|
|
Line 1: |
Line 1: |
− | The algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041520/f0415201.png" /> of polynomials over a field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041520/f0415202.png" /> in non-commuting variables in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041520/f0415203.png" />. The following universal property determines the algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041520/f0415204.png" /> uniquely up to an isomorphism: There is a mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041520/f0415205.png" /> such that any mapping from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041520/f0415206.png" /> into an associative algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041520/f0415207.png" /> with a unit over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041520/f0415208.png" /> can be factored through <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041520/f0415209.png" /> in a unique way. The basic properties of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041520/f04152010.png" /> are: | + | The algebra $k\langle X \rangle$ of polynomials over a field $k$ in non-commuting variables in $X$. The following universal property determines the algebra $k\langle X \rangle$ uniquely up to an isomorphism: There is a mapping $i : k \rightarrow k\langle X \rangle$ such that any mapping from $X$ into an associative algebra $A$ with a unit over $k$ can be factored through $k\langle X \rangle$ in a unique way. The basic properties of $k\langle X \rangle$ are: |
| | | |
− | 1) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041520/f04152011.png" /> can be imbedded in a skew-field (the Mal'tsev–Neumann theorem); | + | 1) $k\langle X \rangle$ can be imbedded in a skew-field (the Mal'tsev–Neumann theorem); |
− | | |
− | 2) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041520/f04152012.png" /> has a weak division algorithm, that is, the relation
| |
− | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041520/f04152013.png" /></td> </tr></table>
| |
− | | |
− | where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041520/f04152014.png" />, all the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041520/f04152015.png" /> are non-zero <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041520/f04152016.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041520/f04152017.png" />, always implies that there are an integer <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041520/f04152018.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041520/f04152019.png" />, and elements <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041520/f04152020.png" /> such that
| |
− | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041520/f04152021.png" /></td> </tr></table>
| |
| | | |
| + | 2) $k\langle X \rangle$ has a weak division algorithm, that is, the relation |
| + | $$ |
| + | d \left({ \sum_{i=1}^n a_i b_i }\right) < \max_i \{ d(a_i) + d(b_i) \} |
| + | $$ |
| + | where $a_i, b_i \in k\langle X \rangle$, all the $a_i$ are non-zero ($i = 1,\ldots,n$), $d(a_1) \le \cdots \le d(a_n)$, always implies that there are an integer $r$, $1 < r \le n$, and elements $c_,\ldots,c_{r-1}$ such that |
| + | $$ |
| + | d\left({ a_r - \sum_{i=1}^{r-1} a_i c_i }\right) < d(a_r) |
| + | $$ |
| and | | and |
| + | $$ |
| + | d(a_i) + d(c_i) < d(a_r),\ \ \ i=1,\ldots,r-1 |
| + | $$ |
| + | (here $d(a)$ is the usual degree of a polynomial $a \in k\langle X \rangle$, $d(0) = -\infty$); |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041520/f04152022.png" /></td> </tr></table>
| + | 3) $k\langle X \rangle$ is a left (respectively, right) free ideal ring (that is, any left (respectively, right) ideal of $k\langle X \rangle$ is a free module of uniquely determined rank); |
| | | |
− | (here <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041520/f04152023.png" /> is the usual degree of a polynomial <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041520/f04152024.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041520/f04152025.png" />);
| + | 4) the centralizer of any non-scalar element of $k\langle X \rangle$ (that is, the set of elements that commute with a given element) is isomorphic to the algebra of polynomials over $k$ in a single variable (Bergman's theorem). |
− | | |
− | 3) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041520/f04152026.png" /> is a left (respectively, right) free ideal ring (that is, any left (respectively, right) ideal of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041520/f04152027.png" /> is a free module of uniquely determined rank);
| |
− | | |
− | 4) the centralizer of any non-scalar element of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041520/f04152028.png" /> (that is, the set of elements that commute with a given element) is isomorphic to the algebra of polynomials over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041520/f04152029.png" /> in a single variable (Bergman's theorem). | |
| | | |
| ====References==== | | ====References==== |
− | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> P.M. Cohn, "Universal algebra" , Reidel (1981)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> P.M. Cohn, "Free rings and their relations" , Acad. Press (1971)</TD></TR></table> | + | <table> |
− | | + | <TR><TD valign="top">[1]</TD> <TD valign="top"> P.M. Cohn, "Universal algebra" , Reidel (1981)</TD></TR> |
− | '
| + | <TR><TD valign="top">[2]</TD> <TD valign="top"> P.M. Cohn, "Free rings and their relations" , Acad. Press (1971)</TD></TR> |
| + | </table> |
The algebra $k\langle X \rangle$ of polynomials over a field $k$ in non-commuting variables in $X$. The following universal property determines the algebra $k\langle X \rangle$ uniquely up to an isomorphism: There is a mapping $i : k \rightarrow k\langle X \rangle$ such that any mapping from $X$ into an associative algebra $A$ with a unit over $k$ can be factored through $k\langle X \rangle$ in a unique way. The basic properties of $k\langle X \rangle$ are:
1) $k\langle X \rangle$ can be imbedded in a skew-field (the Mal'tsev–Neumann theorem);
2) $k\langle X \rangle$ has a weak division algorithm, that is, the relation
$$
d \left({ \sum_{i=1}^n a_i b_i }\right) < \max_i \{ d(a_i) + d(b_i) \}
$$
where $a_i, b_i \in k\langle X \rangle$, all the $a_i$ are non-zero ($i = 1,\ldots,n$), $d(a_1) \le \cdots \le d(a_n)$, always implies that there are an integer $r$, $1 < r \le n$, and elements $c_,\ldots,c_{r-1}$ such that
$$
d\left({ a_r - \sum_{i=1}^{r-1} a_i c_i }\right) < d(a_r)
$$
and
$$
d(a_i) + d(c_i) < d(a_r),\ \ \ i=1,\ldots,r-1
$$
(here $d(a)$ is the usual degree of a polynomial $a \in k\langle X \rangle$, $d(0) = -\infty$);
3) $k\langle X \rangle$ is a left (respectively, right) free ideal ring (that is, any left (respectively, right) ideal of $k\langle X \rangle$ is a free module of uniquely determined rank);
4) the centralizer of any non-scalar element of $k\langle X \rangle$ (that is, the set of elements that commute with a given element) is isomorphic to the algebra of polynomials over $k$ in a single variable (Bergman's theorem).
References
[1] | P.M. Cohn, "Universal algebra" , Reidel (1981) |
[2] | P.M. Cohn, "Free rings and their relations" , Acad. Press (1971) |