Difference between revisions of "Linear code"
From Encyclopedia of Mathematics
(Start article: Linear code) |
|||
Line 4: | Line 4: | ||
====References==== | ====References==== | ||
− | * Goldie, Charles M.; Pinch, Richard G.E. ''Communication theory'', London Mathematical Society Student Texts. '''20''' Cambridge University Press (1991) | + | * Goldie, Charles M.; Pinch, Richard G.E. ''Communication theory'', London Mathematical Society Student Texts. '''20''' Cambridge University Press (1991) ISBN 0-521-40456-8 {{ZBL|0746.94001}} |
+ | * van Lint, J.H., "Introduction to coding theory" (2nd ed.) Graduate Texts in Mathematics '''86''' Springer (1992) ISBN 3-540-54894-7 {{ZBL|0747.94018}} |
Revision as of 16:27, 17 September 2016
A code of fixed length $n$ over a finite field $F$ which forms a subspace of the vector space $F^n$.
References
- Goldie, Charles M.; Pinch, Richard G.E. Communication theory, London Mathematical Society Student Texts. 20 Cambridge University Press (1991) ISBN 0-521-40456-8 Zbl 0746.94001
- van Lint, J.H., "Introduction to coding theory" (2nd ed.) Graduate Texts in Mathematics 86 Springer (1992) ISBN 3-540-54894-7 Zbl 0747.94018
How to Cite This Entry:
Linear code. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Linear_code&oldid=39145
Linear code. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Linear_code&oldid=39145