Namespaces
Variants
Actions

Difference between revisions of "User:Maximilian Janisch/latexlist/latex/17"

From Encyclopedia of Mathematics
Jump to: navigation, search
(AUTOMATIC EDIT of page 17 out of 19 with 300 lines: Updated image/latex database (currently 5483 images latexified; order by Confidence, ascending: False.)
 
(AUTOMATIC EDIT of page 17 out of 35 with 300 lines: Updated image/latex database (currently 10225 images latexified; order by Confidence, ascending: False.)
 
Line 1: Line 1:
 
== List ==
 
== List ==
1. https://www.encyclopediaofmath.org/legacyimages/s/s087/s087030/s0870309.png ; $f _ { h } \in U _ { k }$ ; confidence 0.371
+
1. https://www.encyclopediaofmath.org/legacyimages/k/k110/k110070/k11007036.png ; $L _ { ( p ^ { \nu } - 1 ) \rho }$ ; confidence 0.869
  
2. https://www.encyclopediaofmath.org/legacyimages/f/f041/f041060/f041060205.png ; $d _ { C } ^ { - 1 } = \operatorname { det } \left\| \begin{array} { c c } { \phi _ { \theta } \theta } & { \phi _ { \theta x } } \\ { \phi _ { y } \theta } & { \phi _ { y x } } \end{array} \right\|$ ; confidence 0.370
+
2. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011390/a01139014.png ; $\mu f \in M ( G )$ ; confidence 0.869
  
3. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040452.png ; $\psi _ { 0 } , \ldots , \psi _ { n - 1 } \vDash _ { K } \varphi$ ; confidence 0.369
+
3. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040725.png ; $S _ { P }$ ; confidence 0.869
  
4. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a0102104.png ; $a _ { 1 } b _ { 1 } \ldots a _ { 8 } b _ { 8 }$ ; confidence 0.369
+
4. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001011.png ; $\xi = I ( \partial _ { r } )$ ; confidence 0.869
  
5. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130050/a130050260.png ; $\pi _ { C } ^ { \# } ( x ) = \sum _ { n \leq x } P _ { C } ^ { \# } ( n )$ ; confidence 0.369
+
5. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013076.png ; $P ^ { ( l ) }$ ; confidence 0.869
  
6. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013099.png ; $z \in C$ ; confidence 0.369
+
6. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110570/b11057061.png ; $H _ { m }$ ; confidence 0.869
  
7. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011640/a011640127.png ; $M = 10 p _ { t x } - p _ { g } - 2 p ^ { ( 1 ) } + 12 + \theta$ ; confidence 0.369
+
7. https://www.encyclopediaofmath.org/legacyimages/c/c026/c026040/c02604071.png ; $A _ { n } x _ { n } = y _ { n }$ ; confidence 0.869
  
8. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010290/a01029055.png ; $\overline { a } X = \beta a X = \alpha \beta X$ ; confidence 0.369
+
8. https://www.encyclopediaofmath.org/legacyimages/w/w098/w098160/w09816057.png ; $Y \times X$ ; confidence 0.869
  
9. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010168.png ; $\hat { k } ( \alpha + \beta )$ ; confidence 0.369
+
9. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120050/a12005061.png ; $A u \in C ( ( 0 , T ] ; X )$ ; confidence 0.869
  
10. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010206.png ; $z \leq | ( \hat { \lambda } I - \Lambda ) ^ { - 1 } | | T ^ { - 1 } | | \delta A | | T | z |$ ; confidence 0.368
+
10. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120100/a1201006.png ; $y ( t ) = e ^ { - t A } x = S ( t ) x$ ; confidence 0.869
  
11. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a13024056.png ; $i = 1 , \ldots , I$ ; confidence 0.368
+
11. https://www.encyclopediaofmath.org/legacyimages/p/p072/p072670/p07267035.png ; $S = \operatorname { Spec } ( k )$ ; confidence 0.869
  
12. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120050/a120050124.png ; $Z ( t , u )$ ; confidence 0.368
+
12. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120130/a12013020.png ; $X$ ; confidence 0.869
  
13. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010120/a01012023.png ; $A _ { r } ^ { \alpha }$ ; confidence 0.368
+
13. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011460/a01146033.png ; $\sum n _ { i } W _ { i } \cap ( X \times \{ t \} )$ ; confidence 0.868
  
14. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010113.png ; $\delta b = H . | b$ ; confidence 0.368
+
14. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120240/d12024043.png ; $f + 1 / 2 tr$ ; confidence 0.868
  
15. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110410/a11041070.png ; $K _ { X } ^ { v } \otimes L ^ { i }$ ; confidence 0.368
+
15. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030700/d030700202.png ; $M X _ { 0 } , \alpha \subset M X _ { 0 }$ ; confidence 0.868
  
16. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120150/f120150202.png ; $n \| < C$ ; confidence 0.368
+
16. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011380/a01138071.png ; $( x \rightarrow y ) \sim z = ( ( x \vee y ) \& z ) \vee ( \overline { ( x \vee y ) } \& z )$ ; confidence 0.868
  
17. https://www.encyclopediaofmath.org/legacyimages/p/p075/p075660/p07566043.png ; $\partial _ { x } = \partial / \partial x$ ; confidence 0.368
+
17. https://www.encyclopediaofmath.org/legacyimages/d/d034/d034120/d034120117.png ; $H _ { r } ( M ^ { n } , X ) \sim H ^ { n - r } ( M ^ { n } , X )$ ; confidence 0.868
  
18. https://www.encyclopediaofmath.org/legacyimages/p/p075/p075190/p07519074.png ; $E _ { i j }$ ; confidence 0.366
+
18. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240226.png ; $\zeta _ { r + 1 } = \ldots = \zeta _ { n } = 0$ ; confidence 0.868
  
19. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040410.png ; $Mod ^ { * } L D = Mod ^ { * } S _ { D }$ ; confidence 0.366
+
19. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240209.png ; $S$ ; confidence 0.868
  
20. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040245.png ; $x \approx y = | \operatorname { K } K ( E ( x , y ) ) \approx L ( E ( x , y ) )$ ; confidence 0.366
+
20. https://www.encyclopediaofmath.org/legacyimages/m/m120/m120160/m12016065.png ; $\Omega _ { p _ { 1 } n _ { 1 } } ( t ^ { \prime } t ^ { \prime } )$ ; confidence 0.868
  
21. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010220/a01022067.png ; $m$ ; confidence 0.365
+
21. https://www.encyclopediaofmath.org/legacyimages/p/p073/p073700/p073700205.png ; $l _ { n } = \# \{ s \in S : d ( s ) = n \}$ ; confidence 0.868
  
22. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010120/a01012076.png ; $f ( z ) = \sum _ { k = 0 } ^ { \infty } \alpha _ { \nu _ { k } } z ^ { \nu _ { k } }$ ; confidence 0.364
+
22. https://www.encyclopediaofmath.org/legacyimages/s/s085/s085590/s08559095.png ; $( \alpha , \{ L \} )$ ; confidence 0.868
  
23. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010286.png ; $( \hat { \lambda } B - C ) ^ { - 1 } = P ( \hat { \lambda } I - \Lambda ) ^ { - 1 } Q$ ; confidence 0.363
+
23. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130010/b13001046.png ; $\Gamma$ ; confidence 0.868
  
24. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032330/d03233040.png ; $b _ { 0 }$ ; confidence 0.363
+
24. https://www.encyclopediaofmath.org/legacyimages/n/n066/n066900/n06690018.png ; $H ^ { 0 } ( C ^ { * } ) = \rho ^ { - 1 } ( \text { Aut } C ^ { 1 } )$ ; confidence 0.868
  
25. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130060/l13006070.png ; $\frac { 1 } { 4 n } \operatorname { max } \{ \alpha _ { i } : 0 \leq i \leq t \} \leq \Delta _ { 2 } \leq \frac { 1 } { 4 n } ( \sum _ { i = 0 } ^ { t } \alpha _ { i } + 2 )$ ; confidence 0.363
+
25. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011600/a011600216.png ; $( \frac { K / k } { \mathfrak { a } } ) = 1$ ; confidence 0.868
  
26. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110080/a11008029.png ; $c u _ { x t } = u _ { t t } - \frac { 1 } { 2 } c ^ { 2 } u _ { y y }$ ; confidence 0.363
+
26. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010990/a01099047.png ; $T _ { i j k } = g _ { k s } T _ { i j } ^ { s }$ ; confidence 0.867
  
27. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040316.png ; $h ( x ) = a , \ldots , h ( w ) = d$ ; confidence 0.362
+
27. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130030/e13003084.png ; $G L$ ; confidence 0.867
  
28. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120050/a120050133.png ; $\alpha ; ( \ldots )$ ; confidence 0.362
+
28. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a01165044.png ; $r _ { j }$ ; confidence 0.867
  
29. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010135.png ; $\| ( A + \delta A ) ^ { + } \| _ { 2 } \leq \frac { \| A ^ { + } \| _ { 2 } } { 1 - \| A ^ { + } \| _ { 2 } \| ^ { \delta A \| _ { 2 } } }$ ; confidence 0.362
+
29. https://www.encyclopediaofmath.org/legacyimages/i/i050/i050650/i050650145.png ; $\phi * : H ^ { * } ( B / S ) = H ^ { * } ( T M ) \rightarrow H ^ { * } ( M )$ ; confidence 0.867
  
30. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032320/d03232015.png ; $u _ { R } ^ { k } ( x ) = \sum _ { i = 1 } ^ { n } u _ { i } a _ { i } ^ { k } ( x )$ ; confidence 0.362
+
30. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057000/l05700011.png ; $M N$ ; confidence 0.867
  
31. https://www.encyclopediaofmath.org/legacyimages/s/s090/s090670/s09067035.png ; $j _ { X } ^ { k } ( u )$ ; confidence 0.362
+
31. https://www.encyclopediaofmath.org/legacyimages/l/l059/l059350/l05935013.png ; $x ^ { ( n ) } + \alpha _ { 1 } ( t ) x ^ { ( n - 1 ) } + \ldots + \alpha _ { n } ( t ) x = 0$ ; confidence 0.867
  
32. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110150/a11015033.png ; $S _ { n }$ ; confidence 0.361
+
32. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030700/d030700244.png ; $H ^ { 3 } ( \mathfrak { A } , V ) = 0$ ; confidence 0.867
  
33. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015390/b01539040.png ; $E [ L ( \theta , d ) | x ]$ ; confidence 0.361
+
33. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023250/c02325070.png ; $| Y$ ; confidence 0.867
  
34. https://www.encyclopediaofmath.org/legacyimages/t/t094/t094440/t09444040.png ; $u _ { m } = u ( M _ { m } )$ ; confidence 0.360
+
34. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110130/b110130192.png ; $a = b$ ; confidence 0.866
  
35. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130080/a13008030.png ; $f ( x ) \operatorname { tg } ( x ; m , s )$ ; confidence 0.360
+
35. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a11042095.png ; $C ^ { * }$ ; confidence 0.866
  
36. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032150/d032150132.png ; $\hat { V }$ ; confidence 0.359
+
36. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130130/d1301309.png ; $z = r \operatorname { cos } \theta$ ; confidence 0.866
  
37. https://www.encyclopediaofmath.org/legacyimages/c/c020/c020950/c02095032.png ; $L u = \sum _ { | \alpha | \leq m } \alpha _ { \alpha } ( x ) \frac { \partial ^ { \alpha } u } { \partial x ^ { \alpha } } = f ( x )$ ; confidence 0.358
+
37. https://www.encyclopediaofmath.org/legacyimages/d/d110/d110230/d11023041.png ; $K = \overline { K } \cap L _ { m } ( G )$ ; confidence 0.866
  
38. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110020/a11002013.png ; $g = d \cdot d ^ { \prime - 1 }$ ; confidence 0.357
+
38. https://www.encyclopediaofmath.org/legacyimages/e/e036/e036770/e03677067.png ; $\phi ^ { - 1 } ( b ) \cong P ^ { \prime } ( C )$ ; confidence 0.866
  
39. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010200/a01020079.png ; $\alpha = \text { Coker } ( \text { Ker } \alpha ) \theta \text { ker } ( \text { Coker } \alpha )$ ; confidence 0.357
+
39. https://www.encyclopediaofmath.org/legacyimages/e/e036/e036960/e03696065.png ; $y _ { j } \delta \theta$ ; confidence 0.866
  
40. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130050/o13005087.png ; $v _ { n } \in G$ ; confidence 0.357
+
40. https://www.encyclopediaofmath.org/legacyimages/p/p075/p075350/p07535088.png ; $P _ { s } ^ { l } ( k )$ ; confidence 0.866
  
41. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w120110269.png ; $g _ { 1 } = | d x | ^ { 2 } + \frac { | d \xi | ^ { 2 } } { | \xi | ^ { 2 } } \leq g = \frac { | d x | ^ { 2 } } { | x | ^ { 2 } } + \frac { | d \xi | ^ { 2 } } { | \xi | ^ { 2 } }$ ; confidence 0.357
+
41. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120230/s1202309.png ; $O ( r )$ ; confidence 0.866
  
42. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120210/b120210148.png ; $\mathfrak { p } \supset b$ ; confidence 0.356
+
42. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011490/a01149010.png ; $P _ { k } ( x _ { 1 } , \ldots , x _ { n } ) y ^ { k } + P _ { k - 1 } ( x _ { 1 } , \ldots , x _ { n } ) y ^ { k - 1 } + \ldots +$ ; confidence 0.865
  
43. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040365.png ; $\tilde { \Omega } _ { D } F = \cap \{ \Omega G : F \subseteq G \in Fi _ { D } A \}$ ; confidence 0.356
+
43. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110330/a11033029.png ; $N ^ { * * } = \operatorname { card } ( U _ { n } ^ { * * } ) / p$ ; confidence 0.865
  
44. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110040/a1100408.png ; $A = \operatorname { Pic } ^ { 0 } ( A )$ ; confidence 0.355
+
44. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011640/a01164016.png ; $\operatorname { lim } | K _ { i } | + 1$ ; confidence 0.865
  
45. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001085.png ; $0$ ; confidence 0.355
+
45. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010820/a01082067.png ; $G : \mathfrak { C } \rightarrow \mathfrak { S }$ ; confidence 0.865
  
46. https://www.encyclopediaofmath.org/legacyimages/m/m063/m063760/m063760111.png ; $0 \rightarrow A \rightarrow B \stackrel { sp } { \rightarrow } \pi * C \rightarrow 0$ ; confidence 0.355
+
46. https://www.encyclopediaofmath.org/legacyimages/m/m063/m063920/m063920116.png ; $\int \int K d S$ ; confidence 0.865
  
47. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010460/a0104606.png ; $a \in D$ ; confidence 0.354
+
47. https://www.encyclopediaofmath.org/legacyimages/e/e036/e036960/e036960200.png ; $F = C ( x )$ ; confidence 0.865
  
48. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013088.png ; $t$ ; confidence 0.354
+
48. https://www.encyclopediaofmath.org/legacyimages/w/w097/w097710/w09771051.png ; $X ( T _ { 0 } ) _ { Q }$ ; confidence 0.865
  
49. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110630/a11063032.png ; $\rho _ { 0 n + } = \operatorname { sin } A$ ; confidence 0.354
+
49. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130040/s13004042.png ; $X$ ; confidence 0.865
  
50. https://www.encyclopediaofmath.org/legacyimages/w/w097/w097790/w09779041.png ; $\pi _ { 4 n - 1 } ( S ^ { 2 n } ) \rightarrow \pi _ { 4 n } ( S ^ { 2 n + 1 } )$ ; confidence 0.354
+
50. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011210/a011210110.png ; $\tilde { w } _ { j } ( z ) \sim \frac { 1 } { \sqrt { \xi ( z ) } } v ( - \lambda ^ { 2 / 3 } \omega ^ { j } \xi ( z ) ) , \quad \omega = e ^ { 2 \pi i / 3 }$ ; confidence 0.865
  
51. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120130/a12013031.png ; $( X _ { x } - 1 , \theta _ { x } - 1 , \ldots )$ ; confidence 0.353
+
51. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240369.png ; $M _ { H } M _ { E } ^ { - 1 }$ ; confidence 0.865
  
52. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110150/a11015037.png ; $\theta ( S ) = \psi ( S ; \alpha , b , \ldots )$ ; confidence 0.353
+
52. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031830/d031830310.png ; $\operatorname { deg } _ { A } ( A ) = \operatorname { deg } _ { A } ( B )$ ; confidence 0.865
  
53. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a1301303.png ; $P _ { 1 } = \left( \begin{array} { c c c } { 0 } & { \square } & { q } \\ { r } & { \square } & { 0 } \end{array} \right) , Q _ { 2 } = \left( \begin{array} { c c } { - \frac { i } { 2 } q r } & { \frac { i } { 2 } q x } \\ { - \frac { i } { 2 } r _ { x } } & { \frac { i } { 2 } q r } \end{array} \right)$ ; confidence 0.352
+
53. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058590/l05859075.png ; $X \in L ( G )$ ; confidence 0.864
  
54. https://www.encyclopediaofmath.org/legacyimages/w/w097/w097510/w09751010.png ; $m _ { k } = \dot { k }$ ; confidence 0.352
+
54. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130090/a13009014.png ; $H ^ { 1 } ( X , Z _ { 2 } ) = 0$ ; confidence 0.864
  
55. https://www.encyclopediaofmath.org/legacyimages/m/m065/m065460/m06546014.png ; $( \alpha \vee ( b . e ) ) : e = ( \alpha : e ) \vee b$ ; confidence 0.351
+
55. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011740/a01174032.png ; $T \mapsto \operatorname { Aut } _ { T } ( X \times T )$ ; confidence 0.864
  
56. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110350/a11035019.png ; $\phi ^ { \mu }$ ; confidence 0.349
+
56. https://www.encyclopediaofmath.org/legacyimages/b/b016/b016990/b01699071.png ; $M$ ; confidence 0.864
  
57. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058720/l05872090.png ; $l _ { k } ( A )$ ; confidence 0.348
+
57. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010580/a0105806.png ; $y _ { n } + 1$ ; confidence 0.864
  
58. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110160/a11016016.png ; $x ^ { 2 }$ ; confidence 0.348
+
58. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240240.png ; $\sigma ^ { 2 }$ ; confidence 0.864
  
59. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110150/a11015025.png ; $\alpha _ { 1 } , 2$ ; confidence 0.348
+
59. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110380/b11038070.png ; $\Theta f$ ; confidence 0.864
  
60. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010288.png ; $| e ^ { A + \delta A } - e ^ { A } \| \leq k ( T ) \cdot \| W \|$ ; confidence 0.347
+
60. https://www.encyclopediaofmath.org/legacyimages/f/f041/f041250/f0412506.png ; $\infty \rightarrow \alpha / c$ ; confidence 0.864
  
61. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010200/a01020036.png ; $M$ ; confidence 0.347
+
61. https://www.encyclopediaofmath.org/legacyimages/m/m063/m063590/m06359074.png ; $F \mapsto F ( P )$ ; confidence 0.864
  
62. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021080.png ; $w _ { 2 }$ ; confidence 0.347
+
62. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130510/s130510139.png ; $L \subset Z ^ { 0 }$ ; confidence 0.864
  
63. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130050/a130050160.png ; $\sum _ { n = 0 } ^ { \infty } G ^ { \# } ( n ) y ^ { n } = \prod _ { m = 1 } ^ { \infty } ( 1 - y ^ { m } ) ^ { - P ^ { \# } ( m ) }$ ; confidence 0.346
+
63. https://www.encyclopediaofmath.org/legacyimages/s/s087/s087320/s08732031.png ; $\Pi ^ { * } \in C$ ; confidence 0.864
  
64. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240276.png ; $\leq F _ { \alpha ; q , x - \gamma }$ ; confidence 0.345
+
64. https://www.encyclopediaofmath.org/legacyimages/t/t093/t093770/t09377039.png ; $g = R ^ { \alpha } f$ ; confidence 0.864
  
65. https://www.encyclopediaofmath.org/legacyimages/s/s087/s087690/s0876903.png ; $f _ { h } ( t ) = \frac { 1 } { h } \int _ { t - k / 2 } ^ { t + k / 2 } f ( u ) d u = \frac { 1 } { h } \int _ { - k / 2 } ^ { k / 2 } f ( t + v ) d v$ ; confidence 0.345
+
65. https://www.encyclopediaofmath.org/legacyimages/m/m064/m064510/m06451047.png ; $\overline { M } _ { g }$ ; confidence 0.864
  
66. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130050/a130050215.png ; $\sum _ { n \leq x } S ( n ) = A _ { 2 } x + O ( \sqrt { x } ) \quad \text { as } x \rightarrow \infty$ ; confidence 0.344
+
66. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130540/s13054048.png ; $\alpha + b = 1$ ; confidence 0.864
  
67. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010220/a01022034.png ; $x _ { 1 } , \ldots , x _ { p }$ ; confidence 0.344
+
67. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058610/l05861025.png ; $D \subset Z$ ; confidence 0.864
  
68. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a13004015.png ; $H _ { D }$ ; confidence 0.344
+
68. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110400/a11040064.png ; $T ^ { * } ( t ) x ^ { * } \in X ^ { \odot }$ ; confidence 0.864
  
69. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025720/c02572034.png ; $y _ { 0 } = A _ { x }$ ; confidence 0.344
+
69. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120310/a120310161.png ; $A W ^ { * }$ ; confidence 0.863
  
70. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a010210142.png ; $w$ ; confidence 0.343
+
70. https://www.encyclopediaofmath.org/legacyimages/i/i052/i052550/i05255025.png ; $y \in U$ ; confidence 0.863
  
71. https://www.encyclopediaofmath.org/legacyimages/l/l060/l060310/l06031040.png ; $R = \{ \alpha \in K : \operatorname { mod } _ { K } ( \alpha ) \leq 1 \}$ ; confidence 0.342
+
71. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240544.png ; $20$ ; confidence 0.863
  
72. https://www.encyclopediaofmath.org/legacyimages/t/t093/t093150/t093150743.png ; $\left. \begin{array} { c c c } { B _ { i } } & { \stackrel { h _ { i } } { \rightarrow } } & { A _ { i } } \\ { g _ { i } \downarrow } & { \square } & { \downarrow f _ { i } } \\ { B } & { \vec { f } } & { A } \end{array} \right.$ ; confidence 0.342
+
72. https://www.encyclopediaofmath.org/legacyimages/t/t093/t093350/t09335012.png ; $x _ { 1 } ^ { 2 } + x _ { 2 } ^ { 2 } = a ^ { 2 } , \quad x _ { 3 } ^ { 2 } + x _ { 4 } ^ { 2 } = b ^ { 2 }$ ; confidence 0.863
  
73. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010140.png ; $\sigma _ { 1 } \geq \ldots \geq \sigma _ { \zeta }$ ; confidence 0.342
+
73. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120220/a12022013.png ; $T : X \rightarrow Y$ ; confidence 0.863
  
74. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110160/a11016086.png ; $\kappa ( A )$ ; confidence 0.340
+
74. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120050/a12005085.png ; $0 \leq t _ { 1 } \leq \ldots \leq t _ { k } \leq T$ ; confidence 0.863
  
75. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010640/a0106407.png ; $> r$ ; confidence 0.340
+
75. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022780/c02278058.png ; $O ( X ) = \oplus _ { n = - \infty } ^ { + \infty } O ^ { n } ( X )$ ; confidence 0.863
  
76. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110220/a11022031.png ; $\{ e _ { 1 } , \ldots , e _ { x } \}$ ; confidence 0.340
+
76. https://www.encyclopediaofmath.org/legacyimages/s/s085/s085590/s085590370.png ; $x _ { 0 } ^ { 2 } + \ldots + x _ { n } ^ { 2 } = 0$ ; confidence 0.863
  
77. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240488.png ; $( \beta _ { t 0 } , \ldots , \beta _ { i k } )$ ; confidence 0.339
+
77. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010120/a01012073.png ; $z | < R$ ; confidence 0.863
  
78. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120050/a12005064.png ; $A ( 0 ) uv + f ( 0 ) \in \overline { D ( A ( 0 ) ) }$ ; confidence 0.339
+
78. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010580/a0105808.png ; $h | v _ { 1 } \| ( \partial f / \partial y ) \| < 1$ ; confidence 0.863
  
79. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110070/a11007010.png ; $x _ { 1 } , \ldots , x _ { x } \in X$ ; confidence 0.338
+
79. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130180/a130180129.png ; $\mathfrak { P } ( U ) = \langle P ( U ) , \cap , \cup , - \rangle$ ; confidence 0.863
  
80. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120150/e12015019.png ; $\frac { D \xi ^ { i } } { d t } = \frac { d \xi ^ { i } } { d t } + \frac { 1 } { 2 } g ^ { i } r \xi ^ { r }$ ; confidence 0.338
+
80. https://www.encyclopediaofmath.org/legacyimages/a/a014/a014170/a01417078.png ; $\partial X$ ; confidence 0.863
  
81. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067110/n06711048.png ; $\phi _ { i } / \partial x _ { Y }$ ; confidence 0.338
+
81. https://www.encyclopediaofmath.org/legacyimages/s/s086/s086810/s08681015.png ; $( l - 1 )$ ; confidence 0.863
  
82. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110060/a11006044.png ; $F | X _ { t } | ^ { 2 } + \delta$ ; confidence 0.338
+
82. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058510/l058510193.png ; $C _ { 1 }$ ; confidence 0.863
  
83. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040515.png ; $\mathfrak { A } = \langle A , C \rangle$ ; confidence 0.337
+
83. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130540/s13054039.png ; $\pi h ( a )$ ; confidence 0.862
  
84. https://www.encyclopediaofmath.org/legacyimages/m/m062/m062360/m06236012.png ; $T _ { i j }$ ; confidence 0.337
+
84. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120160/a12016074.png ; $\frac { c _ { 1 } } { 1 - \lambda }$ ; confidence 0.862
  
85. https://www.encyclopediaofmath.org/legacyimages/g/g043/g043780/g043780168.png ; $T _ { \nu }$ ; confidence 0.336
+
85. https://www.encyclopediaofmath.org/legacyimages/d/d034/d034120/d034120518.png ; $\alpha \text { pr } F _ { \alpha }$ ; confidence 0.862
  
86. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010420/a0104204.png ; $S _ { x } = X _ { 1 } + \ldots + X _ { x }$ ; confidence 0.335
+
86. https://www.encyclopediaofmath.org/legacyimages/d/d034/d034120/d034120303.png ; $g \in A ( F )$ ; confidence 0.862
  
87. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040459.png ; $\operatorname { Mod } ^ { * } L D ( K ) = ( SPP _ { U } K ) ^ { * } L$ ; confidence 0.335
+
87. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040370/f04037020.png ; $q + 1 \leq k \leq \operatorname { prof } F - p$ ; confidence 0.862
  
88. https://www.encyclopediaofmath.org/legacyimages/i/i050/i050230/i050230379.png ; $\| f \| _ { \Lambda _ { p } ^ { r } ( R ^ { n } ) } \leq K$ ; confidence 0.335
+
88. https://www.encyclopediaofmath.org/legacyimages/a/a013/a013250/a01325015.png ; $\operatorname { arg } f$ ; confidence 0.862
  
89. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057050/l057050123.png ; $c \rightarrow N$ ; confidence 0.335
+
89. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055480/k05548036.png ; $\| g _ { \alpha \beta } \|$ ; confidence 0.862
  
90. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057150/l05715031.png ; $\mu$ ; confidence 0.335
+
90. https://www.encyclopediaofmath.org/legacyimages/p/p072/p072210/p07221037.png ; $F ^ { k }$ ; confidence 0.862
  
91. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040638.png ; $\langle N e _ { S _ { P } } \mathfrak { M } , F _ { S _ { P } } \mathfrak { M } \rangle$ ; confidence 0.335
+
91. https://www.encyclopediaofmath.org/legacyimages/t/t093/t093330/t09333059.png ; $r _ { 2 } \in R$ ; confidence 0.862
  
92. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a11001027.png ; $\frac { \| \delta x \| } { \| x \| } \leq \frac { \| A ^ { - 1 } \delta A \| + \frac { \| A ^ { - 1 } \delta b \| } { | x \| } } { 1 - \| A ^ { - 1 } \delta A \| }$ ; confidence 0.334
+
92. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650469.png ; $D / \Phi = \langle D / \Phi , \Omega \rangle$ ; confidence 0.862
  
93. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240184.png ; $\eta _ { i } - \eta _ { s }$ ; confidence 0.334
+
93. https://www.encyclopediaofmath.org/legacyimages/l/l059/l059080/l05908065.png ; $k _ { j }$ ; confidence 0.862
  
94. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130050/a130050146.png ; $\zeta _ { G } ( z ) = \sum _ { x = 1 } ^ { \infty } G ( n ) n ^ { - z } = \sum _ { \alpha \in G } | a | ^ { - z } =$ ; confidence 0.334
+
94. https://www.encyclopediaofmath.org/legacyimages/e/e036/e036960/e036960158.png ; $\delta _ { i } \alpha = \alpha _ { i }$ ; confidence 0.862
  
95. https://www.encyclopediaofmath.org/legacyimages/s/s085/s085400/s085400325.png ; $\tilde { f } : \Delta ^ { n + 1 } \rightarrow E$ ; confidence 0.333
+
95. https://www.encyclopediaofmath.org/legacyimages/r/r077/r077630/r07763055.png ; $\chi = \delta _ { \phi } - \sum _ { \alpha \in \Delta } m _ { \alpha } \alpha , \quad m _ { \alpha } \in Z , \quad m _ { \alpha } \geq 0$ ; confidence 0.862
  
96. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010580/a01058019.png ; $y _ { n + 1 } = y _ { n } + h \sum _ { \lambda = 0 } ^ { k } u _ { - \lambda } ( - a y _ { n - \lambda } )$ ; confidence 0.333
+
96. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010580/a0105801.png ; $y ^ { \prime } = f ( x , y ) , \quad y ( x _ { 0 } ) = y 0$ ; confidence 0.862
  
97. https://www.encyclopediaofmath.org/legacyimages/c/c110/c110470/c11047054.png ; $h : H \rightarrow ( C \bigotimes T M ) / ( H \oplus \overline { H } )$ ; confidence 0.332
+
97. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010910/a0109105.png ; $\sum _ { i = 1 } ^ { m } C _ { i } \frac { d ^ { i } u ( t ) } { d t ^ { i } } = f - A u ( t )$ ; confidence 0.861
  
98. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120280/c1202808.png ; $F T op$ ; confidence 0.332
+
98. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110100/a11010017.png ; $x - x 0 \in K$ ; confidence 0.861
  
99. https://www.encyclopediaofmath.org/legacyimages/r/r082/r082500/r08250032.png ; $\| u - P _ { n } u \| _ { A } \rightarrow 0$ ; confidence 0.332
+
99. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130070/a13007055.png ; $A _ { \alpha } ( x ) = \operatorname { card } \{ n \leq x :$ ; confidence 0.861
  
100. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010520/a01052070.png ; $\int _ { x _ { 0 } } ^ { x } e ^ { f _ { y } ( t , y ( t ) ) d t } d x$ ; confidence 0.332
+
100. https://www.encyclopediaofmath.org/legacyimages/d/d034/d034120/d034120253.png ; $h ( \phi ) = \operatorname { lim } _ { r \rightarrow \infty } \frac { \operatorname { ln } | A ( r e ^ { i \phi } ) | } { r }$ ; confidence 0.861
  
101. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010420/a0104207.png ; $n = 1,2 , \dots$ ; confidence 0.331
+
101. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010810/a01081010.png ; $\xi \in C ^ { n } ( I )$ ; confidence 0.861
  
102. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130050/a130050212.png ; $\sum _ { n \leq x } \alpha ( n ) = A _ { 1 } x + O ( \sqrt { x } ) \quad \text { as } x \rightarrow \infty$ ; confidence 0.331
+
102. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030700/d03070055.png ; $H ^ { * } ( X _ { \diamond } , \Theta )$ ; confidence 0.861
  
103. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057510/l05751032.png ; $\Delta ( \alpha _ { 1 } \ldots i _ { p } d x ^ { i _ { 1 } } \wedge \ldots \wedge d x ^ { i p } ) =$ ; confidence 0.331
+
103. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011370/a01137056.png ; $\Gamma _ { 0 }$ ; confidence 0.861
  
104. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040146.png ; $T , \psi \dagger \operatorname { si } \varphi$ ; confidence 0.330
+
104. https://www.encyclopediaofmath.org/legacyimages/r/r081/r081430/r08143081.png ; $e X$ ; confidence 0.861
  
105. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110040/a110040271.png ; $p ^ { 4 }$ ; confidence 0.330
+
105. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040820/f04082079.png ; $\phi _ { F } ^ { * } F _ { u } ( X , Y )$ ; confidence 0.861
  
106. https://www.encyclopediaofmath.org/legacyimages/c/c020/c020740/c020740394.png ; $( \alpha \circ \beta ) ( c ) _ { d x } = \sum _ { b } \alpha ( b ) _ { a } \beta ( c ) _ { b }$ ; confidence 0.330
+
106. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067510/n06751073.png ; $f ( z ) \neq$ ; confidence 0.861
  
107. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120180/c120180420.png ; $C ^ { \infty } ( \tilde { N } )$ ; confidence 0.330
+
107. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011600/a01160063.png ; $x ^ { p } + y ^ { p } = z ^ { p }$ ; confidence 0.860
  
108. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040349.png ; $8$ ; confidence 0.330
+
108. https://www.encyclopediaofmath.org/legacyimages/c/c026/c026980/c02698053.png ; $E _ { 8 }$ ; confidence 0.860
  
109. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010700/a01070010.png ; $r = \{ \alpha \in A : \exists b \in B ( \alpha , b ) \in r \}$ ; confidence 0.330
+
109. https://www.encyclopediaofmath.org/legacyimages/n/n066/n066520/n06652019.png ; $\epsilon < \epsilon ^ { \prime } < \ldots$ ; confidence 0.860
  
110. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021095.png ; $L$ ; confidence 0.330
+
110. https://www.encyclopediaofmath.org/legacyimages/w/w097/w097670/w097670169.png ; $\operatorname { gr } ( A _ { 1 } ( K ) )$ ; confidence 0.860
  
111. https://www.encyclopediaofmath.org/legacyimages/m/m062/m062220/m06222011.png ; $\Delta \lambda _ { i } ^ { \alpha }$ ; confidence 0.329
+
111. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110350/a1103507.png ; $e ^ { \lambda z }$ ; confidence 0.860
  
112. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110220/a11022034.png ; $m ( C ) = ( 2 \pi ) ^ { - n / 2 } \int _ { B } \operatorname { exp } ( - \frac { 1 } { 2 } \sum _ { i = 1 } ^ { n } x _ { l } ^ { 2 } ) d x _ { 1 } \ldots d x _ { n }$ ; confidence 0.327
+
112. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011210/a01121032.png ; $w _ { 1 } ( z ) \sim \frac { 1 } { \sqrt { \pi } } z ^ { - 1 / 4 } \operatorname { exp } ( \frac { 2 } { 3 } z ^ { 3 / 2 } ) \times$ ; confidence 0.860
  
113. https://www.encyclopediaofmath.org/legacyimages/r/r082/r082210/r08221030.png ; $o = e K$ ; confidence 0.327
+
113. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120100/a12010075.png ; $R$ ; confidence 0.859
  
114. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040409.png ; $Mod ^ { * } L D = P _ { SD } Mod ^ { * } L _ { D }$ ; confidence 0.326
+
114. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011640/a011640110.png ; $q = 0$ ; confidence 0.859
  
115. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001099.png ; $_ { \nabla } ( G / K )$ ; confidence 0.326
+
115. https://www.encyclopediaofmath.org/legacyimages/p/p074/p074640/p07464059.png ; $B = P ^ { m } ( C )$ ; confidence 0.859
  
116. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110440/b1104407.png ; $\overline { \Xi } \epsilon = 0$ ; confidence 0.326
+
116. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110040/a110040106.png ; $L ] = \lambda$ ; confidence 0.859
  
117. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010120/a01012043.png ; $W _ { 0 }$ ; confidence 0.325
+
117. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010810/a010810104.png ; $U ^ { * }$ ; confidence 0.859
  
118. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010430/a01043017.png ; $p _ { i k } ^ { * } ( t ) = P \{ \xi ^ { * } ( t ) = h | \xi ^ { * } ( 0 ) = i \} =$ ; confidence 0.325
+
118. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240341.png ; $Z , \Gamma , F$ ; confidence 0.859
  
119. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040541.png ; $h ( \psi ^ { i } ) \in C ( \{ h ( \varphi _ { 0 } ^ { i } ) , \ldots , h ( \varphi _ { n _ { i } - 1 } ^ { i } ) \} )$ ; confidence 0.325
+
119. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w120090161.png ; $g ^ { T }$ ; confidence 0.859
  
120. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120310/a12031010.png ; $N$ ; confidence 0.325
+
120. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011620/a0116209.png ; $P _ { N } ^ { 0 } ( x )$ ; confidence 0.859
  
121. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240141.png ; $c$ ; confidence 0.324
+
121. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010950/a01095084.png ; $\Gamma _ { j k } ^ { i }$ ; confidence 0.858
  
122. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021085.png ; $C$ ; confidence 0.323
+
122. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130180/a13018057.png ; $n \in \omega$ ; confidence 0.858
  
123. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520141.png ; $N _ { 2 } = \left| \begin{array} { c c c c c } { . } & { \square } & { \square } & { \square } & { 0 } \\ { \square } & { . } & { \square } & { \square } & { \square } \\ { \square } & { \square } & { L ( e _ { j } ^ { n _ { i j } } ) } & { \square } & { \square } \\ { \square } & { \square } & { \square } & { . } & { \square } \\ { \square } & { \square } & { \square } & { \square } & { \square } \\ { 0 } & { \square } & { \square } & { \square } & { . } \end{array} \right|$ ; confidence 0.323
+
123. https://www.encyclopediaofmath.org/legacyimages/b/b017/b017800/b01780053.png ; $n = p$ ; confidence 0.858
  
124. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110070/a11007012.png ; $\{ x _ { k } , a \}$ ; confidence 0.323
+
124. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025470/c02547063.png ; $\alpha = d t + \sum p _ { i } d q _ { i }$ ; confidence 0.858
  
125. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130060/a130060146.png ; $P _ { E } ^ { \# } ( n )$ ; confidence 0.322
+
125. https://www.encyclopediaofmath.org/legacyimages/e/e130/e130020/e13002010.png ; $\varphi$ ; confidence 0.858
  
126. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240339.png ; $\Sigma _ { 1 } = X _ { 4 } ^ { \prime } \Sigma X _ { 4 }$ ; confidence 0.322
+
126. https://www.encyclopediaofmath.org/legacyimages/m/m063/m063920/m063920117.png ; $\int \int K d S \leq 2 \pi ( \chi - k )$ ; confidence 0.858
  
127. https://www.encyclopediaofmath.org/legacyimages/f/f041/f041620/f04162020.png ; $X _ { i } \cap X _ { j } =$ ; confidence 0.322
+
127. https://www.encyclopediaofmath.org/legacyimages/r/r082/r082570/r08257030.png ; $j 2 ^ { - k - l }$ ; confidence 0.858
  
128. https://www.encyclopediaofmath.org/legacyimages/s/s087/s087640/s08764086.png ; $n ( O _ { x } ) = 0$ ; confidence 0.322
+
128. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240391.png ; $( M _ { H } M _ { E } ^ { - 1 } ) >$ ; confidence 0.858
  
129. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001033.png ; $[ \xi ^ { \alpha } , \xi ^ { b } ] = 2 \epsilon _ { \alpha b c } \xi ^ { c }$ ; confidence 0.322
+
129. https://www.encyclopediaofmath.org/legacyimages/q/q076/q076310/q07631085.png ; $X _ { i } ^ { + }$ ; confidence 0.857
  
130. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110880/b11088033.png ; $P _ { I } ^ { f } : C ^ { \infty } \rightarrow L$ ; confidence 0.321
+
130. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240384.png ; $q \geq 2$ ; confidence 0.857
  
131. https://www.encyclopediaofmath.org/legacyimages/k/k110/k110030/k11003029.png ; $\frac { x ^ { \rho + 1 } f ( x ) } { \int _ { x } ^ { x } t ^ { \sigma } f ( t ) d t } \rightarrow \sigma + \rho + 1 \quad ( x \rightarrow \infty )$ ; confidence 0.320
+
131. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010820/a01082061.png ; $\alpha ^ { \prime } : Y \rightarrow Y ^ { \prime }$ ; confidence 0.857
  
132. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110300/a11030034.png ; $K _ { n }$ ; confidence 0.319
+
132. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010520/a01052076.png ; $A h ^ { - } q$ ; confidence 0.857
  
133. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a13004033.png ; $\operatorname { to } \varphi$ ; confidence 0.319
+
133. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011210/a01121071.png ; $\xi ( x ) = ( \frac { 2 } { 3 } \int _ { x _ { 0 } } ^ { x } \sqrt { q ( t ) } d t ) ^ { 2 / 3 } , \quad \operatorname { sign } \xi ( x ) = \operatorname { sign } ( x - x _ { 0 } )$ ; confidence 0.857
  
134. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110220/a11022059.png ; $h _ { 1 } , \ldots , h _ { j }$ ; confidence 0.318
+
134. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a1301304.png ; $8$ ; confidence 0.857
  
135. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010220/a01022097.png ; $\alpha + b \in C ^ { p }$ ; confidence 0.317
+
135. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240354.png ; $E ( Z _ { 2 } )$ ; confidence 0.857
  
136. https://www.encyclopediaofmath.org/legacyimages/h/h047/h047020/h04702011.png ; $F _ { n } ( x ) = ( x _ { 1 } ^ { 2 } + \ldots + x _ { y } ^ { 2 } ) ^ { 1 / 2 }$ ; confidence 0.316
+
136. https://www.encyclopediaofmath.org/legacyimages/e/e036/e036910/e03691052.png ; $z = \operatorname { ln } \alpha = \operatorname { ln } | \alpha | + i \operatorname { Arg } \alpha$ ; confidence 0.857
  
137. https://www.encyclopediaofmath.org/legacyimages/o/o120/o120010/o12001037.png ; $\left. \begin{array} { l } { \nabla p _ { 1 } = \nabla p _ { 2 } = 0 } \\ { \frac { \partial v _ { 0 } } { \partial t } + [ \nabla v _ { 0 } ] v _ { 0 } = \frac { 1 } { Re } \Delta v _ { 0 } + \operatorname { Re } \nabla p _ { 3 } + \theta _ { 0 } b } \end{array} \right.$ ; confidence 0.316
+
137. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058820/l058820245.png ; $\operatorname { lim } _ { x \rightarrow x _ { 0 } } ( f _ { 1 } ( x ) / f _ { 2 } ( x ) )$ ; confidence 0.857
  
138. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110070/a11007013.png ; $x \in X ^ { \prime }$ ; confidence 0.315
+
138. https://www.encyclopediaofmath.org/legacyimages/s/s087/s087060/s08706037.png ; $K _ { i } ( R )$ ; confidence 0.857
  
139. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013078.png ; $q ^ { ( l ) } = 2 i \frac { \tau _ { l } + 1 } { \tau _ { l } } , r ^ { ( l ) } = - 2 i \frac { \tau _ { l } - 1 } { \tau _ { l } }$ ; confidence 0.315
+
139. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011460/a011460118.png ; $G ( \overline { k } / k )$ ; confidence 0.857
  
140. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120150/b12015024.png ; $x = \frac { 1 } { n } \sum _ { j = 1 } ^ { n } x$ ; confidence 0.315
+
140. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110160/a11016055.png ; $\langle p _ { k } , A p _ { k - 1 } \rangle = 0$ ; confidence 0.856
  
141. https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100277.png ; $\partial _ { r }$ ; confidence 0.315
+
141. https://www.encyclopediaofmath.org/legacyimages/e/e036/e036960/e036960134.png ; $GL ( n , K )$ ; confidence 0.856
  
142. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120100/w12010028.png ; $\nabla _ { i g j k } = \gamma _ { i } g _ { j k }$ ; confidence 0.315
+
142. https://www.encyclopediaofmath.org/legacyimages/b/b017/b017030/b01703097.png ; $\phi : X \rightarrow Y$ ; confidence 0.856
  
143. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120080/a12008042.png ; $\left. \begin{array} { l } { \frac { d } { d t } \left( \begin{array} { c } { u } \\ { v } \end{array} \right) + \left( \begin{array} { c c } { 0 } & { - 1 } \\ { A } & { 0 } \end{array} \right) \left( \begin{array} { c } { u } \\ { v } \end{array} \right) = \left( \begin{array} { c } { 0 } \\ { f ( t ) } \end{array} \right) , \quad t \in [ 0 , T ] } \\ { \left( \begin{array} { c } { u ( 0 ) } \\ { v ( 0 ) } \end{array} \right) = \left( \begin{array} { c } { u _ { 0 } } \\ { u _ { 1 } } \end{array} \right) } \end{array} \right.$ ; confidence 0.315
+
143. https://www.encyclopediaofmath.org/legacyimages/o/o068/o068200/o06820019.png ; $t \in K$ ; confidence 0.856
  
144. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040599.png ; $E _ { S _ { P } }$ ; confidence 0.315
+
144. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110040/a110040206.png ; $\{ \sigma = 0 \} \subset P ^ { 4 }$ ; confidence 0.856
  
145. https://www.encyclopediaofmath.org/legacyimages/a/a014/a014310/a0143102.png ; $e$ ; confidence 0.314
+
145. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110040/a11004020.png ; $a$ ; confidence 0.856
  
146. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120230/e12023045.png ; $\therefore M \rightarrow F$ ; confidence 0.313
+
146. https://www.encyclopediaofmath.org/legacyimages/c/c021/c021620/c02162087.png ; $\kappa ( \eta ^ { q } ) \in H ^ { 2 q } ( B )$ ; confidence 0.856
  
147. https://www.encyclopediaofmath.org/legacyimages/j/j054/j054050/j05405048.png ; $\theta _ { 3 } ( v \pm \frac { 1 } { 2 } \tau ) = e ^ { - i \pi \tau / 4 } \cdot e ^ { - i \pi v } \cdot \theta _ { 2 } ( v )$ ; confidence 0.312
+
147. https://www.encyclopediaofmath.org/legacyimages/e/e036/e036980/e03698026.png ; $\alpha : G \rightarrow \operatorname { Aut } A$ ; confidence 0.856
  
148. https://www.encyclopediaofmath.org/legacyimages/p/p073/p073400/p07340055.png ; $M ^ { 0 }$ ; confidence 0.312
+
148. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110010/l11001090.png ; $x , y \in P$ ; confidence 0.856
  
149. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110160/a11016053.png ; $p _ { k }$ ; confidence 0.312
+
149. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130070/a13007010.png ; $2 ^ { n } p$ ; confidence 0.856
  
150. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110020/a11002049.png ; $m = 2 ^ { a } 3 ^ { b } u ^ { 2 }$ ; confidence 0.311
+
150. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240513.png ; $T _ { 2 }$ ; confidence 0.856
  
151. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001057.png ; $0$ ; confidence 0.311
+
151. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058590/l05859086.png ; $( X , Y ) \rightarrow \operatorname { exp } ^ { - 1 } ( \operatorname { exp } X \operatorname { exp } Y ) , \quad X , Y \in L ( G )$ ; confidence 0.856
  
152. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021060.png ; $A _ { 1 } , \ldots , A _ { 8 }$ ; confidence 0.310
+
152. https://www.encyclopediaofmath.org/legacyimages/b/b016/b016420/b01642032.png ; $B ( \alpha , b )$ ; confidence 0.855
  
153. https://www.encyclopediaofmath.org/legacyimages/k/k055/k055520/k05552082.png ; $\Gamma 20$ ; confidence 0.310
+
153. https://www.encyclopediaofmath.org/legacyimages/b/b016/b016170/b01617013.png ; $F _ { n } ( z )$ ; confidence 0.855
  
