Difference between revisions of "User:Richard Pinch/sandbox-5"
(→Möbius inversion for arithmetic functions: cite Hua (1982)) |
(Start article: Gilbreath conjecture) |
||
Line 35: | Line 35: | ||
<TR><TD valign="top">[5]</TD> <TD valign="top"> Alan Baker, "A concise introduction to the theory of numbers" Cambridge University Press (1984) ISBN 0-521-28654-9 {{ZBL|0554.10001}}</TD></TR> | <TR><TD valign="top">[5]</TD> <TD valign="top"> Alan Baker, "A concise introduction to the theory of numbers" Cambridge University Press (1984) ISBN 0-521-28654-9 {{ZBL|0554.10001}}</TD></TR> | ||
<TR><TD valign="top">[6]</TD> <TD valign="top"> G.H. Hardy, E.M. Wright, "An introduction to the theory of numbers" (6th edition, edited and revised by D. R. Heath-Brown and J. H. Silverman with a foreword by Andrew Wiles) Oxford University Press (2008) ISBN 978-0-19-921986-5 {{ZBL|1159.11001}}</TD></TR> | <TR><TD valign="top">[6]</TD> <TD valign="top"> G.H. Hardy, E.M. Wright, "An introduction to the theory of numbers" (6th edition, edited and revised by D. R. Heath-Brown and J. H. Silverman with a foreword by Andrew Wiles) Oxford University Press (2008) ISBN 978-0-19-921986-5 {{ZBL|1159.11001}}</TD></TR> | ||
+ | </table> | ||
+ | |||
+ | =Gilbreath conjecture= | ||
+ | A conjecture on the distribution of [[prime number]]s. | ||
+ | |||
+ | For any sequence $(x_n)$, define the absolute difference sequence $\delta^1_n = |x_{n+1} - x_n|$, and the iterated differences $\delta^{k+1} = \delta^1 \delta^k$. In 1958 N. L. Gilbreath conjectured that when applied to the sequence of prime numbers, the first term in each iterated sequence $\delta^k$ is always $1$. Odlyzko has verified the conjecture for the primes $\le 10^{13}$. | ||
+ | |||
+ | ====References==== | ||
+ | <table> | ||
+ | <TR><TD valign="top">[1]</TD> <TD valign="top"> Andrew M. Odlyzko, "Iterated absolute values of differences of consecutive primes", ''Math. Comput.'' '''61''', no.203 (1993) pp.373-380 {{DOI|10.2307/2152962}} {{ZBL|0781.11037}}</TD></TR> | ||
+ | <TR><TD valign="top">[2]</TD> <TD valign="top"> Richard K. Guy, "Unsolved problems in number theory" (3rd ed.) Springer-Verlag (2004) ISBN 0-387-20860-7 {{ZBL|1058.11001}}</TD></TR> | ||
+ | |||
+ | <TR><TD valign="top">[2]</TD> <TD valign="top"> Norman Gilbreath, "Processing process: the Gilbreath conjecture", ''J. Number Theory'' '''131''' (2011) pp.2436-2441 {{DOI|10.1016/j.jnt.2011.06.008}} {{ZBL|1254.11006}}</TD></TR> | ||
</table> | </table> |
Revision as of 11:28, 1 May 2016
Gray map
A map from $\mathbf{Z}_4$ to $\mathbf{F}_2^2$, extended in the obvious way to $\mathbf{Z}_4^n$ and $\mathbf{F}_2^n$ which maps Lee distance to Hamming distance. Explicitly, $$ 0 \mapsto 00 \ ,\ \ 1 \mapsto 01 \ ,\ \ 2 \mapsto 11 \ ,\ \ 3 \mapsto 10 \ . $$
The map instantiates a Gray code in dimension 2.
Möbius inversion for arithmetic functions
The original form of Möbius inversion developed by A. Möbius for arithmetic functions.
Möbius considered also inversion formulas for finite sums running over the divisors of a natural number $n$: $$ F(n) = \sum_{d | n} f(d) \ ,\ \ \ f(n) = \sum_{d | n} \mu(d) F(n/d) \ . $$ The correspondence $f \mapsto F$ is the Möbius transform, and $F \mapsto f$ the inverse Möbius transform.
Another inversion formula: If $P(n)$ is a totally multiplicative function for which $P(1) = 1$, and $f(x)$ is a function defined for all real $x > 0$, then $$ g(x) = \sum_{n \le x} P(n) f(x/n) $$ implies $$ f(x) = \sum_{n \le x} \mu(n) P(n) g(x/n) \ . $$
All these (and many other) inversion formulas follow from the basic property of the Möbius function that it is the inverse of the unit arithmetic function $E(n) \equiv 1$ under Dirichlet convolution, cf. (the editorial comments to) Möbius function and Multiplicative arithmetic function.
References
[1] | A. Möbius, "Ueber eine besondere Art der Umkehrung der Reihen" J. Reine Angew. Math. , 9 (1832) pp. 105–123 DOI 10.1515/crll.1832.9.105 Zbl 009.0333cj |
[2] | I.M. Vinogradov, "Elements of number theory" , Dover, reprint (1954) (Translated from Russian) Zbl 0057.28201 |
[3] | K. Prachar, "Primzahlverteilung" , Springer (1957) Zbl 0080.25901 |
[4] | Hua Loo Keng, "Introduction to number theory" Springer-Verlag (1982) ISBN 3-540-10818-1 Zbl 0483.10001 |
[5] | Alan Baker, "A concise introduction to the theory of numbers" Cambridge University Press (1984) ISBN 0-521-28654-9 Zbl 0554.10001 |
[6] | G.H. Hardy, E.M. Wright, "An introduction to the theory of numbers" (6th edition, edited and revised by D. R. Heath-Brown and J. H. Silverman with a foreword by Andrew Wiles) Oxford University Press (2008) ISBN 978-0-19-921986-5 Zbl 1159.11001 |
Gilbreath conjecture
A conjecture on the distribution of prime numbers.
For any sequence $(x_n)$, define the absolute difference sequence $\delta^1_n = |x_{n+1} - x_n|$, and the iterated differences $\delta^{k+1} = \delta^1 \delta^k$. In 1958 N. L. Gilbreath conjectured that when applied to the sequence of prime numbers, the first term in each iterated sequence $\delta^k$ is always $1$. Odlyzko has verified the conjecture for the primes $\le 10^{13}$.
References
[1] | Andrew M. Odlyzko, "Iterated absolute values of differences of consecutive primes", Math. Comput. 61, no.203 (1993) pp.373-380 DOI 10.2307/2152962 Zbl 0781.11037 |
[2] | Richard K. Guy, "Unsolved problems in number theory" (3rd ed.) Springer-Verlag (2004) ISBN 0-387-20860-7 Zbl 1058.11001 |
[2] | Norman Gilbreath, "Processing process: the Gilbreath conjecture", J. Number Theory 131 (2011) pp.2436-2441 DOI 10.1016/j.jnt.2011.06.008 Zbl 1254.11006 |
Richard Pinch/sandbox-5. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Richard_Pinch/sandbox-5&oldid=38751