Namespaces
Variants
Actions

Difference between revisions of "Dickson invariant"

From Encyclopedia of Mathematics
Jump to: navigation, search
m (MR/ZBL numbers added)
(TeX)
Line 1: Line 1:
A construction used in the study of quadratic forms over fields of characteristic 2, which allows one, in particular, to introduce analogues of the special orthogonal group over such fields. In fact, a Dickson invariant is an element <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031630/d0316301.png" /> of a field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031630/d0316302.png" /> of characteristic 2 associated to any [[Similarity|similarity]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031630/d0316303.png" /> of a countable-dimensional vector space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031630/d0316304.png" /> over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031630/d0316305.png" /> with respect to the symmetric bilinear form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031630/d0316306.png" /> associated with a non-degenerate quadratic form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031630/d0316307.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031630/d0316308.png" />. Introduced by L.E. Dickson [[#References|[1]]].
+
{{TEX|done}}
 +
A construction used in the study of quadratic forms over fields of characteristic 2, which allows one, in particular, to introduce analogues of the special orthogonal group over such fields. In fact, a Dickson invariant is an element $D(u)$ of a field $k$ of characteristic 2 associated to any [[Similarity|similarity]] $u$ of a countable-dimensional vector space $E$ over $k$ with respect to the symmetric bilinear form $f$ associated with a non-degenerate quadratic form $Q$ on $E$. Introduced by L.E. Dickson [[#References|[1]]].
  
By virtue of the condition imposed on the characteristic of the field, the form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031630/d0316309.png" /> is alternating and there exists a basis <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031630/d03163010.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031630/d03163011.png" /> for which
+
By virtue of the condition imposed on the characteristic of the field, the form $f$ is alternating and there exists a basis $e_1,\dots,e_{2s}$ in $E$ for which
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031630/d03163012.png" /></td> </tr></table>
+
$$f(e_i,e_j)=f(e_{s+i},e_{s+j})=0,$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031630/d03163013.png" /></td> </tr></table>
+
$$f(e_i,e_{s+j})=\delta_{ij},$$
  
for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031630/d03163014.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031630/d03163015.png" /> (cf. [[Witt decomposition|Witt decomposition]]). Let
+
for $1\leq i\leq s$, $1\leq j\leq s$ (cf. [[Witt decomposition|Witt decomposition]]). Let
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031630/d03163016.png" /></td> </tr></table>
+
$$f(u(x),u(y))=\alpha(u)f(x,y)$$
  
for any vectors <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031630/d03163017.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031630/d03163018.png" /> from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031630/d03163019.png" />, and let, for each <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031630/d03163020.png" />,
+
for any vectors $x$ and $y$ from $E$, and let, for each $i=1,\dots,s$,
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031630/d03163021.png" /></td> </tr></table>
+
$$u(e_i)=\sum_{j=1}^sa_{ij}e_j+\sum_{j=1}^sb_{ij}e_{s+j},$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031630/d03163022.png" /></td> </tr></table>
+
$$u(e_{s+i})=\sum_{j=1}^sc_{ij}e_j+\sum_{j=1}^sd_{ij}e_{s+j}.$$
  
Then the following element from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031630/d03163023.png" />:
+
Then the following element from $k$:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031630/d03163024.png" /></td> </tr></table>
+
$$D(u)=\sum_{i,j}(Q(e_i)a_{ij}c_{ij}+Q(e_{s+i})b_{ij}d_{ij}+b_{ij}c_{ij})$$
  
