Difference between revisions of "Schwarzian derivative"
(Importing text file) |
(TeX) |
||
Line 1: | Line 1: | ||
− | ''Schwarz derivative, Schwarzian differential parameter, of an analytic function | + | {{TEX|done}} |
+ | ''Schwarz derivative, Schwarzian differential parameter, of an analytic function $f(z)$ of a complex variable $z$'' | ||
The differential expression | The differential expression | ||
− | + | $$\{f,z\}=\frac{f'''(z)}{f'(z)}-\frac32\left(\frac{f''(z)}{f'(z)}\right)^2=\left(\frac{f''(z)}{f'(z)}\right)'-\frac12\left(\frac{f''(z)}{f'(z)}\right)^2.$$ | |
It first appeared in studies on [[Conformal mapping|conformal mapping]] of polygons onto the disc, in particular in the studies of H.A. Schwarz [[#References|[1]]]. | It first appeared in studies on [[Conformal mapping|conformal mapping]] of polygons onto the disc, in particular in the studies of H.A. Schwarz [[#References|[1]]]. | ||
− | The most important property of the Schwarzian derivative is its invariance under fractional-linear transformations (Möbius transformations) of the function | + | The most important property of the Schwarzian derivative is its invariance under fractional-linear transformations (Möbius transformations) of the function $f(z)$, i.e. if |
− | + | $$g(z)=\frac{af(z)+b}{cf(z)+d},$$ | |
− | then | + | then $\{f,z\}=\{g,z\}$. Applications of the Schwarzian derivative are especially connected with problems on univalent analytic functions. For example, if $f(z)$ is a univalent analytic function in the disc $D=\{z:|z|<1\}$, and if $f(0)=0$, $f'(0)=1$, then |
− | + | $$|\{f,z\}|\leq\frac6{{(1-|z|^2)}^2},\qquad|z|<1.$$ | |
− | Conversely, if | + | Conversely, if $f(z)$ is regular in $D$ and if |
− | + | $$|\{f,z\}|\leq\frac2{{(1-|z|^2)}^2},\qquad|z|<1,$$ | |
− | then | + | then $f(z)$ is a [[Univalent function|univalent function]] in $D$, and it is impossible in this case to increase the constant 2. |
====References==== | ====References==== |
Latest revision as of 11:10, 30 December 2018
Schwarz derivative, Schwarzian differential parameter, of an analytic function $f(z)$ of a complex variable $z$
The differential expression
$$\{f,z\}=\frac{f'''(z)}{f'(z)}-\frac32\left(\frac{f''(z)}{f'(z)}\right)^2=\left(\frac{f''(z)}{f'(z)}\right)'-\frac12\left(\frac{f''(z)}{f'(z)}\right)^2.$$
It first appeared in studies on conformal mapping of polygons onto the disc, in particular in the studies of H.A. Schwarz [1].
The most important property of the Schwarzian derivative is its invariance under fractional-linear transformations (Möbius transformations) of the function $f(z)$, i.e. if
$$g(z)=\frac{af(z)+b}{cf(z)+d},$$
then $\{f,z\}=\{g,z\}$. Applications of the Schwarzian derivative are especially connected with problems on univalent analytic functions. For example, if $f(z)$ is a univalent analytic function in the disc $D=\{z:|z|<1\}$, and if $f(0)=0$, $f'(0)=1$, then
$$|\{f,z\}|\leq\frac6{{(1-|z|^2)}^2},\qquad|z|<1.$$
Conversely, if $f(z)$ is regular in $D$ and if
$$|\{f,z\}|\leq\frac2{{(1-|z|^2)}^2},\qquad|z|<1,$$
then $f(z)$ is a univalent function in $D$, and it is impossible in this case to increase the constant 2.
References
[1] | H.A. Schwarz, "Gesamm. math. Abhandl." , 2 , Springer (1890) |
[2] | R. Nevanilinna, "Analytic functions" , Springer (1970) (Translated from German) |
[3] | G.M. Goluzin, "Geometric theory of functions of a complex variable" , Transl. Math. Monogr. , 26 , Amer. Math. Soc. (1969) (Translated from Russian) |
Comments
The necessary and sufficient conditions for univalency in terms of the Schwarzian derivative stated above are due to W. Kraus [a1] and Z. Nehari [a2], respectively; see [a3], pp. 258-265, for further discussion. A nice discussion of the Schwarzian derivative is in [a4], pp. 50-58.
References
[a1] | W. Kraus, "Ueber den Zusammenhang einiger Charakteristiken eines einfach zusammenhängenden Bereiches mit der Kreisabbildung" Mitt. Math. Sem. Giessen , 21 (1932) pp. 1–28 |
[a2] | Z. Nehari, "The Schwarzian derivative and schlicht functions" Bull. Amer. Math. Soc. , 55 (1949) pp. 545–551 |
[a3] | P.L. Duren, "Univalent functions" , Springer (1983) pp. 258 |
[a4] | O. Lehto, "Univalent functions and Teichmüller spaces" , Springer (1987) |
[a5] | Z. Nehari, "Conformal mapping" , Dover, reprint (1975) pp. 2 |
Schwarzian derivative. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Schwarzian_derivative&oldid=43567