Difference between revisions of "Ellipsoidal coordinates"
(Importing text file) |
(→References: Jeffreys & Jeffreys (1972)) |
||
Line 33: | Line 33: | ||
====References==== | ====References==== | ||
− | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> G. Darboux, "Leçons sur la théorie générale des surfaces et ses applications géométriques du calcul infinitésimal" , '''1''' , Gauthier-Villars (1887) pp. 1–18</TD></TR></table> | + | <table> |
+ | <TR><TD valign="top">[a1]</TD> <TD valign="top"> G. Darboux, "Leçons sur la théorie générale des surfaces et ses applications géométriques du calcul infinitésimal" , '''1''' , Gauthier-Villars (1887) pp. 1–18</TD></TR> | ||
+ | <TR><TD valign="top">[a2]</TD> <TD valign="top"> Harold Jeffreys, Bertha Jeffreys, ''Methods of Mathematical Physics'', 3rd edition, Cambridge University Press (1972) Zbl 0238.00004</TD></TR> | ||
+ | </table> |
Revision as of 20:14, 25 October 2014
spatial elliptic coordinates
The numbers , and connected with Cartesian rectangular coordinates , and by the formulas
where . The coordinate surfaces are (see Fig.): ellipses , one-sheet hyperbolas (), and two-sheet hyperbolas (), with centres at the coordinate origin.
Figure: e035420a
The system of ellipsoidal coordinates is orthogonal. To every triple of numbers , and correspond 8 points (one in each octant), which are symmetric to each other relative to the coordinate planes of the system .
The Lamé coefficients are
If one of the conditions in the definition of ellipsoidal coordinates is replaced by an equality, then degenerate ellipsoidal coordinate systems are obtained.
Comments
References
[a1] | G. Darboux, "Leçons sur la théorie générale des surfaces et ses applications géométriques du calcul infinitésimal" , 1 , Gauthier-Villars (1887) pp. 1–18 |
[a2] | Harold Jeffreys, Bertha Jeffreys, Methods of Mathematical Physics, 3rd edition, Cambridge University Press (1972) Zbl 0238.00004 |
Ellipsoidal coordinates. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Ellipsoidal_coordinates&oldid=34026