Namespaces
Variants
Actions

Difference between revisions of "Walsh functions"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
(TeX)
 
Line 1: Line 1:
Functions in a complete [[Orthonormal system|orthonormal system]] (cf. also [[Complete system|Complete system]]) on the interval <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w110/w110010/w1100101.png" />. The values of the first four are: <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w110/w110010/w1100102.png" />; <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w110/w110010/w1100103.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w110/w110010/w1100104.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w110/w110010/w1100105.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w110/w110010/w1100106.png" />; <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w110/w110010/w1100107.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w110/w110010/w1100108.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w110/w110010/w1100109.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w110/w110010/w11001010.png" />; <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w110/w110010/w11001011.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w110/w110010/w11001012.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w110/w110010/w11001013.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w110/w110010/w11001014.png" />.
+
{{TEX|done}}
 +
Functions in a complete [[Orthonormal system|orthonormal system]] (cf. also [[Complete system|Complete system]]) on the interval $[0,1)$. The values of the first four are: $w_0\equiv1$; $w_1\equiv1$ on $[0,1/2)$ and $w_1\equiv-1$ on $[1/2,1)$; $w_2\equiv1$ on $[0,1/4)\cup[1/2,3/4)$ and $w_2\equiv-1$ on $[1/4,1/2)\cup[3/4,1)$; $w_3\equiv1$ on $[0,1/4)\cup[3/4,1)$ and $w_3\equiv-1$ on $[1/4,3/4)$.
  
 
They were introduced by J.L. Walsh (a student of G.D. Birkhoff at Harvard University) in 1923, as linear combinations of Haar functions (cf. [[Haar system|Haar system]]). R.E.A.C. Paley, who noticed that they could also be defined using products of Rademacher functions, showed that the Walsh system is the completion of the [[Rademacher system|Rademacher system]] in 1932. (This connection has had ramifications both for the study of Walsh functions and for [[Probability theory|probability theory]].) N.J. Fine (a student of A. Zygmund at Chicago University) in 1949 and N.Ya. Vilenkin in 1947 showed independently that the Walsh system is essentially the character group of the dyadic group. (This connection made the theory of Walsh functions a special case of the general study of [[Harmonic analysis|harmonic analysis]] on compact groups.) For details and general references, see [[#References|[a3]]].
 
They were introduced by J.L. Walsh (a student of G.D. Birkhoff at Harvard University) in 1923, as linear combinations of Haar functions (cf. [[Haar system|Haar system]]). R.E.A.C. Paley, who noticed that they could also be defined using products of Rademacher functions, showed that the Walsh system is the completion of the [[Rademacher system|Rademacher system]] in 1932. (This connection has had ramifications both for the study of Walsh functions and for [[Probability theory|probability theory]].) N.J. Fine (a student of A. Zygmund at Chicago University) in 1949 and N.Ya. Vilenkin in 1947 showed independently that the Walsh system is essentially the character group of the dyadic group. (This connection made the theory of Walsh functions a special case of the general study of [[Harmonic analysis|harmonic analysis]] on compact groups.) For details and general references, see [[#References|[a3]]].
Line 5: Line 6:
 
The Walsh system satisfies the following properties:
 
The Walsh system satisfies the following properties:
  
1) each Walsh function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w110/w110010/w11001015.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w110/w110010/w11001016.png" />, has range <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w110/w110010/w11001017.png" />;
+
1) each Walsh function $w_k$, $k>0$, has range $\{+1,-1\}$;
  
2) each Walsh function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w110/w110010/w11001018.png" /> is piecewise constant on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w110/w110010/w11001019.png" />;
+
2) each Walsh function $w_k$ is piecewise constant on $[0,1)$;
  
3) if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w110/w110010/w11001020.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w110/w110010/w11001021.png" /> are integers which satisfy <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w110/w110010/w11001022.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w110/w110010/w11001023.png" /> changes sign once on intervals of the form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w110/w110010/w11001024.png" />, for each <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w110/w110010/w11001025.png" />;
+
3) if $k$ and $n$ are integers which satisfy $2^n\leq k<2^{n+1}$, then $w_k$ changes sign once on intervals of the form $I(j,n)=[j2^{-n},(j+1)2^{-n})$, for each $0\leq j<2^n$;
  
4) the Walsh–Dirichlet kernels of order <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w110/w110010/w11001026.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w110/w110010/w11001027.png" />, are non-negative on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w110/w110010/w11001028.png" />.
+
4) the Walsh–Dirichlet kernels of order $2^n$, $D_{2^n}(x)=\sum_{k=0}^{2^n-1}w_k(x)$, are non-negative on $[0,1)$.
  
