Namespaces
Variants
Actions

Difference between revisions of "Distributive quasi-group"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
(Tex done)
Line 1: Line 1:
A [[Quasi-group|quasi-group]] which satisfies the left and the right distributive laws: <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033580/d0335801.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033580/d0335802.png" />. In quasi-groups these two laws are independent of each other (there are left-distributive quasi-groups which are not right-distributive [[#References|[1]]]). As an example of a distributive quasi-group one may quote the set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033580/d0335803.png" /> of rational numbers with the operation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033580/d0335804.png" />. Any idempotent medial quasi-group (i.e. a quasi-group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033580/d0335805.png" /> in which the relations <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033580/d0335806.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033580/d0335807.png" /> are valid for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033580/d0335808.png" />) is distributive. In the general case every distributive quasi-group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033580/d0335809.png" /> is isotopic (cf. [[Isotopy|Isotopy]]) to a commutative [[Moufang loop|Moufang loop]] [[#References|[3]]]. Parastrophies (quasi-groups with respect to inverse operations, cf. [[Quasi-group|Quasi-group]]) of distributive quasi-groups are also distributive and are isotopic to the same commutative Moufang loop. If four elements <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033580/d03358010.png" /> in a distributive quasi-group are connected by the medial law: <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033580/d03358011.png" />, they generate a medial sub-quasi-group. In particular, any three elements of a distributive quasi-group generate a medial sub-quasi-group. In a sub-quasi-group the translations are automorphisms, and in a certain sense a distributive quasi-group is homogeneous: No element, and no sub-quasi-group, is distinguished. The group generated by all right translations of a finite distributive quasi-group is solvable [[#References|[4]]].
+
A [[quasi-group]] which satisfies the left and the right distributive laws: $x\cdot yz = xy \cdot xz$, $yz \cdot x = yx \cdot zx$. In quasi-groups these two laws are independent of each other (there are left-distributive quasi-groups which are not right-distributive [[#References|[1]]]). As an example of a distributive quasi-group one may quote the set $\mathbf{Q}$ of rational numbers with the operation $x \cdot y = (x+y)/2$. Any idempotent [[medial quasi-group]] (i.e. a quasi-group $Q$ in which the relations $x\cdot x = x$ and $xy \cdot uv = xu \cdot yv$ are valid for all $x,y,u,v$) is distributive. In the general case every distributive quasi-group $(Q,{\cdot})$ is [[Isotopy|isotopic]] to a commutative [[Moufang loop]] [[#References|[3]]]. [[Parastrophy|Parastrophies]] (quasi-groups with respect to inverse operations, cf. [[Quasi-group]]) of distributive quasi-groups are also distributive and are isotopic to the same commutative Moufang loop. If four elements $a,b,c,d$ in a distributive quasi-group are connected by the medial law: $ab\cdot cd = ac \cdot bd$, they generate a medial sub-quasi-group. In particular, any three elements of a distributive quasi-group generate a medial sub-quasi-group. In a sub-quasi-group the translations are automorphisms, and in a certain sense a distributive quasi-group is homogeneous: no element, and no sub-quasi-group, is distinguished. The group generated by all right translations of a finite distributive quasi-group is solvable [[#References|[4]]].
  
 
====References====
 
====References====
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  Sh. Stein,  "On a construction of Hosszú"  ''Publ. Math. Debrecen'' , '''6''' :  1–2  (1959)  pp. 10–14</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  V.D. Belousov,  "The structure of distributive quasigroups"  ''Mat. Sb.'' , '''50''' :  3  (1960)  pp. 267–298  (In Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  V.D. Belousov,  "Foundations of the theory of quasi-groups and loops" , Moscow  (1967)  (In Russian)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  B. Fischer,  "Distributive Quasigruppen endlicher Ordnung"  ''Math. Z.'' , '''83''' :  4  (1964)  pp. 267–303</TD></TR></table>
+
<table>
 +
<TR><TD valign="top">[1]</TD> <TD valign="top">  Sh. Stein,  "On a construction of Hosszú"  ''Publ. Math. Debrecen'' , '''6''' :  1–2  (1959)  pp. 10–14</TD></TR>
 +
<TR><TD valign="top">[2]</TD> <TD valign="top">  V.D. Belousov,  "The structure of distributive quasigroups"  ''Mat. Sb.'' , '''50''' :  3  (1960)  pp. 267–298  (In Russian)</TD></TR>
 +
<TR><TD valign="top">[3]</TD> <TD valign="top">  V.D. Belousov,  "Foundations of the theory of quasi-groups and loops" , Moscow  (1967)  (In Russian)</TD></TR>
 +
<TR><TD valign="top">[4]</TD> <TD valign="top">  B. Fischer,  "Distributive Quasigruppen endlicher Ordnung"  ''Math. Z.'' , '''83''' :  4  (1964)  pp. 267–303</TD></TR>
 +
</table>
  
