Difference between revisions of "Incomplete beta-function"
(Importing text file) |
(TeX) |
||
Line 1: | Line 1: | ||
+ | {{TEX|done}} | ||
The function defined by the formula | The function defined by the formula | ||
− | + | $$I_x(a,b)=\frac1{B(a,b)}\int\limits_0^xt^{a-1}(1-t)^{b-1}dt,$$ | |
− | + | $$0\leq x\leq1,\quad a>0,\quad b>0,$$ | |
where | where | ||
− | + | $$B(a,b)=\int\limits_0^1t^{a-1}(1-t)^{b-1}dt=\frac{\Gamma(a)\Gamma(b)}{\Gamma(a+b)}$$ | |
− | is the [[Beta-function|beta-function]]. If | + | is the [[Beta-function|beta-function]]. If $a$ is an integer, then |
− | + | $$1-I_x(a,b)=\frac{(1-x)^b}{B(a,b)}\sum_{i=0}^{a-1}(-1)^i\begin{pmatrix}a-1\\i\end{pmatrix}\frac{(1-x)^i}{b+i}=$$ | |
− | + | $$=(1-x)^{a+b-1}\sum_{i=0}^{a-1}\begin{pmatrix}a+b-1\\i\end{pmatrix}\left(\frac x{1-x}\right)^i.$$ | |
Series representation: | Series representation: | ||
− | + | $$I_x(a,b)=\frac{x^a(1-x)^b}{aB(a,b)}\left\lbrace1+\sum_{n=0}^\infty\frac{B(a+1,n+1)}{B(a+b,n+1)}x^{n+1}\right\rbrace,$$ | |
− | < | + | $$0<x<1.$$ |
Continued fraction representation: | Continued fraction representation: | ||
− | + | $$I_x(a,b)=\frac{x^a(1-x)^b}{aB(a,b)}\left\lbrace\frac{1|}{|1}+\frac{d_1|}{|1}+\frac{d_2|}{|1}+\dots\right\rbrace,$$ | |
where | where | ||
− | + | $$d_{2m+1}=-\frac{(a+m)(a+b+m)x}{(a+2m)(a+2m+1)},$$ | |
− | + | $$d_{2m}=\frac{m(b-m)x}{(a+2m-1)(a+2m)}.$$ | |
− | Asymptotic representation for large | + | Asymptotic representation for large $a$ and $b$: |
− | + | $$I_x(a,b)=\Phi\left\lbrace3\frac{(bx)^{1/3}\left(1-\frac1{9b}\right)-[a(1-x)]^{1/3}\left(1-\frac1{9a}\right)}{\sqrt{\frac{[a(1-x)]^{2/3}}a+\frac{(bx)^{2/3}}b}}\right\rbrace+$$ | |
− | + | $${}+O\left(\frac1{\min{(a,b)}}\right),$$ | |
where | where | ||
− | + | $$\Phi(z)=\frac1{\sqrt{2\pi}}\int\limits_{-\infty}^ze^{-t^2/2}dt.$$ | |
− | Asymptotic representation for large | + | Asymptotic representation for large $b$ and bounded $a$: |
− | + | $$I_x(a,b)=I\left(\frac{x(2b+a-1)}{2-x},a\right)+O(b^{-2}),$$ | |
where | where | ||
− | + | $$I(z,a)=\frac1{\Gamma(a)}\int\limits_0^ze^{-t}t^{a-1}dt.$$ | |
Connection with the [[Hypergeometric function|hypergeometric function]]: | Connection with the [[Hypergeometric function|hypergeometric function]]: | ||
− | + | $$I_x(a,b)=\frac{x^a}{aB(x,a)}F(a,1-b;a+1;x).$$ | |
Recurrence relations: | Recurrence relations: | ||
− | + | $$I_x(a,b)=1-I_{1-x}(b,a),$$ | |
− | + | $$I_x(a,b)=xI_x(a-1,b)+(1-x)I_x(a,b-1),$$ | |
− | + | $$I_x(a,a)=\frac12I_{1-y}\left(a,\frac12\right),\quad y=4\left(x-\frac12\right)^2,\quad0<x\leq\frac12.$$ | |
