Difference between revisions of "Well-founded relation"
(Importing text file) |
(TeX) |
||
Line 1: | Line 1: | ||
+ | [[Category:TeX done]] | ||
+ | |||
''well-founded partial order'' | ''well-founded partial order'' | ||
− | A ([[Partial order|partial order]]) relation on a set | + | A ([[Partial order|partial order]]) relation on a set $A$ is called well-founded, or recursive, if every non-empty subset of $A$ has a least element with respect to this relation. Thus, a total order on a set $A$ (cf. [[Totally ordered set|Totally ordered set]]) that is well-founded makes $A$ a [[Well-ordered set|well-ordered set]]. |
− | A relation | + | A relation $R\subset A\times A$ on $A$ is well-founded if and only if for any set $B$ and function $g:\mathcal{P}(B)\rightarrow B$ there is a unique function $f$ such that the following diagram commutes (cf. [[#References|[a1]]]): |
− | + | \[ | |
+ | \begin{matrix} | ||
+ | A & \xrightarrow{f} & B\\ | ||
+ | r\downarrow & & \uparrow g\\ | ||
+ | \mathcal{P}(A) & \xrightarrow[\mathcal{P}(f)]{} & \mathcal{P}(B) | ||
+ | \end{matrix} | ||
+ | \] | ||
− | Here, | + | Here, $\mathcal{P}(A)$ is the set of all subsets of $A$, $\mathcal{P}(f)(A')=\{f(a'):\, a'\in A'\}$ for $A'\in\mathcal{P}(A)$ and $r(a)=\{a':\, (a, a')\in R\}$. In this form well-foundedness is defined in any elementary [[Topos|topos]]. |
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> G. Osius, "Categorical set theory: a characterization of the category of sets" ''J. Pure Appl. Algebra'' , '''4''' (1974) pp. 79–119</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> P. Odifreddi, "Classical recursion theory" , North-Holland (1989) pp. Chapt. II; esp. pp. 199ff</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> R.I. Goldblatt, "Topoi: the categorical analysis of logic" , North-Holland (1984) pp. 318ff</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> G. Osius, "Categorical set theory: a characterization of the category of sets" ''J. Pure Appl. Algebra'' , '''4''' (1974) pp. 79–119</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> P. Odifreddi, "Classical recursion theory" , North-Holland (1989) pp. Chapt. II; esp. pp. 199ff</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> R.I. Goldblatt, "Topoi: the categorical analysis of logic" , North-Holland (1984) pp. 318ff</TD></TR></table> |
Latest revision as of 19:23, 15 June 2017
well-founded partial order
A (partial order) relation on a set $A$ is called well-founded, or recursive, if every non-empty subset of $A$ has a least element with respect to this relation. Thus, a total order on a set $A$ (cf. Totally ordered set) that is well-founded makes $A$ a well-ordered set.
A relation $R\subset A\times A$ on $A$ is well-founded if and only if for any set $B$ and function $g:\mathcal{P}(B)\rightarrow B$ there is a unique function $f$ such that the following diagram commutes (cf. [a1]):
\[ \begin{matrix} A & \xrightarrow{f} & B\\ r\downarrow & & \uparrow g\\ \mathcal{P}(A) & \xrightarrow[\mathcal{P}(f)]{} & \mathcal{P}(B) \end{matrix} \]
Here, $\mathcal{P}(A)$ is the set of all subsets of $A$, $\mathcal{P}(f)(A')=\{f(a'):\, a'\in A'\}$ for $A'\in\mathcal{P}(A)$ and $r(a)=\{a':\, (a, a')\in R\}$. In this form well-foundedness is defined in any elementary topos.
References
[a1] | G. Osius, "Categorical set theory: a characterization of the category of sets" J. Pure Appl. Algebra , 4 (1974) pp. 79–119 |
[a2] | P. Odifreddi, "Classical recursion theory" , North-Holland (1989) pp. Chapt. II; esp. pp. 199ff |
[a3] | R.I. Goldblatt, "Topoi: the categorical analysis of logic" , North-Holland (1984) pp. 318ff |
Well-founded relation. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Well-founded_relation&oldid=41630