Namespaces
Variants
Actions

Difference between revisions of "Ellipsoidal coordinates"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
(→‎References: Jeffreys & Jeffreys (1972))
Line 33: Line 33:
  
 
====References====
 
====References====
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  G. Darboux,  "Leçons sur la théorie générale des surfaces et ses applications géométriques du calcul infinitésimal" , '''1''' , Gauthier-Villars  (1887)  pp. 1–18</TD></TR></table>
+
<table>
 +
<TR><TD valign="top">[a1]</TD> <TD valign="top">  G. Darboux,  "Leçons sur la théorie générale des surfaces et ses applications géométriques du calcul infinitésimal" , '''1''' , Gauthier-Villars  (1887)  pp. 1–18</TD></TR>
 +
<TR><TD valign="top">[a2]</TD> <TD valign="top">  Harold Jeffreys, Bertha Jeffreys, ''Methods of Mathematical Physics'', 3rd edition, Cambridge University Press (1972) Zbl 0238.00004</TD></TR>
 +
</table>

Revision as of 20:14, 25 October 2014

spatial elliptic coordinates

The numbers , and connected with Cartesian rectangular coordinates , and by the formulas

where . The coordinate surfaces are (see Fig.): ellipses , one-sheet hyperbolas (), and two-sheet hyperbolas (), with centres at the coordinate origin.

Figure: e035420a

The system of ellipsoidal coordinates is orthogonal. To every triple of numbers , and correspond 8 points (one in each octant), which are symmetric to each other relative to the coordinate planes of the system .

The Lamé coefficients are

If one of the conditions in the definition of ellipsoidal coordinates is replaced by an equality, then degenerate ellipsoidal coordinate systems are obtained.


Comments

References

[a1] G. Darboux, "Leçons sur la théorie générale des surfaces et ses applications géométriques du calcul infinitésimal" , 1 , Gauthier-Villars (1887) pp. 1–18
[a2] Harold Jeffreys, Bertha Jeffreys, Methods of Mathematical Physics, 3rd edition, Cambridge University Press (1972) Zbl 0238.00004
How to Cite This Entry:
Ellipsoidal coordinates. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Ellipsoidal_coordinates&oldid=34026
This article was adapted from an original article by D.D. Sokolov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article