|
|
Line 1: |
Line 1: |
− | The geometry of a complete metric space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047260/h0472601.png" /> with a metric <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047260/h0472602.png" /> which contains, together with two arbitrary, distinct points <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047260/h0472603.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047260/h0472604.png" />, also the points <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047260/h0472605.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047260/h0472606.png" /> for which <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047260/h0472607.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047260/h0472608.png" />, and which is homeomorphic to a convex set in an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047260/h0472609.png" />-dimensional affine space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047260/h04726010.png" />, the geodesics <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047260/h04726011.png" /> being mapped to straight lines of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047260/h04726012.png" />. Thus, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047260/h04726013.png" /> be a convex body in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047260/h04726014.png" /> with boundary <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047260/h04726015.png" /> not containing two non-collinear segments, and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047260/h04726016.png" /> be located on a straight line <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047260/h04726017.png" /> which intersects <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047260/h04726018.png" /> at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047260/h04726019.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047260/h04726020.png" />; let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047260/h04726021.png" /> be the cross ratio of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047260/h04726022.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047260/h04726023.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047260/h04726024.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047260/h04726025.png" /> (so that if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047260/h04726026.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047260/h04726027.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047260/h04726028.png" />). Then | + | {{TEX|done}} |
| + | The geometry of a complete metric space $H$ with a metric $h(x,y)$ which contains, together with two arbitrary, distinct points $x$ and $y$, also the points $z$ and $t$ for which $h(x,z)+h(z,y)=h(x,y)$, $h(x,y)+h(y,t)=h(x,t)$, and which is homeomorphic to a convex set in an $n$-dimensional affine space $A^n$, the geodesics $\gamma\in H$ being mapped to straight lines of $A^n$. Thus, let $K$ be a convex body in $A^n$ with boundary $\partial K$ not containing two non-collinear segments, and let $x,y\in K$ be located on a straight line $l$ which intersects $\partial K$ at $a$ and $b$; let $R(x,y,a,b)$ be the cross ratio of $x$, $y$, $a$, $b$ (so that if $x=(1-\lambda)a+\lambda b$, $y=(1-\mu)a+\mu b$, then $R(x,y,a,b)=\mu(1-\lambda)/\lambda(1-\mu)$). Then |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047260/h04726029.png" /></td> </tr></table>
| + | $$h(x,y)=\frac12|\ln R(x,y,a,b)|$$ |
| | | |
− | is the metric of a Hilbert geometry (a Hilbert metric). If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047260/h04726030.png" /> is centrally symmetric, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047260/h04726031.png" /> is a Minkowski metric (cf. [[Minkowski geometry|Minkowski geometry]]); if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047260/h04726032.png" /> is an ellipsoid, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047260/h04726033.png" /> defines the Lobachevskii geometry. | + | is the metric of a Hilbert geometry (a Hilbert metric). If $K$ is centrally symmetric, then $h(x,y)$ is a Minkowski metric (cf. [[Minkowski geometry|Minkowski geometry]]); if $K$ is an ellipsoid, then $h(x,y)$ defines the Lobachevskii geometry. |
| | | |
− | The problem of determining all metrizations of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047260/h04726034.png" /> for which the geodesics are straight lines is Hilbert's fourth problem; it has been completely solved [[#References|[4]]]. | + | The problem of determining all metrizations of $K$ for which the geodesics are straight lines is Hilbert's fourth problem; it has been completely solved [[#References|[4]]]. |
| | | |
| [[Geodesic geometry|Geodesic geometry]] is a generalization of Hilbert geometry. | | [[Geodesic geometry|Geodesic geometry]] is a generalization of Hilbert geometry. |
Latest revision as of 18:41, 28 June 2015
The geometry of a complete metric space $H$ with a metric $h(x,y)$ which contains, together with two arbitrary, distinct points $x$ and $y$, also the points $z$ and $t$ for which $h(x,z)+h(z,y)=h(x,y)$, $h(x,y)+h(y,t)=h(x,t)$, and which is homeomorphic to a convex set in an $n$-dimensional affine space $A^n$, the geodesics $\gamma\in H$ being mapped to straight lines of $A^n$. Thus, let $K$ be a convex body in $A^n$ with boundary $\partial K$ not containing two non-collinear segments, and let $x,y\in K$ be located on a straight line $l$ which intersects $\partial K$ at $a$ and $b$; let $R(x,y,a,b)$ be the cross ratio of $x$, $y$, $a$, $b$ (so that if $x=(1-\lambda)a+\lambda b$, $y=(1-\mu)a+\mu b$, then $R(x,y,a,b)=\mu(1-\lambda)/\lambda(1-\mu)$). Then
$$h(x,y)=\frac12|\ln R(x,y,a,b)|$$
is the metric of a Hilbert geometry (a Hilbert metric). If $K$ is centrally symmetric, then $h(x,y)$ is a Minkowski metric (cf. Minkowski geometry); if $K$ is an ellipsoid, then $h(x,y)$ defines the Lobachevskii geometry.
The problem of determining all metrizations of $K$ for which the geodesics are straight lines is Hilbert's fourth problem; it has been completely solved [4].
Geodesic geometry is a generalization of Hilbert geometry.
Hilbert geometry was first mentioned in 1894 by D. Hilbert in a letter to F. Klein.
References
[1] | D. Hilbert, "Grundlagen der Geometrie" , Springer (1913) |
[2] | "Hilbert problems" Bull. Amer. Math. Soc. , 8 (1902) pp. 437–479 (Translated from German) |
[3] | H. Busemann, "The geometry of geodesics" , Acad. Press (1955) |
[4] | A.V. Pogorelov, "Hilbert's fourth problem" , Winston & Wiley (1974) (In Russian) |
References
[a1] | H. Busemann, P.J. Kelly, "Projective geometry and projective metrics" , Acad. Press (1953) |
[a2] | M. Berger, "Geometry" , I , Springer (1987) |
How to Cite This Entry:
Hilbert geometry. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Hilbert_geometry&oldid=36527
This article was adapted from an original article by M.I. Voitsekhovskii (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098.
See original article