|
|
Line 1: |
Line 1: |
− | A generalization of the concept of an entire rational function (see [[Polynomial|Polynomial]]). Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073710/p0737101.png" /> be a [[Unitary module|unitary module]] over an associative-commutative ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073710/p0737102.png" /> with a unit. A mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073710/p0737103.png" /> is called a polynomial function if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073710/p0737104.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073710/p0737105.png" /> is a form of degree <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073710/p0737106.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073710/p0737107.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073710/p0737108.png" /> (see [[Multilinear form|Multilinear form]]). Most frequently, polynomial functions are considered when <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073710/p0737109.png" /> is a free <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073710/p07371010.png" />-module (for example, a vector space over a field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073710/p07371011.png" />) having a finite basis <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073710/p07371012.png" />. Then the mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073710/p07371013.png" /> is a polynomial function if and only if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073710/p07371014.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073710/p07371015.png" /> is a polynomial over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073710/p07371016.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073710/p07371017.png" /> are the coordinates of an element <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073710/p07371018.png" /> in the basis <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073710/p07371019.png" />. If here <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073710/p07371020.png" /> is an infinite integral domain, the polynomial <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073710/p07371021.png" /> is defined uniquely. | + | {{TEX|done}} |
| + | A generalization of the concept of an entire rational function (see [[Polynomial|Polynomial]]). Let $V$ be a [[Unitary module|unitary module]] over an associative-commutative ring $C$ with a unit. A mapping $\phi\colon V\to C$ is called a polynomial function if $\phi=\phi_0+\dots+\phi_m$, where $\phi_i$ is a form of degree $i$ on $V$, $i=0,\dots,m$ (see [[Multilinear form|Multilinear form]]). Most frequently, polynomial functions are considered when $V$ is a free $C$-module (for example, a vector space over a field $C$) having a finite basis $v_1,\dots,v_n$. Then the mapping $\phi\colon V\to C$ is a polynomial function if and only if $\phi(x)=F(x_1,\dots,x_n)$, where $F\in C[X_1,\dots,X_n]$ is a polynomial over $C$ and $x_1,\dots,x_n$ are the coordinates of an element $x\in V$ in the basis $v_1,\dots,v_n$. If here $C$ is an infinite integral domain, the polynomial $F$ is defined uniquely. |
| | | |
− | The polynomial functions on a module <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073710/p07371022.png" /> form an associative-commutative <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073710/p07371023.png" />-algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073710/p07371024.png" /> with a unit with respect to the natural operations. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073710/p07371025.png" /> is a free module with a finite basis over an infinite integral domain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073710/p07371026.png" />, the algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073710/p07371027.png" /> is canonically isomorphic to the symmetric algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073710/p07371028.png" /> of the adjoint (or dual) module <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073710/p07371029.png" />, while if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073710/p07371030.png" /> is a finite-dimensional vector space over a field of characteristic 0, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073710/p07371031.png" /> is the algebra of symmetric multilinear forms on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073710/p07371032.png" />. | + | The polynomial functions on a module $V$ form an associative-commutative $C$-algebra $P(V)$ with a unit with respect to the natural operations. If $V$ is a free module with a finite basis over an infinite integral domain $C$, the algebra $P(V)$ is canonically isomorphic to the symmetric algebra $S(V^*)$ of the adjoint (or dual) module $V^*$, while if $V$ is a finite-dimensional vector space over a field of characteristic 0, $P(V)$ is the algebra of symmetric multilinear forms on $V$. |
| | | |
| | | |
Latest revision as of 00:18, 25 November 2018
A generalization of the concept of an entire rational function (see Polynomial). Let $V$ be a unitary module over an associative-commutative ring $C$ with a unit. A mapping $\phi\colon V\to C$ is called a polynomial function if $\phi=\phi_0+\dots+\phi_m$, where $\phi_i$ is a form of degree $i$ on $V$, $i=0,\dots,m$ (see Multilinear form). Most frequently, polynomial functions are considered when $V$ is a free $C$-module (for example, a vector space over a field $C$) having a finite basis $v_1,\dots,v_n$. Then the mapping $\phi\colon V\to C$ is a polynomial function if and only if $\phi(x)=F(x_1,\dots,x_n)$, where $F\in C[X_1,\dots,X_n]$ is a polynomial over $C$ and $x_1,\dots,x_n$ are the coordinates of an element $x\in V$ in the basis $v_1,\dots,v_n$. If here $C$ is an infinite integral domain, the polynomial $F$ is defined uniquely.
The polynomial functions on a module $V$ form an associative-commutative $C$-algebra $P(V)$ with a unit with respect to the natural operations. If $V$ is a free module with a finite basis over an infinite integral domain $C$, the algebra $P(V)$ is canonically isomorphic to the symmetric algebra $S(V^*)$ of the adjoint (or dual) module $V^*$, while if $V$ is a finite-dimensional vector space over a field of characteristic 0, $P(V)$ is the algebra of symmetric multilinear forms on $V$.
E.g., polynomial functions on a Banach space naturally arise when one considers Taylor approximations to a differentiable function on such a space.
How to Cite This Entry:
Polynomial function. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Polynomial_function&oldid=43487
This article was adapted from an original article by A.L. Onishchik (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098.
See original article