Namespaces
Variants
Actions

Difference between revisions of "Inertial prime number"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (link)
Line 1: Line 1:
 
''inert prime number, in an extension <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050800/i0508002.png" />''
 
''inert prime number, in an extension <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050800/i0508002.png" />''
  
A prime number <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050800/i0508003.png" /> such that the principal ideal generated by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050800/i0508004.png" /> remains prime in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050800/i0508005.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050800/i0508006.png" /> is a finite extension of the field of rational numbers <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050800/i0508007.png" />; in other words, the ideal <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050800/i0508008.png" /> is prime in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050800/i0508009.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050800/i05080010.png" /> is the ring of integers of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050800/i05080011.png" />. In this case one also says that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050800/i05080012.png" /> is inert in the extension <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050800/i05080013.png" />. By analogy, a prime ideal <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050800/i05080014.png" /> of a Dedekind ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050800/i05080015.png" /> is said to be inert in the extension <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050800/i05080016.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050800/i05080017.png" /> is the field of fractions of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050800/i05080018.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050800/i05080019.png" /> is a finite extension of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050800/i05080020.png" />, if the ideal <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050800/i05080021.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050800/i05080022.png" /> is the integral closure of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050800/i05080023.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050800/i05080024.png" />, is prime.
+
A prime number <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050800/i0508003.png" /> such that the principal ideal generated by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050800/i0508004.png" /> remains prime in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050800/i0508005.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050800/i0508006.png" /> is a finite extension of the field of rational numbers <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050800/i0508007.png" />; in other words, the ideal <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050800/i0508008.png" /> is prime in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050800/i0508009.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050800/i05080010.png" /> is the ring of integers of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050800/i05080011.png" />. In this case one also says that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050800/i05080012.png" /> is inert in the extension <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050800/i05080013.png" />. By analogy, a prime ideal <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050800/i05080014.png" /> of a Dedekind ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050800/i05080015.png" /> is said to be inert in the extension <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050800/i05080016.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050800/i05080017.png" /> is the [[field of fractions]] of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050800/i05080018.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050800/i05080019.png" /> is a finite extension of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050800/i05080020.png" />, if the ideal <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050800/i05080021.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050800/i05080022.png" /> is the integral closure of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050800/i05080023.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050800/i05080024.png" />, is prime.
  
 
If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050800/i05080025.png" /> is a Galois extension with Galois group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050800/i05080026.png" />, then for any ideal <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050800/i05080027.png" /> of the ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050800/i05080028.png" />, a subgroup <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050800/i05080029.png" /> of the decomposition group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050800/i05080030.png" /> of the ideal <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050800/i05080031.png" /> is defined which is called the inertia group (see [[Ramified prime ideal|Ramified prime ideal]]). The extension <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050800/i05080032.png" /> is a maximal intermediate extension in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050800/i05080033.png" /> in which the ideal <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050800/i05080034.png" /> is inert.
 
If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050800/i05080025.png" /> is a Galois extension with Galois group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050800/i05080026.png" />, then for any ideal <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050800/i05080027.png" /> of the ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050800/i05080028.png" />, a subgroup <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050800/i05080029.png" /> of the decomposition group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050800/i05080030.png" /> of the ideal <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050800/i05080031.png" /> is defined which is called the inertia group (see [[Ramified prime ideal|Ramified prime ideal]]). The extension <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050800/i05080032.png" /> is a maximal intermediate extension in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050800/i05080033.png" /> in which the ideal <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050800/i05080034.png" /> is inert.

Revision as of 20:57, 28 November 2014

inert prime number, in an extension

A prime number such that the principal ideal generated by remains prime in , where is a finite extension of the field of rational numbers ; in other words, the ideal is prime in , where is the ring of integers of . In this case one also says that is inert in the extension . By analogy, a prime ideal of a Dedekind ring is said to be inert in the extension , where is the field of fractions of and is a finite extension of , if the ideal , where is the integral closure of in , is prime.

If is a Galois extension with Galois group , then for any ideal of the ring , a subgroup of the decomposition group of the ideal is defined which is called the inertia group (see Ramified prime ideal). The extension is a maximal intermediate extension in in which the ideal is inert.

In cyclic extensions of algebraic number fields there always exist infinitely many inert prime ideals.

References

[1] S. Lang, "Algebraic number theory" , Addison-Wesley (1970)
[2] H. Weyl, "Algebraic theory of numbers" , Princeton Univ. Press (1959)
[3] J.W.S. Cassels (ed.) A. Fröhlich (ed.) , Algebraic number theory , Acad. Press (1986)


Comments

Let be a Galois extension with Galois group . Let be a prime ideal of (the ring of integers ) of . The decomposition group of is defined by . The subgroup is the inertia group of over . It is a normal subgroup of . The subfields of which, according to Galois theory, correspond to and , are called respectively the decomposition field and inertia field of .

How to Cite This Entry:
Inertial prime number. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Inertial_prime_number&oldid=35051
This article was adapted from an original article by L.V. Kuz'min (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article