Namespaces
Variants
Actions

Difference between revisions of "Coherent algebra"

From Encyclopedia of Mathematics
Jump to: navigation, search
m (Link)
(links)
Line 11: Line 11:
 
<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c130/c130140/c13014012.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c130/c130140/c13014013.png" /> is the all-one matrix;
 
<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c130/c130140/c13014012.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c130/c130140/c13014013.png" /> is the all-one matrix;
  
<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c130/c130140/c13014014.png" /> is closed with respect to [[Schur–Hadamard multiplication]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c130/c130140/c13014015.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c130/c130140/c13014016.png" /> for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c130/c130140/c13014017.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c130/c130140/c13014018.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c130/c130140/c13014019.png" />. Each coherent algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c130/c130140/c13014020.png" /> has a unique basis of zero-one matrices <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c130/c130140/c13014021.png" /> such that:
+
<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c130/c130140/c13014014.png" /> is closed with respect to [[Schur–Hadamard multiplication]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c130/c130140/c13014015.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c130/c130140/c13014016.png" /> for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c130/c130140/c13014017.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c130/c130140/c13014018.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c130/c130140/c13014019.png" />.  
 +
 
 +
Each coherent algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c130/c130140/c13014020.png" /> has a unique basis of zero-one matrices <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c130/c130140/c13014021.png" /> such that:
  
 
1) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c130/c130140/c13014022.png" />;
 
1) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c130/c130140/c13014022.png" />;
Line 17: Line 19:
 
2) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c130/c130140/c13014023.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c130/c130140/c13014024.png" /> is the matrix transposed to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c130/c130140/c13014025.png" />;
 
2) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c130/c130140/c13014023.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c130/c130140/c13014024.png" /> is the matrix transposed to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c130/c130140/c13014025.png" />;
  
3) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c130/c130140/c13014026.png" />. Property 1) implies that the basis <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c130/c130140/c13014027.png" /> consists of mutually orthogonal idempotents with respect to the Schur–Hadamard product. This basis is called the standard basis of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c130/c130140/c13014028.png" />. The non-negative integer structure constants <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c130/c130140/c13014029.png" /> are important numerical invariants of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c130/c130140/c13014030.png" />. The notation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c130/c130140/c13014031.png" /> indicates that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c130/c130140/c13014032.png" /> is a coherent algebra with standard basis <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c130/c130140/c13014033.png" />.
+
3) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c130/c130140/c13014026.png" />.  
 +
 
 +
Property 1) implies that the basis <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c130/c130140/c13014027.png" /> consists of mutually orthogonal idempotents with respect to the Schur–Hadamard product. This basis is called the standard basis of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c130/c130140/c13014028.png" />. The non-negative integer [[structure constant]]s <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c130/c130140/c13014029.png" /> are important numerical invariants of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c130/c130140/c13014030.png" />. The notation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c130/c130140/c13014031.png" /> indicates that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c130/c130140/c13014032.png" /> is a coherent algebra with standard basis <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c130/c130140/c13014033.png" />.
  
 
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c130/c130140/c13014034.png" /> and denote by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c130/c130140/c13014035.png" /> a binary relation over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c130/c130140/c13014036.png" />. <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c130/c130140/c13014037.png" /> is called the support of the zero-one matrix <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c130/c130140/c13014038.png" /> (or, in other words, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c130/c130140/c13014039.png" /> is the [[adjacency matrix]] of the graph <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c130/c130140/c13014040.png" /> with vertex set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c130/c130140/c13014041.png" /> and set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c130/c130140/c13014042.png" /> of directed edges). The system of relations <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c130/c130140/c13014043.png" /> obtained in this way from a coherent algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c130/c130140/c13014044.png" /> is called a coherent configuration.
 
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c130/c130140/c13014034.png" /> and denote by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c130/c130140/c13014035.png" /> a binary relation over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c130/c130140/c13014036.png" />. <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c130/c130140/c13014037.png" /> is called the support of the zero-one matrix <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c130/c130140/c13014038.png" /> (or, in other words, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c130/c130140/c13014039.png" /> is the [[adjacency matrix]] of the graph <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c130/c130140/c13014040.png" /> with vertex set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c130/c130140/c13014041.png" /> and set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c130/c130140/c13014042.png" /> of directed edges). The system of relations <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c130/c130140/c13014043.png" /> obtained in this way from a coherent algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c130/c130140/c13014044.png" /> is called a coherent configuration.
Line 35: Line 39:
 
and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c130/c130140/c13014059.png" /> is a minimal (with respect to inclusion) subset satisfying condition (a1). The coherent algebras with one fibre are exactly the BM-algebras. Coherent algebras with few fibres may be used for a unified presentation and investigation of various combinatorial objects, see, for example, [[#References|[a3]]], [[#References|[a7]]], [[#References|[a9]]].
 
and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c130/c130140/c13014059.png" /> is a minimal (with respect to inclusion) subset satisfying condition (a1). The coherent algebras with one fibre are exactly the BM-algebras. Coherent algebras with few fibres may be used for a unified presentation and investigation of various combinatorial objects, see, for example, [[#References|[a3]]], [[#References|[a7]]], [[#References|[a9]]].
  
