamma $
into $ \Delta \setminus \Delta _{0} $ .
If $ \gamma \in \Delta _{k} $ ,
if $ O _ \gamma \subset \Delta \setminus \Delta _{0} $
is the corresponding orbit, if $ \Delta ( \gamma ) $
is any connected component in $ \Delta _{0} \cup O _ \gamma $
not all vertices of which lie in $ \Delta _{0} $ ,
then $ n _ \gamma $
is the sum of the coefficients of the roots $ \alpha \in \Delta ( \gamma ) \cap O _ \gamma $
in the decomposition of the highest root of the system $ \Delta ( \gamma ) $
in simple roots.
If $ k = \mathbf R $ ,
$ \overline{k} = \mathbf C $ ,
then the above relative root system and relative Weyl group are naturally identified with the root system and Weyl group, respectively, of the corresponding symmetric space.
References
[1] | J. Tits, "Sur la classification des groupes algébriques semi-simples" C.R. Acad. Sci. Paris , 249 (1959) pp. 1438–1440 MR0106967 |
[2] | A. Borel, J. Tits, "Groupes réductifs" Publ. Math. IHES , 27 (1965) pp. 55–150 MR0207712 Zbl 0145.17402 |
[3] | J. Tits, "Classification of algebraic simple groups" , Algebraic Groups and Discontinuous Subgroups , Proc. Symp. Pure Math. , 9 , Amer. Math. Soc. (1966) pp. 33–62 |