154. https://www.encyclopediaofmath.org/legacyimages/q/q076/q076830/q07683071.png ; $p _ { m } = ( \sum _ { j = 0 } ^ { m } A _ { j } ) ^ { - 1 }$ ; confidence 0.310
+
154. https://www.encyclopediaofmath.org/legacyimages/f/f041/f041310/f04131029.png ; $\Lambda = \frac { \partial } { \partial x } + i \frac { \partial } { \partial y }$ ; confidence 0.855
  
155. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120310/a120310136.png ; $A$ ; confidence 0.309
+
155. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010680/a01068028.png ; $k _ { 0 } ( A )$ ; confidence 0.855
  
156. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010199.png ; $k ( T ) = \| T \| T ^ { - 1 } \|$ ; confidence 0.308
+
156. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011490/a01149050.png ; $x _ { 1 } , x _ { 2 } \in G$ ; confidence 0.855
  
157. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010580/a01058016.png ; $y _ { k }$ ; confidence 0.308
+
157. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110410/a11041096.png ; $( X , L )$ ; confidence 0.855
  
158. https://www.encyclopediaofmath.org/legacyimages/f/f042/f042150/f04215011.png ; $\left. \begin{array} { l l } { F _ { 1 } ( A ) } & { \frac { F _ { 1 } ( \alpha ) } { \rightarrow } } & { F _ { 1 } ( B ) } \\ { \phi _ { A } \downarrow } & { \square } & { \downarrow \phi _ { B } } \\ { F _ { 2 } ( A ) } & { \vec { F _ { 2 } ( \alpha ) } } & { F _ { 2 } ( B ) } \end{array} \right.$ ; confidence 0.308
+
158. https://www.encyclopediaofmath.org/legacyimages/q/q076/q076310/q076310122.png ; $R ^ { 12 } = \sum _ { i } x _ { i } \otimes y _ { i } \otimes 1$ ; confidence 0.855
  
159. https://www.encyclopediaofmath.org/legacyimages/t/t093/t093900/t093900115.png ; $l \mu \frac { \partial W ^ { k } } { \partial x } + ( 1 - c ) W ^ { k } = c ( \Phi _ { 0 } ^ { k } - \phi _ { 0 } ^ { k } )$ ; confidence 0.308
+
159. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010600/a01060041.png ; $\cup _ { z \subset Z } \{ \sum _ { i } ( Y _ { z } \cap A _ { i } ) \}$ ; confidence 0.854
  
160. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110100/a11010075.png ; $\operatorname { sup } _ { \epsilon > 0 ; \psi \in W } \operatorname { inf } \{ g ( x ) : g \in \operatorname { span } ( M ) , w f \leq w g + \epsilon \} =$ ; confidence 0.307
+
160. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010710/a01071041.png ; $( M )$ ; confidence 0.854
  
161. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a110420128.png ; $h$ ; confidence 0.307
+
161. https://www.encyclopediaofmath.org/legacyimages/g/g044/g044270/g04427037.png ; $R$ ; confidence 0.854
  
162. https://www.encyclopediaofmath.org/legacyimages/d/d110/d110110/d11011051.png ; $M _ { 1 } = H \cap _ { k \tau _ { S } } H ^ { \prime }$ ; confidence 0.307
+
162. https://www.encyclopediaofmath.org/legacyimages/d/d034/d034120/d034120399.png ; $x = 0$ ; confidence 0.854
  
163. https://www.encyclopediaofmath.org/legacyimages/i/i050/i050230/i050230319.png ; $f \in S _ { y } ^ { \prime }$ ; confidence 0.307
+
163. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010860/a01086024.png ; $( \sum M _ { \alpha } ) ^ { * } \simeq \prod M _ { \alpha }$ ; confidence 0.854
  
164. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110100/a11010051.png ; $\sigma \in M$ ; confidence 0.307
+
164. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130060/b13006060.png ; $b _ { i }$ ; confidence 0.854
  
165. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010460/a01046087.png ; $P _ { x } ( h )$ ; confidence 0.305
+
165. https://www.encyclopediaofmath.org/legacyimages/d/d033/d033460/d033460124.png ; $| F _ { 0 } ^ { \prime } ( \zeta _ { 0 } ) | \leq | F ^ { \prime } ( \zeta _ { 0 } ) | \leq | F _ { \pi / 2 } ^ { \prime } ( \zeta _ { 0 } ) |$ ; confidence 0.854
  
166. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010279.png ; $\frac { \| \delta X \| } { \| X \| } \leq \frac { \epsilon \cdot k ( A , B ) } { 1 - \epsilon \cdot k ( A , B ) }$ ; confidence 0.305
+
166. https://www.encyclopediaofmath.org/legacyimages/s/s086/s086960/s08696076.png ; $V < 0$ ; confidence 0.854
  
167. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120020/a12002024.png ; $F _ { t } | _ { A } = H _ { t }$ ; confidence 0.304
+
167. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650409.png ; $A ^ { * }$ ; confidence 0.854
  
168. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120050/a12005039.png ; $S _ { \theta _ { 0 } } = \{ z \in C : \operatorname { larg } z | \leq \theta _ { 0 } \} \cup \{ 0 \}$ ; confidence 0.304
+
168. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022360/c02236034.png ; $E ^ { 4 }$ ; confidence 0.854
  
169. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010680/a0106806.png ; $r ( n ) = r _ { r } , A ( n )$ ; confidence 0.304
+
169. https://www.encyclopediaofmath.org/legacyimages/s/s085/s085590/s085590464.png ; $F ( x , y , \lambda ) = x \Phi _ { \mu - 2 } ( x , \lambda ) - x y ^ { 2 }$ ; confidence 0.854
  
170. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110820/b11082017.png ; $\pi _ { i } / ( \pi _ { i } + \pi _ { j } )$ ; confidence 0.304
+
170. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110280/a11028078.png ; $c ( G )$ ; confidence 0.853
  
171. https://www.encyclopediaofmath.org/legacyimages/r/r082/r082790/r08279064.png ; $\operatorname { Pic } ( F ) \cong p ^ { * } \operatorname { Pic } ( C ) \oplus Z ^ { 5 }$ ; confidence 0.304
+
171. https://www.encyclopediaofmath.org/legacyimages/h/h047/h047690/h047690121.png ; $\operatorname { Sp } ( k ) \times \operatorname { Sp } ( 1 )$ ; confidence 0.853
  
172. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130060/a13006081.png ; $U _ { d }$ ; confidence 0.304
+
172. https://www.encyclopediaofmath.org/legacyimages/s/s085/s085590/s08559025.png ; $\alpha = \phi _ { 1 } ( \tau _ { 1 } )$ ; confidence 0.853
  
173. https://www.encyclopediaofmath.org/legacyimages/p/p073/p073540/p07354050.png ; $P \{ X _ { v + 1 } = k + 1 | X _ { k } = k \} = \frac { b + k c } { b + r + n c } = \frac { p + k \gamma } { 1 + n \gamma }$ ; confidence 0.303
+
173. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011650/a011650183.png ; $\theta ( \alpha , b )$ ; confidence 0.853
  
174. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110020/a11002053.png ; $2 ^ { a + 2 }$ ; confidence 0.302
+
174. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010520/a01052014.png ; $( A ) = \| A \| A ^ { - 1 } \|$ ; confidence 0.853
  
175. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040296.png ; $A / \Theta \in Q$ ; confidence 0.302
+
175. https://www.encyclopediaofmath.org/legacyimages/b/b015/b015390/b01539056.png ; $\delta ^ { * } ( x ) = \left\{ \begin{array} { l l } { d _ { 1 } , } & { \text { if } \frac { p ( x | \theta _ { 2 } ) } { p ( x | \theta _ { 1 } ) } \leq \frac { \pi _ { 1 } } { \pi _ { 2 } } \frac { L _ { 12 } - L _ { 11 } } { L _ { 21 } - L _ { 22 } } } \\ { d _ { 2 } , } & { \text { if } \frac { p ( x | \theta _ { 2 } ) } { p ( x | \theta _ { 1 } ) } \geq \frac { \pi _ { 1 } } { \pi _ { 2 } } \frac { L _ { 12 } - L _ { 11 } } { L _ { 21 } - L _ { 22 } } } \end{array} \right.$ ; confidence 0.853
  
176. https://www.encyclopediaofmath.org/legacyimages/e/e036/e036910/e03691017.png ; $a ^ { X } = e ^ { X \operatorname { ln } \alpha }$ ; confidence 0.301
+
176. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010950/a01095034.png ; $\operatorname { lim } _ { t \rightarrow 0 } \frac { \epsilon ^ { i } ( t ) } { t } = 0 , \quad \operatorname { lim } _ { t \rightarrow 0 } \frac { \epsilon _ { j } ^ { i } ( t ) } { t } = 0$ ; confidence 0.853
  
177. https://www.encyclopediaofmath.org/legacyimages/s/s086/s086940/s086940100.png ; $- \infty \leq w \leq + \infty$ ; confidence 0.301
+
177. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010950/a010950114.png ; $\{ e _ { i } \}$ ; confidence 0.853
  
178. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010700/a01070018.png ; $B / I$ ; confidence 0.300
+
178. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110400/a11040084.png ; $( X ^ { \odot } ) ^ { d }$ ; confidence 0.853
  
179. https://www.encyclopediaofmath.org/legacyimages/c/c021/c021100/c02110012.png ; $x \in \operatorname { Dom } A$ ; confidence 0.300
+
179. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010120/a01012068.png ; $\{ \nu _ { k } \} \cap \{ \mu _ { n } \} = \emptyset$ ; confidence 0.853
  
180. https://www.encyclopediaofmath.org/legacyimages/r/r080/r080850/r08085028.png ; $e \omega ^ { r } f$ ; confidence 0.300
+
180. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030700/d03070040.png ; $d f _ { 0 } ^ { \prime }$ ; confidence 0.853
  
181. https://www.encyclopediaofmath.org/legacyimages/v/v096/v096900/v096900234.png ; $\Pi I _ { \lambda }$ ; confidence 0.300
+
181. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011600/a011600169.png ; $H _ { m _ { 2 } }$ ; confidence 0.853
  
182. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120280/d120280147.png ; $\overline { U }$ ; confidence 0.299
+
182. https://www.encyclopediaofmath.org/legacyimages/c/c020/c020570/c02057064.png ; $\rightarrow H ^ { p } ( X , S ) \rightarrow H ^ { p } ( X , F ) \stackrel { \phi p } { \rightarrow } H ^ { p } ( X , G ) \rightarrow$ ; confidence 0.853
  
183. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057740/l05774010.png ; $\operatorname { lim } _ { n \rightarrow \infty } \operatorname { sup } \frac { S _ { n } } { c _ { n } } = 1 \quad ( \alpha . s . )$ ; confidence 0.299
+
183. https://www.encyclopediaofmath.org/legacyimages/s/s085/s085590/s085590138.png ; $V ^ { \prime } ( \alpha ) = \{ z \in \overline { C } : 0 < | z - \alpha | < R \}$ ; confidence 0.853
  
184. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010710/a01071044.png ; $t$ ; confidence 0.299
+
184. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110280/a11028029.png ; $f : V ( G ) \rightarrow \{ 1 , \ldots , k \}$ ; confidence 0.853
  
185. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120050/a120050107.png ; $\Delta$ ; confidence 0.298
+
185. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023330/c02333031.png ; $f = a _ { 0 } x ^ { 3 } + 3 a _ { 1 } x ^ { 2 } y + 3 a _ { 2 } x y ^ { 2 } + a _ { 3 } y ^ { 3 }$ ; confidence 0.852
  
186. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a13004029.png ; $\sigma ( \Gamma ) \operatorname { tg } \sigma ( \varphi )$ ; confidence 0.298
+
186. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130070/a13007058.png ; $x \operatorname { exp } ( - 8 ( \operatorname { log } x \operatorname { log } \operatorname { log } x ) ^ { 1 / 2 } ) < A _ { 2 } ( x ) <$ ; confidence 0.852
  
187. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040382.png ; $F \in Fi _ { D }$ ; confidence 0.298
+
187. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a11001017.png ; $x = A ^ { - 1 } b$ ; confidence 0.852
  
188. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130080/a13008099.png ; $y = \left\{ \begin{array} { l l } { ( \frac { c } { \alpha - x } ) ^ { k + 1 } } & { \text { for } x \in ( - \infty , \alpha - c ] } \\ { 1 } & { \text { for } x \in [ \alpha - c , \alpha - c + b ] } \\ { ( \frac { b - c } { x - \alpha } ) ^ { k + 1 } } & { \text { for } x \in [ \alpha - c + b , \infty ] } \end{array} \right.$ ; confidence 0.297
+
188. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240302.png ; $\hat { \eta } \omega$ ; confidence 0.852
  
189. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130060/a130060133.png ; $F ^ { \# } ( n ) \sim K _ { 0 } C _ { 0 } q _ { 0 } ^ { n } n ^ { - 5 / 2 } \text { asn } \rightarrow \infty$ ; confidence 0.297
+
189. https://www.encyclopediaofmath.org/legacyimages/d/d033/d033980/d03398025.png ; $\sum _ { m = 1 } ^ { \infty } u _ { m n n }$ ; confidence 0.852
  
190. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110100/a11010010.png ; $I$ ; confidence 0.297
+
190. https://www.encyclopediaofmath.org/legacyimages/e/e035/e035110/e03511022.png ; $\Sigma - 1$ ; confidence 0.852
  
191. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010120/a01012035.png ; $W _ { a }$ ; confidence 0.297
+
191. https://www.encyclopediaofmath.org/legacyimages/t/t092/t092600/t092600123.png ; $B = I _ { p }$ ; confidence 0.852
  
192. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110040/a110040152.png ; $C \in | L$ ; confidence 0.296
+
192. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011160/a01116024.png ; $k [ X$ ; confidence 0.852
  
193. https://www.encyclopediaofmath.org/legacyimages/t/t092/t092650/t09265033.png ; $\{ \partial f \rangle$ ; confidence 0.295
+
193. https://www.encyclopediaofmath.org/legacyimages/i/i052/i052350/i05235019.png ; $| \alpha _ { i j } |$ ; confidence 0.852
  
194. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010680/a01068040.png ; $\leq n ^ { \theta _ { 1 } }$ ; confidence 0.295
+
194. https://www.encyclopediaofmath.org/legacyimages/d/d034/d034120/d034120208.png ; $\operatorname { Ext } _ { c } ^ { n } ( X ; F , \Omega )$ ; confidence 0.851
  
195. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110100/a11010016.png ; $x \in I$ ; confidence 0.295
+
195. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023250/c023250173.png ; $\beta _ { 0 }$ ; confidence 0.851
  
196. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010159.png ; $\alpha = \frac { \| \delta A \| _ { 2 } } { \| A \| _ { 2 } } , \quad \hat { \kappa } = \frac { k ( A ) } { 1 - \alpha k ( A ) }$ ; confidence 0.294
+
196. https://www.encyclopediaofmath.org/legacyimages/h/h110/h110050/h11005031.png ; $w _ { 2 } = f ( r _ { 1 } ) \ldots f ( r _ { n } )$ ; confidence 0.851
  
197. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040513.png ; $A \nmid \Omega C$ ; confidence 0.294
+
197. https://www.encyclopediaofmath.org/legacyimages/l/l059/l059110/l05911087.png ; $l _ { 2 } u = \phi _ { 2 } ( t )$ ; confidence 0.851
  
198. https://www.encyclopediaofmath.org/legacyimages/a/a014/a014230/a0142305.png ; $\{ A \rangle$ ; confidence 0.294
+
198. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120120/l120120133.png ; $( K _ { p } ) _ { i n s }$ ; confidence 0.851
  
199. https://www.encyclopediaofmath.org/legacyimages/p/p072/p072430/p072430105.png ; $\phi _ { im }$ ; confidence 0.294
+
199. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110170/a11017030.png ; $X \in S ( t )$ ; confidence 0.850
  
200. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010120/a01012040.png ; $n = 0,1 , \ldots$ ; confidence 0.294
+
200. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a11001029.png ; $| b | \leq \| A |$ ; confidence 0.850
  
201. https://www.encyclopediaofmath.org/legacyimages/o/o070/o070150/o07015054.png ; $\alpha ^ { n } < b ^ { n + 1 }$ ; confidence 0.291
+
201. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040143.png ; $S 5$ ; confidence 0.850
  
