Difference between revisions of "Subadditive function"
From Encyclopedia of Mathematics
(Start article: Subadditive function) |
(set functions) |
||
Line 2: | Line 2: | ||
$$ | $$ | ||
f(x+y) \le f(x) + f(y) \ . | f(x+y) \le f(x) + f(y) \ . | ||
+ | $$ | ||
+ | |||
+ | A subadditive [[set function]] is a function $f$ on a collections of subset of a set $X$ with the property that | ||
+ | $$ | ||
+ | f(A \cup B) \le f(A) + f(B) \ . | ||
+ | $$ | ||
+ | A set function is $\sigma$-''subadditive'' or ''countably subadditive'' if | ||
+ | $$ | ||
+ | f\left({ \cup_{i=1}^\infty A_i }\right) \le \sum_{i=1}^\infty f(A_i) \ . | ||
$$ | $$ |
Revision as of 19:12, 16 September 2016
A real function $f$ with the property $$ f(x+y) \le f(x) + f(y) \ . $$
A subadditive set function is a function $f$ on a collections of subset of a set $X$ with the property that $$ f(A \cup B) \le f(A) + f(B) \ . $$ A set function is $\sigma$-subadditive or countably subadditive if $$ f\left({ \cup_{i=1}^\infty A_i }\right) \le \sum_{i=1}^\infty f(A_i) \ . $$
How to Cite This Entry:
Subadditive function. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Subadditive_function&oldid=39136
Subadditive function. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Subadditive_function&oldid=39136