Difference between revisions of "User:Richard Pinch/sandbox-5"
(→Lee distance: move text) |
(Start article: Möbius inversion for arithmetic functions, using text from Möbius series) |
||
Line 6: | Line 6: | ||
The map instantiates a [[Gray code]] in dimension 2. | The map instantiates a [[Gray code]] in dimension 2. | ||
+ | |||
+ | =Möbius inversion for arithmetic functions= | ||
+ | The original form of [[Möbius inversion]] developed by F. Möbius for [[arithmetic function]]s. | ||
+ | |||
+ | Möbius considered also inversion formulas for finite sums running over the divisors of a natural number $n$: | ||
+ | $$ | ||
+ | F(n) = \sum_{d | n} f(d) \ ,\ \ \ f(n) = \sum_{d | n} \mu(d) F(n/d) \ . | ||
+ | $$ | ||
+ | |||
+ | Another inversion formula: If $P(n)$ is a [[totally multiplicative function]] for which $P(1) = 1$, and $f(x)$ is a function defined for all real $x > 0$, then | ||
+ | $$ | ||
+ | g(x) = \sum_{n \le x} P(n) f(x/n) | ||
+ | $$ | ||
+ | implies | ||
+ | $$ | ||
+ | f(x) = \sum_{n \le x} \mu(n) P(n) g(x/n) \ . | ||
+ | $$ | ||
+ | |||
+ | All these (and many other) inversion formulas follow from the basic property of the Möbius function that it is the inverse of the unit arithmetic function $E(n) \equiv 1$ under [[Dirichlet convolution]], cf. (the editorial comments to) [[Möbius function]] and [[Multiplicative arithmetic function]]. | ||
+ | |||
+ | ====References==== | ||
+ | <table> | ||
+ | <TR><TD valign="top">[1]</TD> <TD valign="top"> A. Möbius, "Ueber eine besondere Art der Umkehrung der Reihen" ''J. Reine Angew. Math.'' , '''9''' (1832) pp. 105–123</TD></TR> | ||
+ | <TR><TD valign="top">[2]</TD> <TD valign="top"> I.M. Vinogradov, "Elements of number theory" , Dover, reprint (1954) (Translated from Russian)</TD></TR> | ||
+ | <TR><TD valign="top">[3]</TD> <TD valign="top"> K. Prachar, "Primzahlverteilung" , Springer (1957)</TD></TR> | ||
+ | </table> |
Revision as of 17:10, 30 April 2016
Gray map
A map from $\mathbf{Z}_4$ to $\mathbf{F}_2^2$, extended in the obvious way to $\mathbf{Z}_4^n$ and $\mathbf{F}_2^n$ which maps Lee distance to Hamming distance. Explicitly, $$ 0 \mapsto 00 \ ,\ \ 1 \mapsto 01 \ ,\ \ 2 \mapsto 11 \ ,\ \ 3 \mapsto 10 \ . $$
The map instantiates a Gray code in dimension 2.
Möbius inversion for arithmetic functions
The original form of Möbius inversion developed by F. Möbius for arithmetic functions.
Möbius considered also inversion formulas for finite sums running over the divisors of a natural number $n$: $$ F(n) = \sum_{d | n} f(d) \ ,\ \ \ f(n) = \sum_{d | n} \mu(d) F(n/d) \ . $$
Another inversion formula: If $P(n)$ is a totally multiplicative function for which $P(1) = 1$, and $f(x)$ is a function defined for all real $x > 0$, then $$ g(x) = \sum_{n \le x} P(n) f(x/n) $$ implies $$ f(x) = \sum_{n \le x} \mu(n) P(n) g(x/n) \ . $$
All these (and many other) inversion formulas follow from the basic property of the Möbius function that it is the inverse of the unit arithmetic function $E(n) \equiv 1$ under Dirichlet convolution, cf. (the editorial comments to) Möbius function and Multiplicative arithmetic function.
References
[1] | A. Möbius, "Ueber eine besondere Art der Umkehrung der Reihen" J. Reine Angew. Math. , 9 (1832) pp. 105–123 |
[2] | I.M. Vinogradov, "Elements of number theory" , Dover, reprint (1954) (Translated from Russian) |
[3] | K. Prachar, "Primzahlverteilung" , Springer (1957) |
Richard Pinch/sandbox-5. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Richard_Pinch/sandbox-5&oldid=38741