Difference between revisions of "Vinogradov theorem about the average"
(Importing text file) |
m (TeX done) |
||
Line 1: | Line 1: | ||
A theorem providing an upper bound of the value of a [[Vinogradov integral|Vinogradov integral]]: | A theorem providing an upper bound of the value of a [[Vinogradov integral|Vinogradov integral]]: | ||
− | + | $$ J_b = J_{b, n} (P) = \int \limits_0^1 \dots \int \limits_0^1 \left| \sum_{x \, = \, 1}^P e^{2 \pi i (\alpha_n x^n + \dots + \alpha_1 x)} \right|^{2b} d \alpha_n \dots d \alpha_1, $$ | |
− | + | where $J_b$ is the average value of the trigonometric sum. It is formulated as follows. If, for a non-negative integer $t$ one sets | |
− | + | $$ D_t = (20n)^{n(n + 1)t/2}, \qquad b_t = nt + \left[{\frac{n(n + 1)}{4} + 1}\right], $$ | |
− | + | then, if $l > 0$ and for an integer $b \geq b_l$, | |
− | + | $$ J_b = J_{b, n} (P) < D_l P^{2b - (1 + (1 - 1/n)^l)n(n + 1)/2}. $$ | |
− | + | The estimate of $J_b$ given by Vinogradov's theorem is asymptotically exact. The theorem is fundamental in the [[Vinogradov method|Vinogradov method]] for estimating Weyl sums (cf. [[Weyl sum|Weyl sum]]). In addition, it yielded a number of almost optimal results in classical problems in number theory (cf. [[Waring problem|Waring problem]]; [[Hilbert–Kamke problem|Hilbert–Kamke problem]]; [[Distribution modulo one|Distribution modulo one]] of a polynomial). | |
− | |||
− | The estimate of | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> I.M. Vinogradov, "The method of trigonometric sums in the theory of numbers" , Interscience (1954) (Translated from Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> L.-K. Hua, "Abschätzungen von Exponentialsummen und ihre Anwendung in der Zahlentheorie" , ''Enzyklopaedie der Mathematischen Wissenschaften mit Einschluss ihrer Anwendungen'' , '''1''' : 2 (1959) (Heft 13, Teil 1)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> I.M. Vinogradov, "The method of trigonometric sums in the theory of numbers" , Interscience (1954) (Translated from Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> L.-K. Hua, "Abschätzungen von Exponentialsummen und ihre Anwendung in der Zahlentheorie" , ''Enzyklopaedie der Mathematischen Wissenschaften mit Einschluss ihrer Anwendungen'' , '''1''' : 2 (1959) (Heft 13, Teil 1)</TD></TR></table> | ||
+ | |||
+ | {{TEX|done}} |
Latest revision as of 21:55, 14 January 2017
A theorem providing an upper bound of the value of a Vinogradov integral:
$$ J_b = J_{b, n} (P) = \int \limits_0^1 \dots \int \limits_0^1 \left| \sum_{x \, = \, 1}^P e^{2 \pi i (\alpha_n x^n + \dots + \alpha_1 x)} \right|^{2b} d \alpha_n \dots d \alpha_1, $$
where $J_b$ is the average value of the trigonometric sum. It is formulated as follows. If, for a non-negative integer $t$ one sets
$$ D_t = (20n)^{n(n + 1)t/2}, \qquad b_t = nt + \left[{\frac{n(n + 1)}{4} + 1}\right], $$
then, if $l > 0$ and for an integer $b \geq b_l$,
$$ J_b = J_{b, n} (P) < D_l P^{2b - (1 + (1 - 1/n)^l)n(n + 1)/2}. $$
The estimate of $J_b$ given by Vinogradov's theorem is asymptotically exact. The theorem is fundamental in the Vinogradov method for estimating Weyl sums (cf. Weyl sum). In addition, it yielded a number of almost optimal results in classical problems in number theory (cf. Waring problem; Hilbert–Kamke problem; Distribution modulo one of a polynomial).
References
[1] | I.M. Vinogradov, "The method of trigonometric sums in the theory of numbers" , Interscience (1954) (Translated from Russian) |
[2] | L.-K. Hua, "Abschätzungen von Exponentialsummen und ihre Anwendung in der Zahlentheorie" , Enzyklopaedie der Mathematischen Wissenschaften mit Einschluss ihrer Anwendungen , 1 : 2 (1959) (Heft 13, Teil 1) |
Vinogradov theorem about the average. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Vinogradov_theorem_about_the_average&oldid=40184