|
|
Line 1: |
Line 1: |
− | An orthogonal net on a smooth hypersurface <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027350/c0273501.png" /> in an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027350/c0273502.png" />-dimensional Euclidean space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027350/c0273503.png" /> (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027350/c0273504.png" />), formed by the curvature lines (cf. [[Curvature line|Curvature line]]). A net of curvature lines on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027350/c0273505.png" /> is a [[Conjugate net|conjugate net]]. E.g., if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027350/c0273506.png" /> is a surface of revolution, the meridians and the parallels of latitude form a net of curvature lines. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027350/c0273507.png" /> (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027350/c0273508.png" />) is a smooth <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027350/c0273509.png" />-dimensional surface with a field of one-dimensional normals such that the normal <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027350/c02735010.png" /> of the field lies in the second-order differential neighbourhood of the point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027350/c02735011.png" />, then the normals of the field define curvature lines and a net of curvature lines on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027350/c02735012.png" />, exactly as on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027350/c02735013.png" />. However, a net of curvature lines on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027350/c02735014.png" /> (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027350/c02735015.png" />) need not be conjugate. | + | {{TEX|done}} |
| + | An orthogonal net on a smooth hypersurface $V_{n-1}$ in an $n$-dimensional Euclidean space $E_n$ ($n\geq3$), formed by the curvature lines (cf. [[Curvature line|Curvature line]]). A net of curvature lines on $V_{n-1}$ is a [[Conjugate net|conjugate net]]. E.g., if $V_2\subset E_3$ is a surface of revolution, the meridians and the parallels of latitude form a net of curvature lines. If $V_p\subset E_n$ ($2\leq p<n$) is a smooth $p$-dimensional surface with a field of one-dimensional normals such that the normal $[x,\mathbf n]$ of the field lies in the second-order differential neighbourhood of the point $x\in V_p$, then the normals of the field define curvature lines and a net of curvature lines on $V_p$, exactly as on $V_{n-1}$. However, a net of curvature lines on $V_p$ ($p<n-1$) need not be conjugate. |
| | | |
| ====References==== | | ====References==== |
Latest revision as of 00:38, 24 December 2018
An orthogonal net on a smooth hypersurface $V_{n-1}$ in an $n$-dimensional Euclidean space $E_n$ ($n\geq3$), formed by the curvature lines (cf. Curvature line). A net of curvature lines on $V_{n-1}$ is a conjugate net. E.g., if $V_2\subset E_3$ is a surface of revolution, the meridians and the parallels of latitude form a net of curvature lines. If $V_p\subset E_n$ ($2\leq p<n$) is a smooth $p$-dimensional surface with a field of one-dimensional normals such that the normal $[x,\mathbf n]$ of the field lies in the second-order differential neighbourhood of the point $x\in V_p$, then the normals of the field define curvature lines and a net of curvature lines on $V_p$, exactly as on $V_{n-1}$. However, a net of curvature lines on $V_p$ ($p<n-1$) need not be conjugate.
References
[1] | L.P. Eisenhart, "Riemannian geometry" , Princeton Univ. Press (1949) |
[2] | V.I. Shulikovskii, "Classical differential geometry in a tensor setting" , Moscow (1963) (In Russian) |
References
[a1] | C.C. Hsiung, "A first course in differential geometry" , Wiley (1981) pp. Chapt. 3, Sect. 4 |
How to Cite This Entry:
Curvature lines, net of. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Curvature_lines,_net_of&oldid=43550
This article was adapted from an original article by V.T. Bazylev (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098.
See original article