202. https://www.encyclopediaofmath.org/legacyimages/r/r082/r082160/r082160299.png ; $\{ \operatorname { exp } _ { m } ( \text { Cutval } ( \xi ) \xi ) \} = \text { Cutloc } ( m )$ ; confidence 0.291
+
202. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130250/c13025017.png ; $Y _ { j } = i$ ; confidence 0.850
  
203. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110300/a11030040.png ; $d a _ { i } = \sum _ { j + k = i - 1 } a _ { j } a _ { k }$ ; confidence 0.290
+
203. https://www.encyclopediaofmath.org/legacyimages/i/i050/i050950/i05095033.png ; $S = \frac { K } { 3 }$ ; confidence 0.850
  
204. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031380/d031380384.png ; $\sum _ { \mathfrak { D } _ { 1 } ^ { 1 } } ( E \times N ^ { N } )$ ; confidence 0.290
+
204. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040820/f04082071.png ; $F _ { u } ( X , Y ) \in L [ X , Y ]$ ; confidence 0.850
  
205. https://www.encyclopediaofmath.org/legacyimages/g/g044/g044680/g04468049.png ; $t \circ \in E$ ; confidence 0.290
+
205. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040433.png ; $h : A \rightarrow B$ ; confidence 0.850
  
206. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120120/a12012045.png ; $R _ { \pm } ^ { 2 m }$ ; confidence 0.288
+
206. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010520/a01052043.png ; $A _ { k } ^ { 1 } = \alpha _ { 2 k - 1 } + \alpha _ { 2 k }$ ; confidence 0.850
  
207. https://www.encyclopediaofmath.org/legacyimages/i/i052/i052130/i05213037.png ; $\forall y \exists z ( \gamma ( y ) + 1 = \alpha ( g * \overline { \beta } ( z ) ) )$ ; confidence 0.288
+
207. https://www.encyclopediaofmath.org/legacyimages/l/l059/l059250/l05925025.png ; $\{ 0 \} \subset V _ { 1 } \subset \ldots \subset V _ { m } = V$ ; confidence 0.850
  
208. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110150/a11015034.png ; $F ( t | S _ { \mu } ) = F ( [ \frac { t } { \alpha ( S ) } ] ^ { 1 / \beta ( S ) } | S ) , \quad t \geq 0$ ; confidence 0.288
+
208. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130080/a13008066.png ; $X \leftarrow m + T s E$ ; confidence 0.850
  
209. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130230/a13023034.png ; $\| f _ { 1 } - P _ { U \cap V ^ { J } } f \| \leq c ^ { 2 l - 1 } \| f \|$ ; confidence 0.287
+
209. https://www.encyclopediaofmath.org/legacyimages/e/e036/e036960/e03696074.png ; $F _ { 0 } \{ u \}$ ; confidence 0.850
  
210. https://www.encyclopediaofmath.org/legacyimages/a/a014/a014190/a0141905.png ; $x _ { y } + 1 = t$ ; confidence 0.287
+
210. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110410/a11041014.png ; $S \subset P ^ { N }$ ; confidence 0.849
  
211. https://www.encyclopediaofmath.org/legacyimages/f/f041/f041940/f041940310.png ; $A \in \mathfrak { S }$ ; confidence 0.285
+
211. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022780/c02278052.png ; $N \gg n$ ; confidence 0.849
  
212. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040386.png ; $F \subseteq Fi _ { D } A$ ; confidence 0.285
+
212. https://www.encyclopediaofmath.org/legacyimages/c/c024/c024890/c0248905.png ; $\alpha ( x ) - b ( x ) = f ( x ) g ( x ) + p h ( x )$ ; confidence 0.849
  
213. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110040/a11004048.png ; $d _ { 2 }$ ; confidence 0.284
+
213. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040230/f040230100.png ; $x _ { n } = n$ ; confidence 0.849
  
214. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013031.png ; $( \partial / \partial t _ { x } ) - Q _ { 0 } z ^ { x }$ ; confidence 0.284
+
214. https://www.encyclopediaofmath.org/legacyimages/m/m064/m064580/m06458025.png ; $k _ { 1 } + \ldots + k _ { n } = k$ ; confidence 0.849
  
215. https://www.encyclopediaofmath.org/legacyimages/c/c027/c027270/c02727013.png ; $j = \frac { 1728 g _ { 2 } ^ { 3 } } { g _ { 2 } ^ { 3 } - 27 g _ { 3 } ^ { 2 } }$ ; confidence 0.284
+
215. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010810/a0108103.png ; $l ( y ) \equiv \alpha _ { 0 } ( t ) y ^ { ( n ) } + \ldots + \alpha _ { n } ( t ) y$ ; confidence 0.849
  
216. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120080/a12008056.png ; $\alpha ( t , u , v ) = \langle A ( t ) u , v \rangle _ { \langle H ^ { 1 } \rangle } ^ { \prime } \times H ^ { 1 }$ ; confidence 0.284
+
216. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058590/l058590161.png ; $SL ( n + 1 , C )$ ; confidence 0.849
  
217. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110070/a11007026.png ; $\pi _ { p } ( \text { Id } : C ( K ) \rightarrow L _ { p } ( K , \mu ) ) = \mu ( K ) ^ { 1 / p }$ ; confidence 0.283
+
217. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012540/a0125409.png ; $D = \operatorname { rank } G -$ ; confidence 0.848
  
218. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040745.png ; $\Sigma ( P , R ) \subseteq Fm P L$ ; confidence 0.283
+
218. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110460/a1104608.png ; $\alpha ^ { 2 } = \frac { \mu B ^ { 2 } } { 4 \pi \rho } = \frac { T } { \rho }$ ; confidence 0.848
  
219. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a13004059.png ; $F m$ ; confidence 0.283
+
219. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120180/a12018044.png ; $a < 1 < b$ ; confidence 0.848
  
220. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040723.png ; $P ^ { \prime }$ ; confidence 0.282
+
220. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110040/a11004044.png ; $( Z / d _ { 1 } Z ) ^ { 2 } \times ( Z / d _ { 2 } Z ) ^ { 2 }$ ; confidence 0.848
  
221. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040450.png ; $D ( K ) = \langle F m , \vDash _ { K } \rangle$ ; confidence 0.282
+
221. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130060/a13006075.png ; $\operatorname { lim } _ { n \rightarrow \infty } \frac { P ^ { \# } ( n ) } { G ^ { \# } ( n ) } = 1$ ; confidence 0.848
  
222. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240196.png ; $\sqrt { 3 }$ ; confidence 0.281
+
222. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011300/a01130090.png ; $t ^ { k }$ ; confidence 0.848
  
223. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130050/a130050185.png ; $\zeta _ { A } ( z ) = \prod _ { r \geq 1 } \quad ( 1 - p ^ { - r z } ) ^ { - 1 } = \prod _ { r = 1 } ^ { \infty } \zeta ( r z )$ ; confidence 0.281
+
223. https://www.encyclopediaofmath.org/legacyimages/g/g044/g044470/g044470103.png ; $\psi \circ \phi = \phi ^ { \prime } \circ \psi$ ; confidence 0.848
  
224. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010211.png ; $1 / S i$ ; confidence 0.280
+
224. https://www.encyclopediaofmath.org/legacyimages/n/n066/n066890/n06689067.png ; $v = 1.1 m / sec$ ; confidence 0.848
  
225. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110060/a11006033.png ; $\beta _ { X } ( s ) = \operatorname { sup } _ { t } \beta ( \sigma \{ X _ { z } : u \leq t \} , \sigma \{ X _ { z } : u \geq t + x \} )$ ; confidence 0.279
+
225. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030700/d03070096.png ; $( . S ) \rightarrow D$ ; confidence 0.848
  
226. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040685.png ; $X \in X$ ; confidence 0.278
+
226. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130140/t130140117.png ; $\chi _ { R } : K _ { 0 } ( \operatorname { mod } R ) \rightarrow Z$ ; confidence 0.847
  
227. https://www.encyclopediaofmath.org/legacyimages/r/r082/r082060/r082060102.png ; $f ^ { \mu } | _ { K }$ ; confidence 0.278
+
227. https://www.encyclopediaofmath.org/legacyimages/k/k110/k110070/k11007034.png ; $L _ { \lambda }$ ; confidence 0.847
  
228. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010420/a0104203.png ; $n = 1,2 , . .$ ; confidence 0.277
+
228. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110680/a110680179.png ; $\phi _ { x y } a \leq b$ ; confidence 0.847
  
229. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240191.png ; $X ^ { \prime } X \hat { \beta } = X ^ { \prime } y$ ; confidence 0.277
+
229. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130080/d13008069.png ; $H = C ^ { n }$ ; confidence 0.847
  
230. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110020/a11002054.png ; $( 4 m ^ { 2 n } \cdot \frac { m ^ { 2 n } - 1 } { m ^ { 2 } - 1 } , m ^ { 2 n - 1 } \cdot ( \frac { 2 ( m ^ { 2 n } - 1 ) } { m + 1 } + 1 )$ ; confidence 0.276
+
230. https://www.encyclopediaofmath.org/legacyimages/h/h046/h046420/h046420124.png ; $d \chi$ ; confidence 0.847
  
231. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110150/a11015030.png ; $F ( t | S _ { u } ) = F ( \frac { t } { \alpha ( S ) } | S ) , \quad t \geq 0$ ; confidence 0.276
+
231. https://www.encyclopediaofmath.org/legacyimages/p/p075/p075340/p07534038.png ; $2 ^ { N } 0$ ; confidence 0.847
  
232. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110220/a11022094.png ; $\{ \pi _ { n } \}$ ; confidence 0.275
+
232. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040737.png ; $= 0$ ; confidence 0.847
  
233. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240430.png ; $a ^ { \prime } \Theta$ ; confidence 0.275
+
233. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130060/a13006041.png ; $\partial ( \alpha ) = \operatorname { deg } ( \alpha )$ ; confidence 0.846
  
234. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040516.png ; $c \in FFI _ { D } A$ ; confidence 0.275
+
234. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040468.png ; $CPC$ ; confidence 0.846
  
235. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040322.png ; $Q = \operatorname { Alg } \operatorname { Mod } ^ { * S } D$ ; confidence 0.274
+
235. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a130130103.png ; $K P$ ; confidence 0.846
  
236. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010290/a01029014.png ; $f = \pi \gamma f _ { \alpha } \pi \overline { x } ^ { 1 }$ ; confidence 0.274
+
236. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110580/a11058047.png ; $= v : q$ ; confidence 0.846
  
237. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130050/a130050271.png ; $\pi _ { C } ^ { \# } ( x ) \sim C x ^ { \kappa } ( \operatorname { log } x ) ^ { \nu } \text { as } x \rightarrow \infty$ ; confidence 0.274
+
237. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120070/e12007012.png ; $\Gamma _ { q }$ ; confidence 0.846
  
238. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120080/a12008028.png ; $a ( u , v ) = ( f , v ) _ { L } ^ { 2 }$ ; confidence 0.273
+
238. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120080/f120080162.png ; $L _ { q } ( X )$ ; confidence 0.846
  
239. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130270/a13027051.png ; $\{ x _ { n j } ^ { \prime } \}$ ; confidence 0.273
+
239. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011300/a011300111.png ; $\overline { \Delta } _ { 1 }$ ; confidence 0.846
  
240. https://www.encyclopediaofmath.org/legacyimages/g/g045/g045090/g045090279.png ; $G _ { A B } ^ { ( c ) } ( t - t ^ { \prime } ) = \ll A ( t ) | B ( t ^ { \prime } ) \gg ( c ) \equiv \langle T _ { \eta } A ( t ) B ( t ^ { \prime } ) \rangle$ ; confidence 0.272
+
240. https://www.encyclopediaofmath.org/legacyimages/n/n066/n066900/n06690013.png ; $\rho : C ^ { 0 } \rightarrow \text { Aff } C ^ { 1 }$ ; confidence 0.846
  
241. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120220/a1202207.png ; $| e | | < 1$ ; confidence 0.271
+
241. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040820/f040820204.png ; $F _ { ( p ) } ( X , Y )$ ; confidence 0.846
  
242. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012410/a01241063.png ; $s = s ^ { * } \cup ( s \backslash s ^ { * } ) ^ { * } U \ldots$ ; confidence 0.271
+
242. https://www.encyclopediaofmath.org/legacyimages/s/s087/s087060/s08706021.png ; $SL ( 1 , R )$ ; confidence 0.845
  
243. https://www.encyclopediaofmath.org/legacyimages/b/b016/b016960/b016960150.png ; $99$ ; confidence 0.271
+
243. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058520/l05852032.png ; $t ( n , K )$ ; confidence 0.845
  
244. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110040/a110040257.png ; $( H _ { 1 } , \ldots , H _ { k + m } ) : C ^ { N } \rightarrow C ^ { k + m }$ ; confidence 0.271
+
244. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120160/a120160130.png ; $W E = R . F . I$ ; confidence 0.845
  
245. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120100/a12010032.png ; $i$ ; confidence 0.270
+
245. https://www.encyclopediaofmath.org/legacyimages/e/e036/e036070/e03607020.png ; $\tau _ { n } ^ { ( B ) }$ ; confidence 0.845
  
246. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058920/l05892067.png ; $Z y \rightarrow \infty$ ; confidence 0.270
+
246. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058820/l058820138.png ; $\operatorname { lim } _ { x \rightarrow x _ { 0 } } f ( x ) = \alpha$ ; confidence 0.845
  
247. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010680/a01068011.png ; $r ( n ) = \int _ { 0 } ^ { 1 } F ( \alpha ) e ^ { 2 \pi i \alpha \alpha _ { i } } d \alpha$ ; confidence 0.270
+
247. https://www.encyclopediaofmath.org/legacyimages/m/m064/m064720/m0647206.png ; $f _ { E } ^ { \prime } ( \zeta )$ ; confidence 0.845
  
248. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130060/a13006059.png ; $G _ { R } ^ { \# } ( n ) = A _ { R } q ^ { n } + O ( 1 ) \text { as } n \rightarrow \infty$ ; confidence 0.269
+
248. https://www.encyclopediaofmath.org/legacyimages/o/o070/o070220/o07022036.png ; $E$ ; confidence 0.845
  
249. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040230/f040230147.png ; $\sum _ { \nu = 1 } ^ { k - 1 } \frac { B _ { \nu } } { \nu ! } \{ f ^ { \langle \nu - 1 \rangle } ( n ) - f ^ { \langle \nu - 1 \rangle } ( 0 ) \} + \frac { B _ { k } } { k ! } \sum _ { x = 0 } ^ { n - 1 } f ^ { ( k ) } ( x + \theta )$ ; confidence 0.269
+
249. https://www.encyclopediaofmath.org/legacyimages/p/p074/p074690/p07469030.png ; $\pi G ( x ) = b$ ; confidence 0.845
  
250. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120190/f12019010.png ; $N = \{ G \backslash ( \cup _ { x \in G } x ^ { - 1 } H x ) \} \cup \{ 1 \}$ ; confidence 0.269
+
250. https://www.encyclopediaofmath.org/legacyimages/r/r082/r082230/r0822307.png ; $| x _ { i } | \leq 1$ ; confidence 0.845
  
251. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010430/a0104309.png ; $q _ { i k } = P \{ \xi ( \tau ( H ) ) = h | \xi ( 0 ) = i \} , \quad i \in S , \quad h \in H$ ; confidence 0.269
+
251. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110250/a11025014.png ; $\operatorname { ln } k$ ; confidence 0.845
  
252. https://www.encyclopediaofmath.org/legacyimages/c/c021/c021570/c02157044.png ; $\chi \pi _ { \alpha }$ ; confidence 0.268
+
252. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010930/a01093014.png ; $\rho = cons$ ; confidence 0.845
  
253. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010520/a01052037.png ; $A _ { M } = \alpha _ { 1 } + \ldots + \alpha _ { N }$ ; confidence 0.267
+
253. https://www.encyclopediaofmath.org/legacyimages/c/c022/c022800/c02280011.png ; $C$ ; confidence 0.844
  
254. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040573.png ; $21$ ; confidence 0.266
+
254. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010460/a01046082.png ; $P _ { n } ( x ) = \delta ^ { n } f ( 0 , x ) / n !$ ; confidence 0.844
  
255. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010290/a01029051.png ; $\alpha X$ ; confidence 0.266
+
255. https://www.encyclopediaofmath.org/legacyimages/m/m110/m110180/m11018028.png ; $\Delta ^ { + }$ ; confidence 0.844
  
256. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040583.png ; $1$ ; confidence 0.266
+
256. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110110/a11011013.png ; $\cap$ ; confidence 0.844
  
257. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110300/a11030038.png ; $( T ( a _ { 1 } , \dots , a _ { n } ) , d )$ ; confidence 0.266
+
257. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130040/s13004030.png ; $X _ { g } = \operatorname { Sp } ( 2 g , Z ) \backslash H _ { g }$ ; confidence 0.844
  
258. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t1200105.png ; $( C ( S ) , \overline { g } ) = ( R _ { + } \times S , d \nu ^ { 2 } + r ^ { 2 } g )$ ; confidence 0.265
+
258. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010220/a01022026.png ; $C ^ { p } / \Gamma$ ; confidence 0.843
  
259. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130030/i130030178.png ; $h ( [ a ] )$ ; confidence 0.265
+
259. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040623.png ; $\Gamma \vDash S _ { P } \varphi$ ; confidence 0.843
  
260. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010670/a0106705.png ; $Y$ ; confidence 0.265
+
260. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120310/a12031093.png ; $I _ { 1 }$ ; confidence 0.843
  
261. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040635.png ; $F _ { S _ { P } } \mathfrak { M }$ ; confidence 0.264
+
261. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120210/c120210117.png ; $\Lambda _ { n } ( \theta ) - h ^ { \prime } \Delta _ { n } ( \theta ) \rightarrow - \frac { 1 } { 2 } h ^ { \prime } \Gamma ( \theta ) h$ ; confidence 0.843
  
262. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110080/a1100801.png ; $u _ { t t } = c ^ { 2 } ( u _ { XX } + u _ { y y } )$ ; confidence 0.264
+
262. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120010/j12001037.png ; $\operatorname { log } F \leq 100$ ; confidence 0.843
  
263. https://www.encyclopediaofmath.org/legacyimages/r/r080/r080940/r08094048.png ; $\{ \alpha _ { n } \} _ { \aleph = 0 } ^ { \infty }$ ; confidence 0.264
+
263. https://www.encyclopediaofmath.org/legacyimages/p/p075/p075350/p07535017.png ; $q IL$ ; confidence 0.843
  
264. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010220/a01022079.png ; $\| \alpha _ { j k }$ ; confidence 0.264
+
264. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120100/a12010027.png ; $2 ^ { X }$ ; confidence 0.843
  
265. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110320/a11032022.png ; $A _ { j } ( z ) = \sum _ { l = 0 } ^ { \rho _ { i } } R _ { k + 1 } ^ { ( i ) } ( c _ { l } z ) c _ { i } ^ { l + 1 } \lambda _ { l j } ^ { ( l ) }$ ; confidence 0.263
+
265. https://www.encyclopediaofmath.org/legacyimages/c/c025/c025930/c02593057.png ; $( d \phi ( X ) ( x ) , y ) = - ( x , d \psi ( X ) y )$ ; confidence 0.843
  
266. https://www.encyclopediaofmath.org/legacyimages/l/l059/l059110/l05911071.png ; $+ \sum _ { i = 1 } ^ { s } \| k _ { i k } [ u ] _ { k } - \{ l _ { i } u \} _ { i k } \| _ { \Phi _ { i k } } + \| p _ { i k } \phi _ { i } - \{ \phi _ { i } \} _ { i k } \| _ { \Phi _ { i k } }$ ; confidence 0.263
+
266. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a11001087.png ; $= \| ( I - ( I - B A ) ) ^ { - 1 } B r \| \leq$ ; confidence 0.843
  
267. https://www.encyclopediaofmath.org/legacyimages/c/c023/c023150/c023150187.png ; $\alpha : H ^ { n } ( : Z ) \rightarrow H ^ { n + 3 } ( : Z _ { 2 } )$ ; confidence 0.262
+
267. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011390/a01139024.png ; $\hat { \mu } \equiv 0$ ; confidence 0.843
  
268. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057000/l057000153.png ; $+ ( \lambda x y \cdot y ) : ( \sigma \rightarrow ( \tau \rightarrow \tau ) )$ ; confidence 0.262
+
268. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011600/a011600220.png ; $K = k ( a ^ { 1 / n } )$ ; confidence 0.843
  
269. https://www.encyclopediaofmath.org/legacyimages/q/q076/q076610/q07661044.png ; $\beta X = S \square x = \omega _ { \kappa } X$ ; confidence 0.261
+
269. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240357.png ; $n - r \geq p$ ; confidence 0.843
  
270. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010241.png ; $x = T ( \Lambda - \hat { \lambda } I ) ^ { - 1 } T ^ { - 1 } r$ ; confidence 0.261
+
270. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120110/a1201102.png ; $\varphi ( \alpha , b , 0 ) = \alpha + b$ ; confidence 0.842
  
271. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a1301301.png ; $\left. \begin{array} { l } { i \frac { \partial } { \partial t } q ( x , t ) = i q t = - \frac { 1 } { 2 } q x x + q ^ { 2 } r } \\ { i \frac { \partial } { \partial t } r ( x , t ) = i r t = \frac { 1 } { 2 } r x - q r ^ { 2 } } \end{array} \right.$ ; confidence 0.260
+
271. https://www.encyclopediaofmath.org/legacyimages/m/m064/m064510/m06451011.png ; $\{ X _ { S } : s \in S , X _ { S } \in A \}$ ; confidence 0.842
  
272. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120220/a12022037.png ; $r _ { ess } ( T )$ ; confidence 0.259
+
272. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110420/a11042077.png ; $K _ { 0 } ( \varphi ) = K _ { 0 } ( \psi )$ ; confidence 0.842
  
273. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120130/a1201308.png ; $m$ ; confidence 0.259
+
273. https://www.encyclopediaofmath.org/legacyimages/i/i050/i050230/i050230312.png ; $- \infty < r < \infty$ ; confidence 0.842
  
274. https://www.encyclopediaofmath.org/legacyimages/s/s087/s087770/s08777049.png ; $V _ { k } ( H ^ { n } ) = \frac { Sp ( n ) } { Sp ( n - k ) }$ ; confidence 0.259
+
274. https://www.encyclopediaofmath.org/legacyimages/i/i051/i051880/i05188051.png ; $\mathfrak { M } \in S _ { 1 }$ ; confidence 0.842
  
275. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120020/v120020220.png ; $\delta ^ { * } \circ ( t - r ) ^ { * } \beta _ { 1 } = k ( t ^ { * } \square ^ { - 1 } \beta _ { 3 } )$ ; confidence 0.259
+
275. https://www.encyclopediaofmath.org/legacyimages/l/l058/l058520/l05852044.png ; $\operatorname { tim } V = 1$ ; confidence 0.842
  
276. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010158.png ; $\frac { \| \delta x \| _ { 2 } } { \| x \| _ { 2 } } \leq k [ ( 2 + \eta \hat { k } ) \alpha + \beta \gamma ]$ ; confidence 0.259
+
276. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w120090354.png ; $x _ { \alpha } ( t ) = \sum _ { i = 0 } ^ { \infty } t ^ { i } \otimes e _ { \alpha } ^ { i } / i !$ ; confidence 0.841
  
277. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010220/a01022029.png ; $u _ { 1 } = \int _ { c _ { 1 } } ^ { x } d u _ { 1 } , \ldots , u _ { p } = \int _ { \varphi } ^ { x } d u _ { p }$ ; confidence 0.258
+
277. https://www.encyclopediaofmath.org/legacyimages/a/a012/a012430/a012430147.png ; $Y \subset X$ ; confidence 0.841
  
278. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010258.png ; $r = H . | A | . | x$ ; confidence 0.258
+
278. https://www.encyclopediaofmath.org/legacyimages/s/s087/s087080/s0870808.png ; $2 ^ { | A | }$ ; confidence 0.841
  
279. https://www.encyclopediaofmath.org/legacyimages/v/v096/v096380/v09638089.png ; $\pi : B \rightarrow G ^ { k } ( V )$ ; confidence 0.258
+
279. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120180/a12018096.png ; $E$ ; confidence 0.841
  
280. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120120/a12012079.png ; $x _ { t } \geq A y _ { t } + 1$ ; confidence 0.258
+
280. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120220/a1202209.png ; $x | < e$ ; confidence 0.841
  
281. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040189.png ; $2 t ^ { * } s ^ { * } s$ ; confidence 0.257
+
281. https://www.encyclopediaofmath.org/legacyimages/r/r082/r082290/r08229026.png ; $y _ { n } \leq x _ { n } \leq z _ { n }$ ; confidence 0.841
  
282. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010200/a01020058.png ; $\operatorname { Ker } \beta \in \mathfrak { A } _ { 1 }$ ; confidence 0.257
+
282. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011300/a01130095.png ; $t _ { 1 } ^ { k _ { 1 } } , \ldots , t _ { \mu } ^ { k _ { \mu } }$ ; confidence 0.841
  
283. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040400.png ; $Mod ^ { * } S _ { D } = P _ { SD } Mod ^ { * } L _ { D }$ ; confidence 0.256
+
283. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030700/d03070021.png ; $X = X _ { 0 } \times S$ ; confidence 0.841
  
284. https://www.encyclopediaofmath.org/legacyimages/i/i052/i052500/i05250054.png ; $L ^ { \prime }$ ; confidence 0.256
+
284. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030700/d03070053.png ; $\gamma ( \xi ) = [ \xi , \xi ] + \ldots$ ; confidence 0.841
  
285. https://www.encyclopediaofmath.org/legacyimages/o/o068/o068370/o06837057.png ; $x _ { C }$ ; confidence 0.256
+
285. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a11001044.png ; $k ( A ) = 10 ^ { p }$ ; confidence 0.841
  
286. https://www.encyclopediaofmath.org/legacyimages/p/p073/p073700/p07370045.png ; $[ f _ { G } ]$ ; confidence 0.256
+
286. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120070/a12007076.png ; $| \frac { d } { d t } A ( t ) ^ { - 1 } - \frac { d } { d s } A ( s ) ^ { - 1 } \| \leq K _ { 2 } | t - s | ^ { \eta }$ ; confidence 0.840
  
287. https://www.encyclopediaofmath.org/legacyimages/g/g044/g044350/g044350101.png ; $D \Re \subset M$ ; confidence 0.255
+
287. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031950/d03195033.png ; $L u = \operatorname { div } ( p ( x ) \operatorname { grad } u ) + q ( x ) u$ ; confidence 0.840
  
288. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010210/a01021042.png ; $i , j = 1 , \dots , g$ ; confidence 0.255
+
288. https://www.encyclopediaofmath.org/legacyimages/e/e037/e037080/e03708073.png ; $x _ { i } ^ { 2 } = 0$ ; confidence 0.840
  
289. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040531.png ; $\varphi _ { 0 } , \ldots , \varphi _ { n } - 1 , \varphi _ { n }$ ; confidence 0.255
+
289. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120110/f12011010.png ; $| \varphi ( z ) | ^ { 2 } e ^ { \delta | z | }$ ; confidence 0.840
  
290. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120080/a1200803.png ; $\sum _ { i , j = 1 } ^ { m } \alpha _ { i , j } ( x ) n _ { i } ( x ) \partial u / \partial x _ { j } = 0$ ; confidence 0.254
+
290. https://www.encyclopediaofmath.org/legacyimages/g/g120/g120070/g12007022.png ; $m \equiv 4$ ; confidence 0.840
  
291. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010710/a01071024.png ; $A = A _ { 1 } \cap \ldots \cap A _ { n }$ ; confidence 0.254
+
291. https://www.encyclopediaofmath.org/legacyimages/r/r077/r077260/r07726020.png ; $\zeta _ { 2 n } = \sqrt { - 2 \operatorname { ln } \xi _ { 2 n } } \operatorname { sin } 2 \pi \xi _ { 2 n - 1 }$ ; confidence 0.840
  
292. https://www.encyclopediaofmath.org/legacyimages/c/c027/c027180/c027180124.png ; $7$ ; confidence 0.254
+
292. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031830/d031830181.png ; $M$ ; confidence 0.840
  
293. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040241.png ; $\Gamma \dagger _ { D } \varphi \text { iff } K ( \Gamma ) \approx L ( \Gamma ) \vDash _ { K } K ( \varphi ) \approx L ( \varphi )$ ; confidence 0.254
+
293. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010220/a01022039.png ; $A l ( z ) = A l ( z _ { 1 } , \dots , z _ { p } ) =$ ; confidence 0.840
  
294. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010281.png ; $( A _ { x } \lambda ^ { x } + A _ { x - 1 } \lambda ^ { x - 1 } + \ldots + A _ { 0 } ) x = 0$ ; confidence 0.253
+
294. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011970/a01197044.png ; $B ^ { 1 }$ ; confidence 0.840
  
295. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120300/c12030053.png ; $\sum _ { i = 1 } ^ { n } S _ { i } S _ { i } ^ { * } < I$ ; confidence 0.253
+
295. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010800/a01080030.png ; $\Delta T _ { i j } ^ { s } b _ { s k } - \Delta T _ { k j } ^ { s } b _ { s i } - \Delta T _ { k i } ^ { s } b _ { s j } = 0$ ; confidence 0.840
  
296. https://www.encyclopediaofmath.org/legacyimages/i/i052/i052980/i05298049.png ; $L ^ { \prime } ( T _ { x } M )$ ; confidence 0.252
+
296. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130170/b1301709.png ; $C ( t )$ ; confidence 0.840
  
297. https://www.encyclopediaofmath.org/legacyimages/q/q076/q076800/q07680094.png ; $\tau _ { 0 } ^ { e ^ { 3 } }$ ; confidence 0.252
+
297. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030700/d030700295.png ; $D ( \alpha , 0 ) = \alpha$ ; confidence 0.840
  
298. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240242.png ; $SS _ { H } = \sum _ { i = 1 } ^ { \Psi } z _ { i } ^ { 2 }$ ; confidence 0.251
+
298. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110150/a11015035.png ; $F ( . | \theta ( S ) )$ ; confidence 0.840
  
299. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010820/a01082073.png ; $X \in Ob \odot$ ; confidence 0.251
+
299. https://www.encyclopediaofmath.org/legacyimages/a/a110/a110010/a110010188.png ; $M _ { i } = \{ z : | z - \lambda _ { i } | \leq \| T ^ { - 1 } \| \| T \| \delta A \| \}$ ; confidence 0.839
  
300. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120370/b12037092.png ; $\sum \frac { 1 } { 1 }$ ; confidence 0.251
+
300. https://www.encyclopediaofmath.org/legacyimages/r/r081/r081030/r08103090.png ; $\alpha \in \Delta k$ ; confidence 0.839

Latest revision as of 09:58, 17 October 2019

List

1. k11007036.png ; $L _ { ( p ^ { \nu } - 1 ) \rho }$ ; confidence 0.869

2. a01139014.png ; $\mu f \in M ( G )$ ; confidence 0.869

3. a130040725.png ; $S _ { P }$ ; confidence 0.869

4. t12001011.png ; $\xi = I ( \partial _ { r } )$ ; confidence 0.869

5. a13013076.png ; $P ^ { ( l ) }$ ; confidence 0.869

6. b11057061.png ; $H _ { m }$ ; confidence 0.869

7. c02604071.png ; $A _ { n } x _ { n } = y _ { n }$ ; confidence 0.869

8. w09816057.png ; $Y \times X$ ; confidence 0.869

9. a12005061.png ; $A u \in C ( ( 0 , T ] ; X )$ ; confidence 0.869

10. a1201006.png ; $y ( t ) = e ^ { - t A } x = S ( t ) x$ ; confidence 0.869

11. p07267035.png ; $S = \operatorname { Spec } ( k )$ ; confidence 0.869

12. a12013020.png ; $X$ ; confidence 0.869

13. a01146033.png ; $\sum n _ { i } W _ { i } \cap ( X \times \{ t \} )$ ; confidence 0.868

