Difference between revisions of "Lindelöf hypothesis"
m (→Comments) |
(→Comments: moved to the talk page) |
||
Line 24: | Line 24: | ||
====Comments==== | ====Comments==== | ||
− | |||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> A. Ivic, "The Riemann zeta-function" , Wiley (1985)</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> A. Ivic, "The Riemann zeta-function" , Wiley (1985)</TD></TR></table> |
Revision as of 09:05, 7 December 2014
Lindelöf conjecture, on the behaviour of the Riemann $\zeta$-function
For any $\epsilon>0$,
$$\varlimsup_{t\to\infty}\frac{|\zeta(1/2+it)|}{t^\epsilon}=0.$$
It was stated by E. Lindelöf [1]. The Lindelöf conjecture is equivalent to the assertion that for a fixed $\sigma\in(1/2,1)$ the number of zeros of $\zeta(s)$ that lie in the domain $\operatorname{Re}s>\sigma,T<\operatorname{Im}s<T+1$ is $o(\ln T)$. The Lindelöf conjecture is therefore a consequence of the Riemann conjecture on the zeros of $\zeta(s)$ (cf. Riemann hypotheses). It is known (1982) that
$$\varlimsup_{t\to\infty}\frac{|\zeta(1/2+it)|}{t^c}=0,$$
where $c$ is a constant such that $0<c<6/37$.
There is a generalization of the Lindelöf conjecture to Dirichlet $L$-functions: For any $\epsilon>0$,
$$L\left(\frac12+t,\chi\right)=O((k|t|+1)^\epsilon),$$
where $k$ is the modulus of the character $\chi$.
References
[1] | E. Lindelöf, "Le calcul des résidus et ses applications à la théorie des fonctions" , Gauthier-Villars (1905) |
[2] | E.C. Titchmarsh, "The theory of the Riemann zeta-function" , Oxford Univ. Press (1951) pp. Chapt. 13 |
Comments
References
[a1] | A. Ivic, "The Riemann zeta-function" , Wiley (1985) |
Lindelöf hypothesis. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Lindel%C3%B6f_hypothesis&oldid=35437