Difference between revisions of "Hilbert 2nd problem"
m |
|||
Line 5: | Line 5: | ||
::But above all I wish to designate the following as the most important among the numerous questions which can be asked with regard to the axioms: ''To prove that they are not contradictory, that is, that a definite number of logical steps based upon them can never lead to contradictory results.'' | ::But above all I wish to designate the following as the most important among the numerous questions which can be asked with regard to the axioms: ''To prove that they are not contradictory, that is, that a definite number of logical steps based upon them can never lead to contradictory results.'' | ||
− | Hilbert later made this 2nd problem more explicit by developing “a formal system of explicit assumptions” upon which he intended | + | Hilbert later made this 2nd problem more explicit, first, by developing “a formal system of explicit assumptions” upon which he intended to base the methods of mathematical reasoning and, second, by stipulating that any such system must be shown to have these three characteristics:<ref>Calude and Chaitin (1999)</ref> |
# it should be “consistent” (free of contradictions) (see [[Consistency]]) | # it should be “consistent” (free of contradictions) (see [[Consistency]]) |
Revision as of 23:43, 8 June 2015
In his 1990 lecture to the International Congress of Mathematicians in Paris, David Hilbert presented a list of open problems in mathematics. He expressed the 2nd of these problems, known variously as the compatibility of the arithmetical axioms and the consistency of arithmetic, as follows:[1]
- When we are engaged in investigating the foundations of a science, we must set up a system of axioms which contains an exact and complete description of the relations subsisting between the elementary ideas of that science. The axioms so set up are at the same time the definitions of those elementary ideas; and no statement within the realm of the science whose foundation we are testing is held to be correct unless it can be derived from those axioms by means of a finite number of logical steps. Upon closer consideration the question arises: Whether, in any way, certain statements of single axioms depend upon one another, and whether the axioms may not therefore contain certain parts in common, which must be isolated if one wishes to arrive at a system of axioms that shall be altogether independent of one another.
- But above all I wish to designate the following as the most important among the numerous questions which can be asked with regard to the axioms: To prove that they are not contradictory, that is, that a definite number of logical steps based upon them can never lead to contradictory results.
Hilbert later made this 2nd problem more explicit, first, by developing “a formal system of explicit assumptions” upon which he intended to base the methods of mathematical reasoning and, second, by stipulating that any such system must be shown to have these three characteristics:[2]
- it should be “consistent” (free of contradictions) (see Consistency)
- it should be “complete” (represents all the truth) (see Completeness)
- it should be “decidable” (has a "procedure" for deciding whether anything expressed using the system is true or not) (see Decision problem and Undecidability)
Hilbert's 2nd problem is said by some to have been solved, albeit in a negative sense, by K. Gödel (see Hilbert problems and Gödel incompleteness theorem).
And yet, in his 2000 Distinguished Lecture to the Carnegie Mellon University School of Computer Science, Gregory Chaitin began his remarks as follows:[3]
- I’d like to make the outrageous claim, that has a little bit of truth, that actually all of this that’s happening now with the computer taking over the world, the digitalization of our society, of information in human society, you could say in a way is the result of a philosophical question that was raised by David Hilbert at the beginning of the century.
The philosophical question to which Chaitin was referring is the surmise at the heart of Hilbert’s 2nd problem.
Chaitin titled his lecture “A Century of Controversy Over the Foundations of Mathematics.” This article presents a brief history of this ongoing controversy.
19th century roots of Hilbert’s program
Development of Hilbert’s program
Subsequent variants and reinterpretations of Hilbert’s program
Notes
Primary sources
- Hilbert, D. "Mathematische Probleme" Nachr. K. Ges. Wiss. Göttingen, Math.-Phys. Klasse (Göttinger Nachrichten) , 3 (1900) pp. 253–297 (Reprint: Archiv Math. Physik 3:1 (1901), 44-63; 213-237; also: Gesammelte Abh., dritter Band, Chelsea, 1965, pp. 290-329) Zbl 31.0068.03, URL: https://www.math.uni-bielefeld.de/~kersten/hilbert/rede.html, Accessed: 2015/06/03.
- Hilbert, D. "Mathematical problems" Bull. Amer. Math. Soc. , 8 (1902) pp. 437–479, MR1557926 Zbl 33.0976.07, (Reprint: ‘’Mathematical Developments Arising from Hilbert Problems’’, edited by Felix Brouder, American Mathematical Society, 1976), URL: http://aleph0.clarku.edu/~djoyce/hilbert/problems.html, Accessed: 2015/06/03.
References
- Calude, C.S. and Chaitin, G.J. “Mathematics / Randomness everywhere, 22 July 1999,” ‘’Nature,’’ Vol. 400, News and Views, pp. 319-320.
- Chaitin, G, “A Century of Controversy Over the Foundations of Mathematics,“ Journal Complexity -- Special Issue: Limits in mathematics and physics, Vol. 5, No. 5, May-June 2000, pp. 12-21, (Originally published in Finite Versus Infinite: Contributions to an Eternal Dilemma, Calude, C. S.; Paun, G. (eds.); Springer-Verlag, London, 2000, pp. 75–100), URL: http://www-personal.umich.edu/~twod/sof/assignments/chaitin.pdf Accessed 2015/05/30.
- Hilbert problems, Encyclopedia of Mathematics.
Hilbert 2nd problem. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Hilbert_2nd_problem&oldid=36458