is called the Dickson invariant of the similarity <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031630/d03163025.png" /> with respect to the basis <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031630/d03163026.png" />. For <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031630/d03163027.png" /> to be a similarity with respect to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031630/d03163028.png" /> with similarity coefficient <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031630/d03163029.png" /> (i.e. <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031630/d03163030.png" /> for any vector <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031630/d03163031.png" />) it is necessary and sufficient that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031630/d03163032.png" /> or that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031630/d03163033.png" />. Similarities <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031630/d03163034.png" /> with respect to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031630/d03163035.png" /> for which <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031630/d03163036.png" /> are called direct similarities. The direct similarities form a normal subgroup of index 2 in the group of all similarities with respect to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031630/d03163037.png" />.
+
is called the Dickson invariant of the similarity $u$ with respect to the basis $e_1,\dots,e_{2s}$. For $u$ to be a similarity with respect to $Q$ with similarity coefficient $\alpha(u)$ (i.e. $Q(u(x))=\alpha(u)Q(x)$ for any vector $x\in E$) it is necessary and sufficient that $D(u)=0$ or that $D(u)=\alpha(u)$. Similarities $u$ with respect to $Q$ for which $D(u)=0$ are called direct similarities. The direct similarities form a normal subgroup of index 2 in the group of all similarities with respect to $Q$.
  
If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031630/d03163038.png" /> is the form defined by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031630/d03163039.png" /> for any vector <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031630/d03163040.png" />, and if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031630/d03163041.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031630/d03163042.png" /> are the pseudo-discriminants of these forms with respect to the basis <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031630/d03163043.png" />, i.e.
+
If $Q_1$ is the form defined by $Q_1(x)=Q(u(x))$ for any vector $x\in E$, and if $\Delta(Q)$ and $\Delta(Q_1)$ are the pseudo-discriminants of these forms with respect to the basis $e_1,\dots,e_{2s}$, i.e.
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031630/d03163044.png" /></td> </tr></table>
+
$$\Delta(Q)=Q(e_1)Q(e_{s+1})+\ldots+Q(e_s)Q(e_{2s}),$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031630/d03163045.png" /></td> </tr></table>
+
$$\Delta(Q_1)=Q_1(e_1)Q_1(e_{s+1})+\ldots+Q_1(e_s)Q_1(e_{2s}),$$
  
 
then
 
then
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031630/d03163046.png" /></td> </tr></table>
+
$$\Delta(Q_1)=(\alpha(u))^2\Delta(Q)+(D(u))^2+\alpha(u)D(u).$$
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> L.E. Dickson, "Linear groups" , Teubner (1901) {{MR|1505871}} {{MR|1500573}} {{ZBL|32.0134.03}} {{ZBL|32.0131.03}} {{ZBL|32.0131.01}} {{ZBL|32.0128.01}} </TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> N. Bourbaki, "Elements of mathematics. Algebra: Modules. Rings. Forms" , '''2''' , Addison-Wesley (1975) pp. Chapt.4;5;6 (Translated from French) {{MR|2333539}} {{MR|2327161}} {{MR|2325344}} {{MR|2284892}} {{MR|2272929}} {{MR|0928386}} {{MR|0896478}} {{MR|0782297}} {{MR|0782296}} {{MR|0722608}} {{MR|0682756}} {{MR|0643362}} {{MR|0647314}} {{MR|0610795}} {{MR|0583191}} {{MR|0354207}} {{MR|0360549}} {{MR|0237342}} {{MR|0205211}} {{MR|0205210}} {{ZBL|}} </TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> J.A. Dieudonné, "La géométrie des groups classiques" , Springer (1955) {{MR|}} {{ZBL|0221.20056}} </TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> L.E. Dickson, "Linear groups" , Teubner (1901) {{MR|1505871}} {{MR|1500573}} {{ZBL|32.0134.03}} {{ZBL|32.0131.03}} {{ZBL|32.0131.01}} {{ZBL|32.0128.01}} </TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> N. Bourbaki, "Elements of mathematics. Algebra: Modules. Rings. Forms" , '''2''' , Addison-Wesley (1975) pp. Chapt.4;5;6 (Translated from French) {{MR|2333539}} {{MR|2327161}} {{MR|2325344}} {{MR|2284892}} {{MR|2272929}} {{MR|0928386}} {{MR|0896478}} {{MR|0782297}} {{MR|0782296}} {{MR|0722608}} {{MR|0682756}} {{MR|0643362}} {{MR|0647314}} {{MR|0610795}} {{MR|0583191}} {{MR|0354207}} {{MR|0360549}} {{MR|0237342}} {{MR|0205211}} {{MR|0205210}} {{ZBL|}} </TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> J.A. Dieudonné, "La géométrie des groups classiques" , Springer (1955) {{MR|}} {{ZBL|0221.20056}} </TD></TR></table>