An important class of coherent algebras consists of the centralizer algebras of permutation groups (not necessarily transitive) [[#References|[a2]]], [[#References|[a10]]] (cf. also [[Permutation group|Permutation group]]; [[Centralizer|Centralizer]]). This leads to many important applications of coherent algebras.
+
An important class of coherent algebras consists of the centralizer algebras of permutation groups (not necessarily transitive) [[#References|[a2]]], [[#References|[a10]]] (cf. also [[Permutation group]]; [[Centralizer]]). This leads to many important applications of coherent algebras.
  
 
It was Higman [[#References|[a5]]], [[#References|[a8]]] who developed the foundations of the representation theory of coherent algebras as a generalization of the representation theory of finite permutation groups (cf. also [[Finite group, representation of a|Finite group, representation of a]]).
 
It was Higman [[#References|[a5]]], [[#References|[a8]]] who developed the foundations of the representation theory of coherent algebras as a generalization of the representation theory of finite permutation groups (cf. also [[Finite group, representation of a|Finite group, representation of a]]).
  
 
====References====
 
====References====
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  E. Bannai,  T. Ito,  "Algebraic combinatorics" , '''I''' , Benjamin/Cummings  (1984)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  I.A. Faradžev,  M.H. Klin,  M.E. Muzichuk,  "Cellular rings and groups of automorphisms of graphs"  I.A. Faradžev (ed.)  et al. (ed.) , ''Investigations in Algebraic Theory of Combinatorial Objects'' , Kluwer Acad. Publ.  (1994)  pp. 1–152</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  W.H. Haemers,  D.G. Higman,  "Strongly regular graphs with strongly regular decomposition"  ''Linear Alg. &amp; Its Appl.'' , '''114/115'''  (1989)  pp. 379–398</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top">  D.G. Higman,  "Coherent configurations I"  ''Rend. Sem. Mat. Univ. Padova'' , '''44'''  (1970)  pp. 1–25</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top">  D.G. Higman,  "Coherent configurations, Part I: Ordinary representation theory"  ''Geom. Dedicata'' , '''4'''  (1975)  pp. 1–32</TD></TR><TR><TD valign="top">[a6]</TD> <TD valign="top">  D.G. Higman,  "Coherent algebras"  ''Linear Alg. &amp; Its Appl.'' , '''93'''  (1987)  pp. 209–239</TD></TR><TR><TD valign="top">[a7]</TD> <TD valign="top">  D.G. Higman,  "Strongly regular designs and coherent configurations of type <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c130/c130140/c13014060.png" />"  ''Europ. J. Combin.'' , '''9'''  (1988)  pp. 411–422</TD></TR><TR><TD valign="top">[a8]</TD> <TD valign="top">  D.G. Higman,  "Computations related to coherent configurations"  ''Congr. Numer.'' , '''75'''  (1990)  pp. 9–20</TD></TR><TR><TD valign="top">[a9]</TD> <TD valign="top">  M.E. Muzychuk,  M. Klin,  "On graphs with three eigenvalues"  ''Discr. Math.'' , '''189'''  (1998)  pp. 191–207</TD></TR><TR><TD valign="top">[a10]</TD> <TD valign="top">  H. Wielandt,  "Finite permutation groups" , Acad. Press  (1964)</TD></TR></table>
+
<table>
 +
<TR><TD valign="top">[a1]</TD> <TD valign="top">  E. Bannai,  T. Ito,  "Algebraic combinatorics" , '''I''' , Benjamin/Cummings  (1984)</TD></TR>
 +
<TR><TD valign="top">[a2]</TD> <TD valign="top">  I.A. Faradžev,  M.H. Klin,  M.E. Muzichuk,  "Cellular rings and groups of automorphisms of graphs"  I.A. Faradžev (ed.)  et al. (ed.) , ''Investigations in Algebraic Theory of Combinatorial Objects'' , Kluwer Acad. Publ.  (1994)  pp. 1–152</TD></TR>
 +
<TR><TD valign="top">[a3]</TD> <TD valign="top">  W.H. Haemers,  D.G. Higman,  "Strongly regular graphs with strongly regular decomposition"  ''Linear Alg. &amp; Its Appl.'' , '''114/115'''  (1989)  pp. 379–398</TD></TR>
 +
<TR><TD valign="top">[a4]</TD> <TD valign="top">  D.G. Higman,  "Coherent configurations I"  ''Rend. Sem. Mat. Univ. Padova'' , '''44'''  (1970)  pp. 1–25</TD></TR>
 +
<TR><TD valign="top">[a5]</TD> <TD valign="top">  D.G. Higman,  "Coherent configurations, Part I: Ordinary representation theory"  ''Geom. Dedicata'' , '''4'''  (1975)  pp. 1–32</TD></TR>
 +
<TR><TD valign="top">[a6]</TD> <TD valign="top">  D.G. Higman,  "Coherent algebras"  ''Linear Alg. &amp; Its Appl.'' , '''93'''  (1987)  pp. 209–239</TD></TR>
 +
<TR><TD valign="top">[a7]</TD> <TD valign="top">  D.G. Higman,  "Strongly regular designs and coherent configurations of type <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c130/c130140/c13014060.png" />"  ''Europ. J. Combin.'' , '''9'''  (1988)  pp. 411–422</TD></TR>
 +
<TR><TD valign="top">[a8]</TD> <TD valign="top">  D.G. Higman,  "Computations related to coherent configurations"  ''Congr. Numer.'' , '''75'''  (1990)  pp. 9–20</TD></TR>
 +
<TR><TD valign="top">[a9]</TD> <TD valign="top">  M.E. Muzychuk,  M. Klin,  "On graphs with three eigenvalues"  ''Discr. Math.'' , '''189'''  (1998)  pp. 191–207</TD></TR>
 +
<TR><TD valign="top">[a10]</TD> <TD valign="top">  H. Wielandt,  "Finite permutation groups" , Acad. Press  (1964)</TD></TR>
 +
</table>