  
  
 
====Comments====
 
====Comments====
In [[#References|[a1]]] it is shown that a quasi-group of order <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033580/d03358012.png" />, with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033580/d03358013.png" /> distinct prime numbers and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033580/d03358014.png" /> non-negative integers, is isomorphic to the direct product of distributive quasi-groups <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033580/d03358015.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033580/d03358016.png" /> has order <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033580/d03358017.png" /> and is Abelian (i.e. satisfies <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033580/d03358018.png" />) for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033580/d03358019.png" />.
+
In [[#References|[a1]]] it is shown that a quasi-group of order $p_1^{\alpha_1}\cdots p_k^{\alpha_k}$, with $p_1,\ldots,p_k$ distinct prime numbers and $\alpha_1,\ldots,\alpha_k$ non-negative integers, is isomorphic to the direct product of distributive quasi-groups $Q_1,\ldots,Q_k$, where $Q_i$ has order $p_i^{\alpha_i}$ and is medial (i.e. satisfies $ab\cdot cd = ac \cdot bd$) for $p_1 \ne 3$.
  
 
====References====
 
====References====
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  V.M. Galkin,  "Finite distributive quasigroups"  ''Math. Notes'' , '''24'''  (1978)  pp. 525–526  ''Mat. Zametki'' , '''24'''  (1978)  pp. 39–41; 141</TD></TR></table>
+
<table>
 +
<TR><TD valign="top">[a1]</TD> <TD valign="top">  V.M. Galkin,  "Finite distributive quasigroups"  ''Math. Notes'' , '''24'''  (1978)  pp. 525–526  ''Mat. Zametki'' , '''24'''  (1978)  pp. 39–41; 141</TD></TR>
 +
</table>

Revision as of 22:15, 7 January 2017

A quasi-group which satisfies the left and the right distributive laws: $x\cdot yz = xy \cdot xz$, $yz \cdot x = yx \cdot zx$. In quasi-groups these two laws are independent of each other (there are left-distributive quasi-groups which are not right-distributive [1]). As an example of a distributive quasi-group one may quote the set $\mathbf{Q}$ of rational numbers with the operation $x \cdot y = (x+y)/2$. Any idempotent medial quasi-group (i.e. a quasi-group $Q$ in which the relations $x\cdot x = x$ and $xy \cdot uv = xu \cdot yv$ are valid for all $x,y,u,v$) is distributive. In the general case every distributive quasi-group $(Q,{\cdot})$ is isotopic to a commutative Moufang loop [3]. Parastrophies (quasi-groups with respect to inverse operations, cf. Quasi-group) of distributive quasi-groups are also distributive and are isotopic to the same commutative Moufang loop. If four elements $a,b,c,d$ in a distributive quasi-group are connected by the medial law: $ab\cdot cd = ac \cdot bd$, they generate a medial sub-quasi-group. In particular, any three elements of a distributive quasi-group generate a medial sub-quasi-group. In a sub-quasi-group the translations are automorphisms, and in a certain sense a distributive quasi-group is homogeneous: no element, and no sub-quasi-group, is distinguished. The group generated by all right translations of a finite distributive quasi-group is solvable [4].

References

[1] Sh. Stein, "On a construction of Hosszú" Publ. Math. Debrecen , 6 : 1–2 (1959) pp. 10–14
[2] V.D. Belousov, "The structure of distributive quasigroups" Mat. Sb. , 50 : 3 (1960) pp. 267–298 (In Russian)
[3] V.D. Belousov, "Foundations of the theory of quasi-groups and loops" , Moscow (1967) (In Russian)
[4] B. Fischer, "Distributive Quasigruppen endlicher Ordnung" Math. Z. , 83 : 4 (1964) pp. 267–303


Comments

In [a1] it is shown that a quasi-group of order $p_1^{\alpha_1}\cdots p_k^{\alpha_k}$, with $p_1,\ldots,p_k$ distinct prime numbers and $\alpha_1,\ldots,\alpha_k$ non-negative integers, is isomorphic to the direct product of distributive quasi-groups $Q_1,\ldots,Q_k$, where $Q_i$ has order $p_i^{\alpha_i}$ and is medial (i.e. satisfies $ab\cdot cd = ac \cdot bd$) for $p_1 \ne 3$.

References

[a1] V.M. Galkin, "Finite distributive quasigroups" Math. Notes , 24 (1978) pp. 525–526 Mat. Zametki , 24 (1978) pp. 39–41; 141
How to Cite This Entry:
Distributive quasi-group. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Distributive_quasi-group&oldid=40151
This article was adapted from an original article by V.D. Belousov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article