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> M. Abramowitz, I.A. Stegun, "Handbook of mathematical functions" , Dover, reprint (1973)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> K. Pearson, "Tables of the incomplete beta-function" , Cambridge Univ. Press (1932)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> M. Abramowitz, I.A. Stegun, "Handbook of mathematical functions" , Dover, reprint (1973)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> K. Pearson, "Tables of the incomplete beta-function" , Cambridge Univ. Press (1932)</TD></TR></table> |
Latest revision as of 15:50, 31 March 2017
The function defined by the formula
$$I_x(a,b)=\frac1{B(a,b)}\int\limits_0^xt^{a-1}(1-t)^{b-1}dt,$$
$$0\leq x\leq1,\quad a>0,\quad b>0,$$
where
$$B(a,b)=\int\limits_0^1t^{a-1}(1-t)^{b-1}dt=\frac{\Gamma(a)\Gamma(b)}{\Gamma(a+b)}$$
is the beta-function. If $a$ is an integer, then
$$1-I_x(a,b)=\frac{(1-x)^b}{B(a,b)}\sum_{i=0}^{a-1}(-1)^i\begin{pmatrix}a-1\\i\end{pmatrix}\frac{(1-x)^i}{b+i}=$$
$$=(1-x)^{a+b-1}\sum_{i=0}^{a-1}\begin{pmatrix}a+b-1\\i\end{pmatrix}\left(\frac x{1-x}\right)^i.$$
Series representation:
$$I_x(a,b)=\frac{x^a(1-x)^b}{aB(a,b)}\left\lbrace1+\sum_{n=0}^\infty\frac{B(a+1,n+1)}{B(a+b,n+1)}x^{n+1}\right\rbrace,$$
$$0<x<1.$$
Continued fraction representation:
$$I_x(a,b)=\frac{x^a(1-x)^b}{aB(a,b)}\left\lbrace\frac{1|}{|1}+\frac{d_1|}{|1}+\frac{d_2|}{|1}+\dots\right\rbrace,$$
where
$$d_{2m+1}=-\frac{(a+m)(a+b+m)x}{(a+2m)(a+2m+1)},$$
$$d_{2m}=\frac{m(b-m)x}{(a+2m-1)(a+2m)}.$$
Asymptotic representation for large $a$ and $b$:
$$I_x(a,b)=\Phi\left\lbrace3\frac{(bx)^{1/3}\left(1-\frac1{9b}\right)-[a(1-x)]^{1/3}\left(1-\frac1{9a}\right)}{\sqrt{\frac{[a(1-x)]^{2/3}}a+\frac{(bx)^{2/3}}b}}\right\rbrace+$$
$${}+O\left(\frac1{\min{(a,b)}}\right),$$
where
$$\Phi(z)=\frac1{\sqrt{2\pi}}\int\limits_{-\infty}^ze^{-t^2/2}dt.$$
Asymptotic representation for large $b$ and bounded $a$:
$$I_x(a,b)=I\left(\frac{x(2b+a-1)}{2-x},a\right)+O(b^{-2}),$$
where
$$I(z,a)=\frac1{\Gamma(a)}\int\limits_0^ze^{-t}t^{a-1}dt.$$
Connection with the hypergeometric function:
$$I_x(a,b)=\frac{x^a}{aB(x,a)}F(a,1-b;a+1;x).$$
Recurrence relations:
$$I_x(a,b)=1-I_{1-x}(b,a),$$
$$I_x(a,b)=xI_x(a-1,b)+(1-x)I_x(a,b-1),$$
$$I_x(a,a)=\frac12I_{1-y}\left(a,\frac12\right),\quad y=4\left(x-\frac12\right)^2,\quad0<x\leq\frac12.$$
References
[1] | M. Abramowitz, I.A. Stegun, "Handbook of mathematical functions" , Dover, reprint (1973) |
[2] | K. Pearson, "Tables of the incomplete beta-function" , Cambridge Univ. Press (1932) |
Incomplete beta-function. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Incomplete_beta-function&oldid=40746