14. d12024043.png ; $f + 1 / 2 tr$ ; confidence 0.868

15. d030700202.png ; $M X _ { 0 } , \alpha \subset M X _ { 0 }$ ; confidence 0.868

16. a01138071.png ; $( x \rightarrow y ) \sim z = ( ( x \vee y ) \& z ) \vee ( \overline { ( x \vee y ) } \& z )$ ; confidence 0.868

17. d034120117.png ; $H _ { r } ( M ^ { n } , X ) \sim H ^ { n - r } ( M ^ { n } , X )$ ; confidence 0.868

18. a130240226.png ; $\zeta _ { r + 1 } = \ldots = \zeta _ { n } = 0$ ; confidence 0.868

19. a130240209.png ; $S$ ; confidence 0.868

20. m12016065.png ; $\Omega _ { p _ { 1 } n _ { 1 } } ( t ^ { \prime } t ^ { \prime } )$ ; confidence 0.868

21. p073700205.png ; $l _ { n } = \# \{ s \in S : d ( s ) = n \}$ ; confidence 0.868

22. s08559095.png ; $( \alpha , \{ L \} )$ ; confidence 0.868

23. b13001046.png ; $\Gamma$ ; confidence 0.868

24. n06690018.png ; $H ^ { 0 } ( C ^ { * } ) = \rho ^ { - 1 } ( \text { Aut } C ^ { 1 } )$ ; confidence 0.868

25. a011600216.png ; $( \frac { K / k } { \mathfrak { a } } ) = 1$ ; confidence 0.868

26. a01099047.png ; $T _ { i j k } = g _ { k s } T _ { i j } ^ { s }$ ; confidence 0.867

27. e13003084.png ; $G L$ ; confidence 0.867

28. a01165044.png ; $r _ { j }$ ; confidence 0.867

29. i050650145.png ; $\phi * : H ^ { * } ( B / S ) = H ^ { * } ( T M ) \rightarrow H ^ { * } ( M )$ ; confidence 0.867

30. l05700011.png ; $M N$ ; confidence 0.867

31. l05935013.png ; $x ^ { ( n ) } + \alpha _ { 1 } ( t ) x ^ { ( n - 1 ) } + \ldots + \alpha _ { n } ( t ) x = 0$ ; confidence 0.867

32. d030700244.png ; $H ^ { 3 } ( \mathfrak { A } , V ) = 0$ ; confidence 0.867

33. c02325070.png ; $| Y$ ; confidence 0.867

34. b110130192.png ; $a = b$ ; confidence 0.866

35. a11042095.png ; $C ^ { * }$ ; confidence 0.866

36. d1301309.png ; $z = r \operatorname { cos } \theta$ ; confidence 0.866

37. d11023041.png ; $K = \overline { K } \cap L _ { m } ( G )$ ; confidence 0.866

38. e03677067.png ; $\phi ^ { - 1 } ( b ) \cong P ^ { \prime } ( C )$ ; confidence 0.866

39. e03696065.png ; $y _ { j } \delta \theta$ ; confidence 0.866

40. p07535088.png ; $P _ { s } ^ { l } ( k )$ ; confidence 0.866

41. s1202309.png ; $O ( r )$ ; confidence 0.866

42. a01149010.png ; $P _ { k } ( x _ { 1 } , \ldots , x _ { n } ) y ^ { k } + P _ { k - 1 } ( x _ { 1 } , \ldots , x _ { n } ) y ^ { k - 1 } + \ldots +$ ; confidence 0.865

43. a11033029.png ; $N ^ { * * } = \operatorname { card } ( U _ { n } ^ { * * } ) / p$ ; confidence 0.865

44. a01164016.png ; $\operatorname { lim } | K _ { i } | + 1$ ; confidence 0.865

45. a01082067.png ; $G : \mathfrak { C } \rightarrow \mathfrak { S }$ ; confidence 0.865

46. m063920116.png ; $\int \int K d S$ ; confidence 0.865

47. e036960200.png ; $F = C ( x )$ ; confidence 0.865

48. w09771051.png ; $X ( T _ { 0 } ) _ { Q }$ ; confidence 0.865

49. s13004042.png ; $X$ ; confidence 0.865

50. a011210110.png ; $\tilde { w } _ { j } ( z ) \sim \frac { 1 } { \sqrt { \xi ( z ) } } v ( - \lambda ^ { 2 / 3 } \omega ^ { j } \xi ( z ) ) , \quad \omega = e ^ { 2 \pi i / 3 }$ ; confidence 0.865

51. a130240369.png ; $M _ { H } M _ { E } ^ { - 1 }$ ; confidence 0.865

52. d031830310.png ; $\operatorname { deg } _ { A } ( A ) = \operatorname { deg } _ { A } ( B )$ ; confidence 0.865

53. l05859075.png ; $X \in L ( G )$ ; confidence 0.864

54. a13009014.png ; $H ^ { 1 } ( X , Z _ { 2 } ) = 0$ ; confidence 0.864

55. a01174032.png ; $T \mapsto \operatorname { Aut } _ { T } ( X \times T )$ ; confidence 0.864

56. b01699071.png ; $M$ ; confidence 0.864

57. a0105806.png ; $y _ { n } + 1$ ; confidence 0.864

58. a130240240.png ; $\sigma ^ { 2 }$ ; confidence 0.864

59. b11038070.png ; $\Theta f$ ; confidence 0.864

60. f0412506.png ; $\infty \rightarrow \alpha / c$ ; confidence 0.864

61. m06359074.png ; $F \mapsto F ( P )$ ; confidence 0.864

62. s130510139.png ; $L \subset Z ^ { 0 }$ ; confidence 0.864

63. s08732031.png ; $\Pi ^ { * } \in C$ ; confidence 0.864

64. t09377039.png ; $g = R ^ { \alpha } f$ ; confidence 0.864

65. m06451047.png ; $\overline { M } _ { g }$ ; confidence 0.864

66. s13054048.png ; $\alpha + b = 1$ ; confidence 0.864

67. l05861025.png ; $D \subset Z$ ; confidence 0.864

68. a11040064.png ; $T ^ { * } ( t ) x ^ { * } \in X ^ { \odot }$ ; confidence 0.864

69. a120310161.png ; $A W ^ { * }$ ; confidence 0.863

70. i05255025.png ; $y \in U$ ; confidence 0.863

71. a130240544.png ; $20$ ; confidence 0.863

72. t09335012.png ; $x _ { 1 } ^ { 2 } + x _ { 2 } ^ { 2 } = a ^ { 2 } , \quad x _ { 3 } ^ { 2 } + x _ { 4 } ^ { 2 } = b ^ { 2 }$ ; confidence 0.863

73. a12022013.png ; $T : X \rightarrow Y$ ; confidence 0.863

74. a12005085.png ; $0 \leq t _ { 1 } \leq \ldots \leq t _ { k } \leq T$ ; confidence 0.863

75. c02278058.png ; $O ( X ) = \oplus _ { n = - \infty } ^ { + \infty } O ^ { n } ( X )$ ; confidence 0.863

76. s085590370.png ; $x _ { 0 } ^ { 2 } + \ldots + x _ { n } ^ { 2 } = 0$ ; confidence 0.863

77. a01012073.png ; $z | < R$ ; confidence 0.863

78. a0105808.png ; $h | v _ { 1 } \| ( \partial f / \partial y ) \| < 1$ ; confidence 0.863

79. a130180129.png ; $\mathfrak { P } ( U ) = \langle P ( U ) , \cap , \cup , - \rangle$ ; confidence 0.863

80. a01417078.png ; $\partial X$ ; confidence 0.863

81. s08681015.png ; $( l - 1 )$ ; confidence 0.863

82. l058510193.png ; $C _ { 1 }$ ; confidence 0.863

83. s13054039.png ; $\pi h ( a )$ ; confidence 0.862

84. a12016074.png ; $\frac { c _ { 1 } } { 1 - \lambda }$ ; confidence 0.862

85. d034120518.png ; $\alpha \text { pr } F _ { \alpha }$ ; confidence 0.862

86. d034120303.png ; $g \in A ( F )$ ; confidence 0.862

87. f04037020.png ; $q + 1 \leq k \leq \operatorname { prof } F - p$ ; confidence 0.862

88. a01325015.png ; $\operatorname { arg } f$ ; confidence 0.862

89. k05548036.png ; $\| g _ { \alpha \beta } \|$ ; confidence 0.862

90. p07221037.png ; $F ^ { k }$ ; confidence 0.862

91. t09333059.png ; $r _ { 2 } \in R$ ; confidence 0.862

92. a011650469.png ; $D / \Phi = \langle D / \Phi , \Omega \rangle$ ; confidence 0.862

93. l05908065.png ; $k _ { j }$ ; confidence 0.862

94. e036960158.png ; $\delta _ { i } \alpha = \alpha _ { i }$ ; confidence 0.862

95. r07763055.png ; $\chi = \delta _ { \phi } - \sum _ { \alpha \in \Delta } m _ { \alpha } \alpha , \quad m _ { \alpha } \in Z , \quad m _ { \alpha } \geq 0$ ; confidence 0.862

96. a0105801.png ; $y ^ { \prime } = f ( x , y ) , \quad y ( x _ { 0 } ) = y 0$ ; confidence 0.862

97. a0109105.png ; $\sum _ { i = 1 } ^ { m } C _ { i } \frac { d ^ { i } u ( t ) } { d t ^ { i } } = f - A u ( t )$ ; confidence 0.861

98. a11010017.png ; $x - x 0 \in K$ ; confidence 0.861

99. a13007055.png ; $A _ { \alpha } ( x ) = \operatorname { card } \{ n \leq x :$ ; confidence 0.861

100. d034120253.png ; $h ( \phi ) = \operatorname { lim } _ { r \rightarrow \infty } \frac { \operatorname { ln } | A ( r e ^ { i \phi } ) | } { r }$ ; confidence 0.861

101. a01081010.png ; $\xi \in C ^ { n } ( I )$ ; confidence 0.861

102. d03070055.png ; $H ^ { * } ( X _ { \diamond } , \Theta )$ ; confidence 0.861

103. a01137056.png ; $\Gamma _ { 0 }$ ; confidence 0.861

104. r08143081.png ; $e X$ ; confidence 0.861

105. f04082079.png ; $\phi _ { F } ^ { * } F _ { u } ( X , Y )$ ; confidence 0.861

106. n06751073.png ; $f ( z ) \neq$ ; confidence 0.861

107. a01160063.png ; $x ^ { p } + y ^ { p } = z ^ { p }$ ; confidence 0.860

108. c02698053.png ; $E _ { 8 }$ ; confidence 0.860

109. n06652019.png ; $\epsilon < \epsilon ^ { \prime } < \ldots$ ; confidence 0.860

110. w097670169.png ; $\operatorname { gr } ( A _ { 1 } ( K ) )$ ; confidence 0.860

111. a1103507.png ; $e ^ { \lambda z }$ ; confidence 0.860

112. a01121032.png ; $w _ { 1 } ( z ) \sim \frac { 1 } { \sqrt { \pi } } z ^ { - 1 / 4 } \operatorname { exp } ( \frac { 2 } { 3 } z ^ { 3 / 2 } ) \times$ ; confidence 0.860

113. a12010075.png ; $R$ ; confidence 0.859

114. a011640110.png ; $q = 0$ ; confidence 0.859

115. p07464059.png ; $B = P ^ { m } ( C )$ ; confidence 0.859

116. a110040106.png ; $L ] = \lambda$ ; confidence 0.859

117. a010810104.png ; $U ^ { * }$ ; confidence 0.859

118. a130240341.png ; $Z , \Gamma , F$ ; confidence 0.859

119. w120090161.png ; $g ^ { T }$ ; confidence 0.859

120. a0116209.png ; $P _ { N } ^ { 0 } ( x )$ ; confidence 0.859

121. a01095084.png ; $\Gamma _ { j k } ^ { i }$ ; confidence 0.858

122. a13018057.png ; $n \in \omega$ ; confidence 0.858

123. b01780053.png ; $n = p$ ; confidence 0.858

124. c02547063.png ; $\alpha = d t + \sum p _ { i } d q _ { i }$ ; confidence 0.858

125. e13002010.png ; $\varphi$ ; confidence 0.858

126. m063920117.png ; $\int \int K d S \leq 2 \pi ( \chi - k )$ ; confidence 0.858

127. r08257030.png ; $j 2 ^ { - k - l }$ ; confidence 0.858

128. a130240391.png ; $( M _ { H } M _ { E } ^ { - 1 } ) >$ ; confidence 0.858

129. q07631085.png ; $X _ { i } ^ { + }$ ; confidence 0.857

130. a130240384.png ; $q \geq 2$ ; confidence 0.857

131. a01082061.png ; $\alpha ^ { \prime } : Y \rightarrow Y ^ { \prime }$ ; confidence 0.857

132. a01052076.png ; $A h ^ { - } q$ ; confidence 0.857

133. a01121071.png ; $\xi ( x ) = ( \frac { 2 } { 3 } \int _ { x _ { 0 } } ^ { x } \sqrt { q ( t ) } d t ) ^ { 2 / 3 } , \quad \operatorname { sign } \xi ( x ) = \operatorname { sign } ( x - x _ { 0 } )$ ; confidence 0.857

134. a1301304.png ; $8$ ; confidence 0.857

135. a130240354.png ; $E ( Z _ { 2 } )$ ; confidence 0.857

136. e03691052.png ; $z = \operatorname { ln } \alpha = \operatorname { ln } | \alpha | + i \operatorname { Arg } \alpha$ ; confidence 0.857

137. l058820245.png ; $\operatorname { lim } _ { x \rightarrow x _ { 0 } } ( f _ { 1 } ( x ) / f _ { 2 } ( x ) )$ ; confidence 0.857

138. s08706037.png ; $K _ { i } ( R )$ ; confidence 0.857

139. a011460118.png ; $G ( \overline { k } / k )$ ; confidence 0.857

140. a11016055.png ; $\langle p _ { k } , A p _ { k - 1 } \rangle = 0$ ; confidence 0.856

141. e036960134.png ; $GL ( n , K )$ ; confidence 0.856

142. b01703097.png ; $\phi : X \rightarrow Y$ ; confidence 0.856

143. o06820019.png ; $t \in K$ ; confidence 0.856

144. a110040206.png ; $\{ \sigma = 0 \} \subset P ^ { 4 }$ ; confidence 0.856

145. a11004020.png ; $a$ ; confidence 0.856

146. c02162087.png ; $\kappa ( \eta ^ { q } ) \in H ^ { 2 q } ( B )$ ; confidence 0.856

147. e03698026.png ; $\alpha : G \rightarrow \operatorname { Aut } A$ ; confidence 0.856

148. l11001090.png ; $x , y \in P$ ; confidence 0.856

149. a13007010.png ; $2 ^ { n } p$ ; confidence 0.856

150. a130240513.png ; $T _ { 2 }$ ; confidence 0.856

151. l05859086.png ; $( X , Y ) \rightarrow \operatorname { exp } ^ { - 1 } ( \operatorname { exp } X \operatorname { exp } Y ) , \quad X , Y \in L ( G )$ ; confidence 0.856

152. b01642032.png ; $B ( \alpha , b )$ ; confidence 0.855

153. b01617013.png ; $F _ { n } ( z )$ ; confidence 0.855

154. f04131029.png ; $\Lambda = \frac { \partial } { \partial x } + i \frac { \partial } { \partial y }$ ; confidence 0.855

155. a01068028.png ; $k _ { 0 } ( A )$ ; confidence 0.855

156. a01149050.png ; $x _ { 1 } , x _ { 2 } \in G$ ; confidence 0.855

157. a11041096.png ; $( X , L )$ ; confidence 0.855

158. q076310122.png ; $R ^ { 12 } = \sum _ { i } x _ { i } \otimes y _ { i } \otimes 1$ ; confidence 0.855

159. a01060041.png ; $\cup _ { z \subset Z } \{ \sum _ { i } ( Y _ { z } \cap A _ { i } ) \}$ ; confidence 0.854

160. a01071041.png ; $( M )$ ; confidence 0.854

161. g04427037.png ; $R$ ; confidence 0.854

162. d034120399.png ; $x = 0$ ; confidence 0.854

163. a01086024.png ; $( \sum M _ { \alpha } ) ^ { * } \simeq \prod M _ { \alpha }$ ; confidence 0.854

