Namespaces
Variants
Actions

Difference between revisions of "Sperner property"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (links)
Line 1: Line 1:
 
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130490/s1304901.png" /> be a finite [[Partially ordered set|partially ordered set]] (abbreviated: poset) which possesses a rank function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130490/s1304902.png" />, i.e. a function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130490/s1304903.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130490/s1304904.png" /> for some minimal element <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130490/s1304905.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130490/s1304906.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130490/s1304907.png" /> whenever <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130490/s1304908.png" /> covers <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130490/s1304909.png" />, i.e. <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130490/s13049010.png" /> and there is no element between <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130490/s13049011.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130490/s13049012.png" />. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130490/s13049013.png" /> be its <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130490/s13049014.png" />th level and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130490/s13049015.png" /> be the rank of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130490/s13049016.png" />.
 
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130490/s1304901.png" /> be a finite [[Partially ordered set|partially ordered set]] (abbreviated: poset) which possesses a rank function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130490/s1304902.png" />, i.e. a function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130490/s1304903.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130490/s1304904.png" /> for some minimal element <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130490/s1304905.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130490/s1304906.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130490/s1304907.png" /> whenever <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130490/s1304908.png" /> covers <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130490/s1304909.png" />, i.e. <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130490/s13049010.png" /> and there is no element between <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130490/s13049011.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130490/s13049012.png" />. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130490/s13049013.png" /> be its <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130490/s13049014.png" />th level and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130490/s13049015.png" /> be the rank of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130490/s13049016.png" />.
  
An anti-chain or Sperner family in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130490/s13049017.png" /> is a subset of pairwise incomparable elements of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130490/s13049018.png" />. Obviously, each level is an anti-chain. The width (Dilworth number or Sperner number) of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130490/s13049019.png" /> is the maximum size <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130490/s13049020.png" /> of an anti-chain of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130490/s13049021.png" />. The poset <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130490/s13049022.png" /> is said to have the Sperner property if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130490/s13049023.png" />. E. Sperner proved in 1928 the Sperner property for Boolean lattices (cf. also [[Sperner theorem|Sperner theorem]]).
+
An [[anti-chain]] or Sperner family in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130490/s13049017.png" /> is a subset of pairwise incomparable elements of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130490/s13049018.png" />. Obviously, each level is an anti-chain. The [[width of a partially ordered set]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130490/s13049019.png" /> (Dilworth number or Sperner number) is the maximum size <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130490/s13049020.png" /> of an anti-chain of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130490/s13049021.png" />. The poset <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130490/s13049022.png" /> is said to have the Sperner property if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130490/s13049023.png" />. E. Sperner proved in 1928 the Sperner property for Boolean lattices (cf. also [[Sperner theorem|Sperner theorem]]).
  
 
More generally, a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130490/s13049025.png" />-family, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130490/s13049026.png" />, is a subset of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130490/s13049027.png" /> containing no chain of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130490/s13049028.png" /> elements in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130490/s13049029.png" />, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130490/s13049030.png" /> has the strong Sperner property if for each <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130490/s13049031.png" /> the largest size of a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130490/s13049032.png" />-family in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130490/s13049033.png" /> equals the largest size of a union of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130490/s13049034.png" /> levels. There exist several classes of posets having the strong Sperner property:
 
More generally, a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130490/s13049025.png" />-family, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130490/s13049026.png" />, is a subset of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130490/s13049027.png" /> containing no chain of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130490/s13049028.png" /> elements in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130490/s13049029.png" />, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130490/s13049030.png" /> has the strong Sperner property if for each <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130490/s13049031.png" /> the largest size of a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130490/s13049032.png" />-family in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130490/s13049033.png" /> equals the largest size of a union of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s130/s130490/s13049034.png" /> levels. There exist several classes of posets having the strong Sperner property:

Revision as of 22:09, 6 December 2014

Let be a finite partially ordered set (abbreviated: poset) which possesses a rank function , i.e. a function such that for some minimal element of and whenever covers , i.e. and there is no element between and . Let be its th level and let be the rank of .

An anti-chain or Sperner family in is a subset of pairwise incomparable elements of . Obviously, each level is an anti-chain. The width of a partially ordered set (Dilworth number or Sperner number) is the maximum size of an anti-chain of . The poset is said to have the Sperner property if . E. Sperner proved in 1928 the Sperner property for Boolean lattices (cf. also Sperner theorem).

More generally, a -family, , is a subset of containing no chain of elements in , and has the strong Sperner property if for each the largest size of a -family in equals the largest size of a union of levels. There exist several classes of posets having the strong Sperner property:

LYM posets, i.e. posets satisfying the LYM inequality (cf. also Sperner theorem)

for every anti-chain in or, equivalently,

for all , , where . This equivalent property is called the normalized matching property of .

Symmetric chain orders, i.e. ranked posets which can be decomposed into chains of the form where , , and .

Peck posets, i.e. ranked posets such that for all and there is a linear operator on the vector space having the basis with the following properties:

with some numbers ,

the subspace generated by is mapped via to a subspace of dimension for all . If and are posets from one class, then also the direct product (ordered componentwise) belongs to that class, where in the case of LYM posets an additional condition must be supposed: for all (so-called logarithmic concavity). Moreover, quotient theorems have been proved for LYM posets with weight functions and Peck posets.

Every LYM poset with the symmetry and unimodality property is a symmetric chain order and every symmetric chain order is a Peck poset.

Standard examples of posets belonging to all these three classes are the lattice of subsets of a finite set, ordered by inclusion (the Boolean lattice), the lattice of divisors of a natural number, ordered by divisibility, the lattice of all subspaces of an -dimensional vector space over a finite field, ordered by inclusion. The poset of faces of an -dimensional cube, ordered by inclusion, belongs only to the class of LYM posets. The lattice of partitions of a finite set, ordered by refinement, even does not have the Sperner property if is sufficiently large.

Details can be found in [a1].

References

[a1] K. Engel, "Sperner theory" , Cambridge Univ. Press (1997)
How to Cite This Entry:
Sperner property. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Sperner_property&oldid=35430
This article was adapted from an original article by K. Engel (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article