Revision as of 14:59, 14 October 2014

A construction used in the study of quadratic forms over fields of characteristic 2, which allows one, in particular, to introduce analogues of the special orthogonal group over such fields. In fact, a Dickson invariant is an element $D(u)$ of a field $k$ of characteristic 2 associated to any similarity $u$ of a countable-dimensional vector space $E$ over $k$ with respect to the symmetric bilinear form $f$ associated with a non-degenerate quadratic form $Q$ on $E$. Introduced by L.E. Dickson [1].

By virtue of the condition imposed on the characteristic of the field, the form $f$ is alternating and there exists a basis $e_1,\dots,e_{2s}$ in $E$ for which

$$f(e_i,e_j)=f(e_{s+i},e_{s+j})=0,$$

$$f(e_i,e_{s+j})=\delta_{ij},$$

for $1\leq i\leq s$, $1\leq j\leq s$ (cf. Witt decomposition). Let

$$f(u(x),u(y))=\alpha(u)f(x,y)$$

for any vectors $x$ and $y$ from $E$, and let, for each $i=1,\dots,s$,

$$u(e_i)=\sum_{j=1}^sa_{ij}e_j+\sum_{j=1}^sb_{ij}e_{s+j},$$

$$u(e_{s+i})=\sum_{j=1}^sc_{ij}e_j+\sum_{j=1}^sd_{ij}e_{s+j}.$$

Then the following element from $k$:

$$D(u)=\sum_{i,j}(Q(e_i)a_{ij}c_{ij}+Q(e_{s+i})b_{ij}d_{ij}+b_{ij}c_{ij})$$

is called the Dickson invariant of the similarity $u$ with respect to the basis $e_1,\dots,e_{2s}$. For $u$ to be a similarity with respect to $Q$ with similarity coefficient $\alpha(u)$ (i.e. $Q(u(x))=\alpha(u)Q(x)$ for any vector $x\in E$) it is necessary and sufficient that $D(u)=0$ or that $D(u)=\alpha(u)$. Similarities $u$ with respect to $Q$ for which $D(u)=0$ are called direct similarities. The direct similarities form a normal subgroup of index 2 in the group of all similarities with respect to $Q$.

If $Q_1$ is the form defined by $Q_1(x)=Q(u(x))$ for any vector $x\in E$, and if $\Delta(Q)$ and $\Delta(Q_1)$ are the pseudo-discriminants of these forms with respect to the basis $e_1,\dots,e_{2s}$, i.e.

$$\Delta(Q)=Q(e_1)Q(e_{s+1})+\ldots+Q(e_s)Q(e_{2s}),$$

$$\Delta(Q_1)=Q_1(e_1)Q_1(e_{s+1})+\ldots+Q_1(e_s)Q_1(e_{2s}),$$

then

$$\Delta(Q_1)=(\alpha(u))^2\Delta(Q)+(D(u))^2+\alpha(u)D(u).$$

References

[1] L.E. Dickson, "Linear groups" , Teubner (1901) MR1505871 MR1500573 Zbl 32.0134.03 Zbl 32.0131.03 Zbl 32.0131.01 Zbl 32.0128.01
[2] N. Bourbaki, "Elements of mathematics. Algebra: Modules. Rings. Forms" , 2 , Addison-Wesley (1975) pp. Chapt.4;5;6 (Translated from French) MR2333539 MR2327161 MR2325344 MR2284892 MR2272929 MR0928386 MR0896478 MR0782297 MR0782296 MR0722608 MR0682756 MR0643362 MR0647314 MR0610795 MR0583191 MR0354207 MR0360549 MR0237342 MR0205211 MR0205210
[3] J.A. Dieudonné, "La géométrie des groups classiques" , Springer (1955) Zbl 0221.20056
How to Cite This Entry:
Dickson invariant. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Dickson_invariant&oldid=33635
This article was adapted from an original article by V.L. Popov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article