Revision as of 06:50, 27 September 2016

Algebras introduced by D.G. Higman, first in relational language under the name coherent configuration [a4] and later in terms of matrices [a6]. The slightly different axiomatics of cellular algebras were independently suggested by B.Yu. Weisfeiler and A.A. Leman (cf. also Cellular algebra).

Like association schemes and Bose–Mesner algebras, coherent algebras provide a wide and solid foundation for investigations in various areas of algebraic combinatorics.

A coherent algebra of order and rank is a matrix subalgebra of the full matrix algebra of -matrices over such that:

is closed with respect to the Hermitian adjoint, which is defined by for ;

, where is the unit matrix;

, where is the all-one matrix;

is closed with respect to Schur–Hadamard multiplication , where for , , .

Each coherent algebra has a unique basis of zero-one matrices such that:

1) ;

2) , where is the matrix transposed to ;

3) .

Property 1) implies that the basis consists of mutually orthogonal idempotents with respect to the Schur–Hadamard product. This basis is called the standard basis of . The non-negative integer structure constants are important numerical invariants of . The notation indicates that is a coherent algebra with standard basis .

Let and denote by a binary relation over . is called the support of the zero-one matrix (or, in other words, is the adjacency matrix of the graph with vertex set and set of directed edges). The system of relations obtained in this way from a coherent algebra is called a coherent configuration.

The structure constants of are sometimes called the intersection numbers of . They have the following combinatorial interpretation:

A coherent configuration is called homogeneous if one of its basic relations, say , coincides with the diagonal relation . In terms of matrices, a coherent algebra is called a Bose–Mesner algebra (briefly BM-algebra) if . Note that according to E. Bannai and T. Ito [a1], a homogeneous coherent configuration is also called an association scheme (not necessarily commutative; cf. also Association scheme).

Let be a coherent configuration. A subset is called a fibre of if

(a1)

and is a minimal (with respect to inclusion) subset satisfying condition (a1). The coherent algebras with one fibre are exactly the BM-algebras. Coherent algebras with few fibres may be used for a unified presentation and investigation of various combinatorial objects, see, for example, [a3], [a7], [a9].

An important class of coherent algebras consists of the centralizer algebras of permutation groups (not necessarily transitive) [a2], [a10] (cf. also Permutation group; Centralizer). This leads to many important applications of coherent algebras.

It was Higman [a5], [a8] who developed the foundations of the representation theory of coherent algebras as a generalization of the representation theory of finite permutation groups (cf. also Finite group, representation of a).

References

[a1] E. Bannai, T. Ito, "Algebraic combinatorics" , I , Benjamin/Cummings (1984)
[a2] I.A. Faradžev, M.H. Klin, M.E. Muzichuk, "Cellular rings and groups of automorphisms of graphs" I.A. Faradžev (ed.) et al. (ed.) , Investigations in Algebraic Theory of Combinatorial Objects , Kluwer Acad. Publ. (1994) pp. 1–152
[a3] W.H. Haemers, D.G. Higman, "Strongly regular graphs with strongly regular decomposition" Linear Alg. & Its Appl. , 114/115 (1989) pp. 379–398
[a4] D.G. Higman, "Coherent configurations I" Rend. Sem. Mat. Univ. Padova , 44 (1970) pp. 1–25
[a5] D.G. Higman, "Coherent configurations, Part I: Ordinary representation theory" Geom. Dedicata , 4 (1975) pp. 1–32
[a6] D.G. Higman, "Coherent algebras" Linear Alg. & Its Appl. , 93 (1987) pp. 209–239
[a7] D.G. Higman, "Strongly regular designs and coherent configurations of type " Europ. J. Combin. , 9 (1988) pp. 411–422
[a8] D.G. Higman, "Computations related to coherent configurations" Congr. Numer. , 75 (1990) pp. 9–20
[a9] M.E. Muzychuk, M. Klin, "On graphs with three eigenvalues" Discr. Math. , 189 (1998) pp. 191–207
[a10] H. Wielandt, "Finite permutation groups" , Acad. Press (1964)
How to Cite This Entry:
Coherent algebra. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Coherent_algebra&oldid=39321
This article was adapted from an original article by Mikhail Klin (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article