164. b13006060.png ; $b _ { i }$ ; confidence 0.854

165. d033460124.png ; $| F _ { 0 } ^ { \prime } ( \zeta _ { 0 } ) | \leq | F ^ { \prime } ( \zeta _ { 0 } ) | \leq | F _ { \pi / 2 } ^ { \prime } ( \zeta _ { 0 } ) |$ ; confidence 0.854

166. s08696076.png ; $V < 0$ ; confidence 0.854

167. a011650409.png ; $A ^ { * }$ ; confidence 0.854

168. c02236034.png ; $E ^ { 4 }$ ; confidence 0.854

169. s085590464.png ; $F ( x , y , \lambda ) = x \Phi _ { \mu - 2 } ( x , \lambda ) - x y ^ { 2 }$ ; confidence 0.854

170. a11028078.png ; $c ( G )$ ; confidence 0.853

171. h047690121.png ; $\operatorname { Sp } ( k ) \times \operatorname { Sp } ( 1 )$ ; confidence 0.853

172. s08559025.png ; $\alpha = \phi _ { 1 } ( \tau _ { 1 } )$ ; confidence 0.853

173. a011650183.png ; $\theta ( \alpha , b )$ ; confidence 0.853

174. a01052014.png ; $( A ) = \| A \| A ^ { - 1 } \|$ ; confidence 0.853

175. b01539056.png ; $\delta ^ { * } ( x ) = \left\{ \begin{array} { l l } { d _ { 1 } , } & { \text { if } \frac { p ( x | \theta _ { 2 } ) } { p ( x | \theta _ { 1 } ) } \leq \frac { \pi _ { 1 } } { \pi _ { 2 } } \frac { L _ { 12 } - L _ { 11 } } { L _ { 21 } - L _ { 22 } } } \\ { d _ { 2 } , } & { \text { if } \frac { p ( x | \theta _ { 2 } ) } { p ( x | \theta _ { 1 } ) } \geq \frac { \pi _ { 1 } } { \pi _ { 2 } } \frac { L _ { 12 } - L _ { 11 } } { L _ { 21 } - L _ { 22 } } } \end{array} \right.$ ; confidence 0.853

176. a01095034.png ; $\operatorname { lim } _ { t \rightarrow 0 } \frac { \epsilon ^ { i } ( t ) } { t } = 0 , \quad \operatorname { lim } _ { t \rightarrow 0 } \frac { \epsilon _ { j } ^ { i } ( t ) } { t } = 0$ ; confidence 0.853

177. a010950114.png ; $\{ e _ { i } \}$ ; confidence 0.853

178. a11040084.png ; $( X ^ { \odot } ) ^ { d }$ ; confidence 0.853

179. a01012068.png ; $\{ \nu _ { k } \} \cap \{ \mu _ { n } \} = \emptyset$ ; confidence 0.853

180. d03070040.png ; $d f _ { 0 } ^ { \prime }$ ; confidence 0.853

181. a011600169.png ; $H _ { m _ { 2 } }$ ; confidence 0.853

182. c02057064.png ; $\rightarrow H ^ { p } ( X , S ) \rightarrow H ^ { p } ( X , F ) \stackrel { \phi p } { \rightarrow } H ^ { p } ( X , G ) \rightarrow$ ; confidence 0.853

183. s085590138.png ; $V ^ { \prime } ( \alpha ) = \{ z \in \overline { C } : 0 < | z - \alpha | < R \}$ ; confidence 0.853

184. a11028029.png ; $f : V ( G ) \rightarrow \{ 1 , \ldots , k \}$ ; confidence 0.853

185. c02333031.png ; $f = a _ { 0 } x ^ { 3 } + 3 a _ { 1 } x ^ { 2 } y + 3 a _ { 2 } x y ^ { 2 } + a _ { 3 } y ^ { 3 }$ ; confidence 0.852

186. a13007058.png ; $x \operatorname { exp } ( - 8 ( \operatorname { log } x \operatorname { log } \operatorname { log } x ) ^ { 1 / 2 } ) < A _ { 2 } ( x ) <$ ; confidence 0.852

187. a11001017.png ; $x = A ^ { - 1 } b$ ; confidence 0.852

188. a130240302.png ; $\hat { \eta } \omega$ ; confidence 0.852

189. d03398025.png ; $\sum _ { m = 1 } ^ { \infty } u _ { m n n }$ ; confidence 0.852

190. e03511022.png ; $\Sigma - 1$ ; confidence 0.852

191. t092600123.png ; $B = I _ { p }$ ; confidence 0.852

192. a01116024.png ; $k [ X$ ; confidence 0.852

193. i05235019.png ; $| \alpha _ { i j } |$ ; confidence 0.852

194. d034120208.png ; $\operatorname { Ext } _ { c } ^ { n } ( X ; F , \Omega )$ ; confidence 0.851

195. c023250173.png ; $\beta _ { 0 }$ ; confidence 0.851

196. h11005031.png ; $w _ { 2 } = f ( r _ { 1 } ) \ldots f ( r _ { n } )$ ; confidence 0.851

197. l05911087.png ; $l _ { 2 } u = \phi _ { 2 } ( t )$ ; confidence 0.851

198. l120120133.png ; $( K _ { p } ) _ { i n s }$ ; confidence 0.851

199. a11017030.png ; $X \in S ( t )$ ; confidence 0.850

200. a11001029.png ; $| b | \leq \| A |$ ; confidence 0.850

201. a130040143.png ; $S 5$ ; confidence 0.850

202. c13025017.png ; $Y _ { j } = i$ ; confidence 0.850

203. i05095033.png ; $S = \frac { K } { 3 }$ ; confidence 0.850

204. f04082071.png ; $F _ { u } ( X , Y ) \in L [ X , Y ]$ ; confidence 0.850

205. a130040433.png ; $h : A \rightarrow B$ ; confidence 0.850

206. a01052043.png ; $A _ { k } ^ { 1 } = \alpha _ { 2 k - 1 } + \alpha _ { 2 k }$ ; confidence 0.850

207. l05925025.png ; $\{ 0 \} \subset V _ { 1 } \subset \ldots \subset V _ { m } = V$ ; confidence 0.850

208. a13008066.png ; $X \leftarrow m + T s E$ ; confidence 0.850

209. e03696074.png ; $F _ { 0 } \{ u \}$ ; confidence 0.850

210. a11041014.png ; $S \subset P ^ { N }$ ; confidence 0.849

211. c02278052.png ; $N \gg n$ ; confidence 0.849

212. c0248905.png ; $\alpha ( x ) - b ( x ) = f ( x ) g ( x ) + p h ( x )$ ; confidence 0.849

213. f040230100.png ; $x _ { n } = n$ ; confidence 0.849

214. m06458025.png ; $k _ { 1 } + \ldots + k _ { n } = k$ ; confidence 0.849

215. a0108103.png ; $l ( y ) \equiv \alpha _ { 0 } ( t ) y ^ { ( n ) } + \ldots + \alpha _ { n } ( t ) y$ ; confidence 0.849

216. l058590161.png ; $SL ( n + 1 , C )$ ; confidence 0.849

217. a0125409.png ; $D = \operatorname { rank } G -$ ; confidence 0.848

218. a1104608.png ; $\alpha ^ { 2 } = \frac { \mu B ^ { 2 } } { 4 \pi \rho } = \frac { T } { \rho }$ ; confidence 0.848

219. a12018044.png ; $a < 1 < b$ ; confidence 0.848

220. a11004044.png ; $( Z / d _ { 1 } Z ) ^ { 2 } \times ( Z / d _ { 2 } Z ) ^ { 2 }$ ; confidence 0.848

221. a13006075.png ; $\operatorname { lim } _ { n \rightarrow \infty } \frac { P ^ { \# } ( n ) } { G ^ { \# } ( n ) } = 1$ ; confidence 0.848

222. a01130090.png ; $t ^ { k }$ ; confidence 0.848

223. g044470103.png ; $\psi \circ \phi = \phi ^ { \prime } \circ \psi$ ; confidence 0.848

224. n06689067.png ; $v = 1.1 m / sec$ ; confidence 0.848

225. d03070096.png ; $( . S ) \rightarrow D$ ; confidence 0.848

226. t130140117.png ; $\chi _ { R } : K _ { 0 } ( \operatorname { mod } R ) \rightarrow Z$ ; confidence 0.847

227. k11007034.png ; $L _ { \lambda }$ ; confidence 0.847

228. a110680179.png ; $\phi _ { x y } a \leq b$ ; confidence 0.847

229. d13008069.png ; $H = C ^ { n }$ ; confidence 0.847

230. h046420124.png ; $d \chi$ ; confidence 0.847

231. p07534038.png ; $2 ^ { N } 0$ ; confidence 0.847

232. a130040737.png ; $= 0$ ; confidence 0.847

233. a13006041.png ; $\partial ( \alpha ) = \operatorname { deg } ( \alpha )$ ; confidence 0.846

234. a130040468.png ; $CPC$ ; confidence 0.846

235. a130130103.png ; $K P$ ; confidence 0.846

236. a11058047.png ; $= v : q$ ; confidence 0.846

237. e12007012.png ; $\Gamma _ { q }$ ; confidence 0.846

238. f120080162.png ; $L _ { q } ( X )$ ; confidence 0.846

239. a011300111.png ; $\overline { \Delta } _ { 1 }$ ; confidence 0.846

240. n06690013.png ; $\rho : C ^ { 0 } \rightarrow \text { Aff } C ^ { 1 }$ ; confidence 0.846

241. f040820204.png ; $F _ { ( p ) } ( X , Y )$ ; confidence 0.846

242. s08706021.png ; $SL ( 1 , R )$ ; confidence 0.845

243. l05852032.png ; $t ( n , K )$ ; confidence 0.845

244. a120160130.png ; $W E = R . F . I$ ; confidence 0.845

245. e03607020.png ; $\tau _ { n } ^ { ( B ) }$ ; confidence 0.845

246. l058820138.png ; $\operatorname { lim } _ { x \rightarrow x _ { 0 } } f ( x ) = \alpha$ ; confidence 0.845

247. m0647206.png ; $f _ { E } ^ { \prime } ( \zeta )$ ; confidence 0.845

248. o07022036.png ; $E$ ; confidence 0.845

249. p07469030.png ; $\pi G ( x ) = b$ ; confidence 0.845

250. r0822307.png ; $| x _ { i } | \leq 1$ ; confidence 0.845

251. a11025014.png ; $\operatorname { ln } k$ ; confidence 0.845

252. a01093014.png ; $\rho = cons$ ; confidence 0.845

253. c02280011.png ; $C$ ; confidence 0.844

254. a01046082.png ; $P _ { n } ( x ) = \delta ^ { n } f ( 0 , x ) / n !$ ; confidence 0.844

255. m11018028.png ; $\Delta ^ { + }$ ; confidence 0.844

256. a11011013.png ; $\cap$ ; confidence 0.844

257. s13004030.png ; $X _ { g } = \operatorname { Sp } ( 2 g , Z ) \backslash H _ { g }$ ; confidence 0.844

258. a01022026.png ; $C ^ { p } / \Gamma$ ; confidence 0.843

259. a130040623.png ; $\Gamma \vDash S _ { P } \varphi$ ; confidence 0.843

260. a12031093.png ; $I _ { 1 }$ ; confidence 0.843

261. c120210117.png ; $\Lambda _ { n } ( \theta ) - h ^ { \prime } \Delta _ { n } ( \theta ) \rightarrow - \frac { 1 } { 2 } h ^ { \prime } \Gamma ( \theta ) h$ ; confidence 0.843

262. j12001037.png ; $\operatorname { log } F \leq 100$ ; confidence 0.843

263. p07535017.png ; $q IL$ ; confidence 0.843

264. a12010027.png ; $2 ^ { X }$ ; confidence 0.843

265. c02593057.png ; $( d \phi ( X ) ( x ) , y ) = - ( x , d \psi ( X ) y )$ ; confidence 0.843

266. a11001087.png ; $= \| ( I - ( I - B A ) ) ^ { - 1 } B r \| \leq$ ; confidence 0.843

267. a01139024.png ; $\hat { \mu } \equiv 0$ ; confidence 0.843

268. a011600220.png ; $K = k ( a ^ { 1 / n } )$ ; confidence 0.843

269. a130240357.png ; $n - r \geq p$ ; confidence 0.843

270. a1201102.png ; $\varphi ( \alpha , b , 0 ) = \alpha + b$ ; confidence 0.842

271. m06451011.png ; $\{ X _ { S } : s \in S , X _ { S } \in A \}$ ; confidence 0.842

272. a11042077.png ; $K _ { 0 } ( \varphi ) = K _ { 0 } ( \psi )$ ; confidence 0.842

273. i050230312.png ; $- \infty < r < \infty$ ; confidence 0.842

274. i05188051.png ; $\mathfrak { M } \in S _ { 1 }$ ; confidence 0.842

275. l05852044.png ; $\operatorname { tim } V = 1$ ; confidence 0.842

276. w120090354.png ; $x _ { \alpha } ( t ) = \sum _ { i = 0 } ^ { \infty } t ^ { i } \otimes e _ { \alpha } ^ { i } / i !$ ; confidence 0.841

277. a012430147.png ; $Y \subset X$ ; confidence 0.841

278. s0870808.png ; $2 ^ { | A | }$ ; confidence 0.841

279. a12018096.png ; $E$ ; confidence 0.841

280. a1202209.png ; $x | < e$ ; confidence 0.841

281. r08229026.png ; $y _ { n } \leq x _ { n } \leq z _ { n }$ ; confidence 0.841

282. a01130095.png ; $t _ { 1 } ^ { k _ { 1 } } , \ldots , t _ { \mu } ^ { k _ { \mu } }$ ; confidence 0.841

283. d03070021.png ; $X = X _ { 0 } \times S$ ; confidence 0.841

284. d03070053.png ; $\gamma ( \xi ) = [ \xi , \xi ] + \ldots$ ; confidence 0.841

285. a11001044.png ; $k ( A ) = 10 ^ { p }$ ; confidence 0.841

286. a12007076.png ; $| \frac { d } { d t } A ( t ) ^ { - 1 } - \frac { d } { d s } A ( s ) ^ { - 1 } \| \leq K _ { 2 } | t - s | ^ { \eta }$ ; confidence 0.840

287. d03195033.png ; $L u = \operatorname { div } ( p ( x ) \operatorname { grad } u ) + q ( x ) u$ ; confidence 0.840

288. e03708073.png ; $x _ { i } ^ { 2 } = 0$ ; confidence 0.840

289. f12011010.png ; $| \varphi ( z ) | ^ { 2 } e ^ { \delta | z | }$ ; confidence 0.840

290. g12007022.png ; $m \equiv 4$ ; confidence 0.840

291. r07726020.png ; $\zeta _ { 2 n } = \sqrt { - 2 \operatorname { ln } \xi _ { 2 n } } \operatorname { sin } 2 \pi \xi _ { 2 n - 1 }$ ; confidence 0.840

292. d031830181.png ; $M$ ; confidence 0.840

293. a01022039.png ; $A l ( z ) = A l ( z _ { 1 } , \dots , z _ { p } ) =$ ; confidence 0.840

294. a01197044.png ; $B ^ { 1 }$ ; confidence 0.840

295. a01080030.png ; $\Delta T _ { i j } ^ { s } b _ { s k } - \Delta T _ { k j } ^ { s } b _ { s i } - \Delta T _ { k i } ^ { s } b _ { s j } = 0$ ; confidence 0.840

296. b1301709.png ; $C ( t )$ ; confidence 0.840

297. d030700295.png ; $D ( \alpha , 0 ) = \alpha$ ; confidence 0.840

298. a11015035.png ; $F ( . | \theta ( S ) )$ ; confidence 0.840

299. a110010188.png ; $M _ { i } = \{ z : | z - \lambda _ { i } | \leq \| T ^ { - 1 } \| \| T \| \delta A \| \}$ ; confidence 0.839

300. r08103090.png ; $\alpha \in \Delta k$ ; confidence 0.839

How to Cite This Entry:
Maximilian Janisch/latexlist/latex/17. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Maximilian_Janisch/latexlist/latex/17&oldid=43945