Namespaces
Variants
Actions

Difference between revisions of "Symmetry (of a relation)"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
(LaTeX)
Line 1: Line 1:
A property of a [[Binary relation|binary relation]]. A binary relation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091770/s0917701.png" /> on a set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091770/s0917702.png" /> is called symmetric if for any pair of elements <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091770/s0917703.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091770/s0917704.png" /> implies <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091770/s0917705.png" />, i.e. <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091770/s0917706.png" />. An example of a symmetric relation is an [[Equivalence|equivalence]].
+
A property of a [[Binary relation|binary relation]]. A binary relation $R$ on a set $A$ is called symmetric if for any pair of elements $a,b \in A$, $aRb$ implies $b R a$, i.e. $R \subseteq R^{-1}$. An example of a symmetric relation is an [[Equivalence relation]].
  
  
  
 
====Comments====
 
====Comments====
An anti-symmetric relation on a set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091770/s0917707.png" /> is a reflexive relation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091770/s0917708.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091770/s0917709.png" />.
+
An anti-symmetric relation on a set $A$ is a reflexive relation $R$ such that $R \cap R^{-1} \subseteq \Delta = \{ (x,x) : \forall x \in A \}$.
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  P.M. Cohn,  "Algebra" , '''1''' , Wiley  (1982)  pp. 17ff</TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  P.M. Cohn,  "Algebra" , '''1''' , Wiley  (1982)  pp. 17ff</TD></TR></table>

Revision as of 19:45, 12 October 2014

A property of a binary relation. A binary relation $R$ on a set $A$ is called symmetric if for any pair of elements $a,b \in A$, $aRb$ implies $b R a$, i.e. $R \subseteq R^{-1}$. An example of a symmetric relation is an Equivalence relation.


Comments

An anti-symmetric relation on a set $A$ is a reflexive relation $R$ such that $R \cap R^{-1} \subseteq \Delta = \{ (x,x) : \forall x \in A \}$.

References

[a1] P.M. Cohn, "Algebra" , 1 , Wiley (1982) pp. 17ff
How to Cite This Entry:
Symmetry (of a relation). Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Symmetry_(of_a_relation)&oldid=33590
This article was adapted from an original article by T.S. Fofanova (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article