These properties characterize the Walsh system: J.J. Price [[#References|[a2]]] proved that among orthonormal systems whose functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w110/w110010/w11001029.png" /> alternate sign on finer and finer partitions of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w110/w110010/w11001030.png" />, as <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w110/w110010/w11001031.png" />, the Walsh system is the only one whose Dirichlet kernels of order <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w110/w110010/w11001032.png" /> are non-negative. S.V. Levizov [[#References|[a1]]] proved that any orthonormal system whose functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w110/w110010/w11001033.png" /> have exactly <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w110/w110010/w11001034.png" /> sign changes on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w110/w110010/w11001035.png" />, have range <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w110/w110010/w11001036.png" />, and satisfy <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w110/w110010/w11001037.png" /> is (a re-ordering of) the Walsh system.
+
These properties characterize the Walsh system: J.J. Price [[#References|[a2]]] proved that among orthonormal systems whose functions $f_n$ alternate sign on finer and finer partitions of $[0,1)$, as $n\to\infty$, the Walsh system is the only one whose Dirichlet kernels of order $2^n$ are non-negative. S.V. Levizov [[#References|[a1]]] proved that any orthonormal system whose functions $f_n$ have exactly $n$ sign changes on $[0,1)$, have range $\{1,-1\}$, and satisfy $f_n(0)=1$ is (a re-ordering of) the Walsh system.
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  S.V. Levizov,  "Some properties of the Walsh system"  ''Mat. Zametki'' , '''27'''  (1980)  pp. 715–720  (In Russian)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  J.J. Price,  "Orthonormal sets with non-negative Dirichlet kernels, II"  ''Trans. Amer. Math. Soc.'' , '''100'''  (1961)  pp. 153–161</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  F. Schipp,  W.R. Wade,  P. Simon,  "Walsh series; an introduction to dyadic harmonic analysis" , A. Hilger  (1990)</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top">  B. Golubov,  A. Efimov,  V. Skvortsov,  "Walsh series and transforms" , Kluwer Acad. Publ.  (1991)  (In Russian)</TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  S.V. Levizov,  "Some properties of the Walsh system"  ''Mat. Zametki'' , '''27'''  (1980)  pp. 715–720  (In Russian)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  J.J. Price,  "Orthonormal sets with non-negative Dirichlet kernels, II"  ''Trans. Amer. Math. Soc.'' , '''100'''  (1961)  pp. 153–161</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  F. Schipp,  W.R. Wade,  P. Simon,  "Walsh series; an introduction to dyadic harmonic analysis" , A. Hilger  (1990)</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top">  B. Golubov,  A. Efimov,  V. Skvortsov,  "Walsh series and transforms" , Kluwer Acad. Publ.  (1991)  (In Russian)</TD></TR></table>

Latest revision as of 09:42, 27 November 2018

Functions in a complete orthonormal system (cf. also Complete system) on the interval $[0,1)$. The values of the first four are: $w_0\equiv1$; $w_1\equiv1$ on $[0,1/2)$ and $w_1\equiv-1$ on $[1/2,1)$; $w_2\equiv1$ on $[0,1/4)\cup[1/2,3/4)$ and $w_2\equiv-1$ on $[1/4,1/2)\cup[3/4,1)$; $w_3\equiv1$ on $[0,1/4)\cup[3/4,1)$ and $w_3\equiv-1$ on $[1/4,3/4)$.

They were introduced by J.L. Walsh (a student of G.D. Birkhoff at Harvard University) in 1923, as linear combinations of Haar functions (cf. Haar system). R.E.A.C. Paley, who noticed that they could also be defined using products of Rademacher functions, showed that the Walsh system is the completion of the Rademacher system in 1932. (This connection has had ramifications both for the study of Walsh functions and for probability theory.) N.J. Fine (a student of A. Zygmund at Chicago University) in 1949 and N.Ya. Vilenkin in 1947 showed independently that the Walsh system is essentially the character group of the dyadic group. (This connection made the theory of Walsh functions a special case of the general study of harmonic analysis on compact groups.) For details and general references, see [a3].

The Walsh system satisfies the following properties:

1) each Walsh function $w_k$, $k>0$, has range $\{+1,-1\}$;

2) each Walsh function $w_k$ is piecewise constant on $[0,1)$;

3) if $k$ and $n$ are integers which satisfy $2^n\leq k<2^{n+1}$, then $w_k$ changes sign once on intervals of the form $I(j,n)=[j2^{-n},(j+1)2^{-n})$, for each $0\leq j<2^n$;

4) the Walsh–Dirichlet kernels of order $2^n$, $D_{2^n}(x)=\sum_{k=0}^{2^n-1}w_k(x)$, are non-negative on $[0,1)$.

These properties characterize the Walsh system: J.J. Price [a2] proved that among orthonormal systems whose functions $f_n$ alternate sign on finer and finer partitions of $[0,1)$, as $n\to\infty$, the Walsh system is the only one whose Dirichlet kernels of order $2^n$ are non-negative. S.V. Levizov [a1] proved that any orthonormal system whose functions $f_n$ have exactly $n$ sign changes on $[0,1)$, have range $\{1,-1\}$, and satisfy $f_n(0)=1$ is (a re-ordering of) the Walsh system.

References

[a1] S.V. Levizov, "Some properties of the Walsh system" Mat. Zametki , 27 (1980) pp. 715–720 (In Russian)
[a2] J.J. Price, "Orthonormal sets with non-negative Dirichlet kernels, II" Trans. Amer. Math. Soc. , 100 (1961) pp. 153–161
[a3] F. Schipp, W.R. Wade, P. Simon, "Walsh series; an introduction to dyadic harmonic analysis" , A. Hilger (1990)
[a4] B. Golubov, A. Efimov, V. Skvortsov, "Walsh series and transforms" , Kluwer Acad. Publ. (1991) (In Russian)
How to Cite This Entry:
Walsh functions. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Walsh_functions&oldid=43494
This article was adapted from an original article by W.R. Wade (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article