Difference between revisions of "Kummer theorem"
(Importing text file) |
m (link) |
||
Line 1: | Line 1: | ||
− | Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055990/k0559901.png" /> be the field of fractions of a [[ | + | Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055990/k0559901.png" /> be the [[field of fractions]] of a [[Dedekind ring]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055990/k0559902.png" />, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055990/k0559903.png" /> be an extension (cf. [[Extension of a field|Extension of a field]]) of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055990/k0559904.png" /> of degree <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055990/k0559905.png" />, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055990/k0559906.png" /> be the integral closure of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055990/k0559907.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055990/k0559908.png" />, and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055990/k0559909.png" /> be a prime ideal in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055990/k05599010.png" />; let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055990/k05599011.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055990/k05599012.png" /> and the elements <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055990/k05599013.png" /> constitute a basis for the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055990/k05599014.png" />-module <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055990/k05599015.png" />; finally, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055990/k05599016.png" /> be the irreducible polynomial of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055990/k05599017.png" />, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055990/k05599018.png" /> be the image of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055990/k05599019.png" /> in the ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055990/k05599020.png" /> and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055990/k05599021.png" /> be the irreducible factorization of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055990/k05599022.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055990/k05599023.png" />. Then the prime ideal factorization of the ideal <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055990/k05599024.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055990/k05599025.png" /> is |
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055990/k05599026.png" /></td> </tr></table> | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055990/k05599026.png" /></td> </tr></table> |
Revision as of 20:59, 28 November 2014
Let be the field of fractions of a Dedekind ring
, let
be an extension (cf. Extension of a field) of
of degree
, let
be the integral closure of
in
, and let
be a prime ideal in
; let
, where
and the elements
constitute a basis for the
-module
; finally, let
be the irreducible polynomial of
, let
be the image of
in the ring
and let
be the irreducible factorization of
in
. Then the prime ideal factorization of the ideal
in
is
![]() |
with the degree of the polynomial equal to the degree
of the extension of the field of residues.
Kummer's theorem makes it possible to determine the factorization of a prime ideal over an extension of the ground field in terms of the factorization in the residue class field of the irreducible polynomial of a suitable primitive element of the extension.
The theorem was first proved, for certain particular cases, by E.E. Kummer [1]; he used it to determine the factorization law in cyclotomic fields and in certain cyclic extensions of cyclotomic fields (cf. Cyclotomic field).
References
[1] | E.E. Kummer, "Zur Theorie der complexen Zahlen" J. Reine Angew. Math. , 35 (1847) pp. 319–326 |
[2] | J.W.S. Cassels (ed.) A. Fröhlich (ed.) , Algebraic number theory , Acad. Press (1986) |
Comments
References
[a1] | E. Weiss, "Algebraic number theory" , McGraw-Hill (1963) pp. Sects. 4–9 |
Kummer theorem. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Kummer_theorem&oldid=35053