|
|
Line 1: |
Line 1: |
| + | {{TEX|done}} |
| ''categorical system of axioms'' | | ''categorical system of axioms'' |
| | | |
− | Any system of axioms <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020720/c0207201.png" /> for which all models of the signature of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020720/c0207202.png" /> satisfying these axioms are isomorphic. It follows from the Mal'tsev–Tarski theorem on elementary extensions that models of a categorical first-order system <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020720/c0207203.png" /> of axioms have finite cardinality. The converse also holds: For any finite model <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020720/c0207204.png" /> there exists a categorical first-order system <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020720/c0207205.png" /> of axioms whose models are isomorphic to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020720/c0207206.png" />. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020720/c0207207.png" /> be the set of universal closures of the formulas | + | Any system of axioms $\Sigma$ for which all models of the signature of $\Sigma$ satisfying these axioms are isomorphic. It follows from the Mal'tsev–Tarski theorem on elementary extensions that models of a categorical first-order system $\Sigma$ of axioms have finite cardinality. The converse also holds: For any finite model $A$ there exists a categorical first-order system $\Sigma$ of axioms whose models are isomorphic to $A$. Let $\Sigma_0$ be the set of universal closures of the formulas |
| | | |
− | 1) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020720/c0207208.png" />; | + | 1) $0\neq x+1$; |
| | | |
− | 2) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020720/c0207209.png" />; | + | 2) $x+1=y+1\rightarrow x=y$; |
| | | |
− | 3) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020720/c02072010.png" />; | + | 3) $x+0=x$; |
| | | |
− | 4) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020720/c02072011.png" />; | + | 4) $x+(y+1)=(x+y)+1$; |
| | | |
− | 5) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020720/c02072012.png" />; | + | 5) $x\cdot0=0$; |
| | | |
− | 6) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020720/c02072013.png" />; | + | 6) $x\cdot(y+1)=(x\cdot y)+x$; |
| | | |
− | 7) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020720/c02072014.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020720/c02072015.png" /> is any formula of signature <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020720/c02072016.png" />. | + | 7) $(\phi(0)\&\forall x(\phi(x)\rightarrow\phi(x+1)))\rightarrow\forall x\phi(x)$, where $\phi(x)$ is any formula of signature $\langle +,\cdot,0,1\rangle$. |
| | | |
− | This system of axioms <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020720/c02072017.png" /> is known under the name of Peano arithmetic. The model <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020720/c02072018.png" /> of natural numbers is a model for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020720/c02072019.png" />. However, there exists a model of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020720/c02072020.png" /> that is not isomorphic to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020720/c02072021.png" />. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020720/c02072022.png" /> be the system obtained from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020720/c02072023.png" /> by replacing the scheme of elementary induction 7) by the axiom of complete induction | + | This system of axioms $\Sigma_0$ is known under the name of Peano arithmetic. The model $N=\langle\mathbf N,+,\cdot,0,1\rangle$ of natural numbers is a model for $\Sigma_0$. However, there exists a model of $\Sigma_0$ that is not isomorphic to $N$. Let $\Sigma_1$ be the system obtained from $\Sigma_0$ by replacing the scheme of elementary induction 7) by the axiom of complete induction |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020720/c02072024.png" /></td> </tr></table>
| + | $$\forall P((P(0)\&\forall x(P(x)\rightarrow P(x+1)))\rightarrow\forall xP(x)),$$ |
| | | |
− | written in a second-order language. Then the system <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020720/c02072025.png" /> is categorical and all models of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020720/c02072026.png" /> are isomorphic to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020720/c02072027.png" />. Another method of categorical description of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020720/c02072028.png" /> consists in appending to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020720/c02072029.png" /> the following infinite axiom (of the language <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020720/c02072030.png" />): | + | written in a second-order language. Then the system $\Sigma_1$ is categorical and all models of $\Sigma_1$ are isomorphic to $N$. Another method of categorical description of $N$ consists in appending to $\Sigma_0$ the following infinite axiom (of the language $L_{\omega_1\omega}$): |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020720/c02072031.png" /></td> </tr></table>
| + | $$\forall x(x=0\lor\dots\lor x=n\lor\dots),$$ |
| | | |
− | when <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020720/c02072032.png" /> is short for the sum <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020720/c02072033.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020720/c02072034.png" /> ones. | + | when $n$ is short for the sum $1+\dots+1$ of $n$ ones. |
| | | |
| ====References==== | | ====References==== |
| <table><TR><TD valign="top">[1]</TD> <TD valign="top"> J.R. Shoenfield, "Mathematical logic" , Addison-Wesley (1967)</TD></TR></table> | | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> J.R. Shoenfield, "Mathematical logic" , Addison-Wesley (1967)</TD></TR></table> |
categorical system of axioms
Any system of axioms $\Sigma$ for which all models of the signature of $\Sigma$ satisfying these axioms are isomorphic. It follows from the Mal'tsev–Tarski theorem on elementary extensions that models of a categorical first-order system $\Sigma$ of axioms have finite cardinality. The converse also holds: For any finite model $A$ there exists a categorical first-order system $\Sigma$ of axioms whose models are isomorphic to $A$. Let $\Sigma_0$ be the set of universal closures of the formulas
1) $0\neq x+1$;
2) $x+1=y+1\rightarrow x=y$;
3) $x+0=x$;
4) $x+(y+1)=(x+y)+1$;
5) $x\cdot0=0$;
6) $x\cdot(y+1)=(x\cdot y)+x$;
7) $(\phi(0)\&\forall x(\phi(x)\rightarrow\phi(x+1)))\rightarrow\forall x\phi(x)$, where $\phi(x)$ is any formula of signature $\langle +,\cdot,0,1\rangle$.
This system of axioms $\Sigma_0$ is known under the name of Peano arithmetic. The model $N=\langle\mathbf N,+,\cdot,0,1\rangle$ of natural numbers is a model for $\Sigma_0$. However, there exists a model of $\Sigma_0$ that is not isomorphic to $N$. Let $\Sigma_1$ be the system obtained from $\Sigma_0$ by replacing the scheme of elementary induction 7) by the axiom of complete induction
$$\forall P((P(0)\&\forall x(P(x)\rightarrow P(x+1)))\rightarrow\forall xP(x)),$$
written in a second-order language. Then the system $\Sigma_1$ is categorical and all models of $\Sigma_1$ are isomorphic to $N$. Another method of categorical description of $N$ consists in appending to $\Sigma_0$ the following infinite axiom (of the language $L_{\omega_1\omega}$):
$$\forall x(x=0\lor\dots\lor x=n\lor\dots),$$
when $n$ is short for the sum $1+\dots+1$ of $n$ ones.
References
[1] | J.R. Shoenfield, "Mathematical logic" , Addison-Wesley (1967) |