|
|
Line 1: |
Line 1: |
− | An arithmetic predicate <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035770/e0357701.png" /> is called enumerable relative to a given [[Formal system|formal system]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035770/e0357702.png" /> of arithmetic if it has the following property: There is a formula <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035770/e0357703.png" /> in the language of formal arithmetic (cf. [[Arithmetic, formal|Arithmetic, formal]]) such that for any natural numbers <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035770/e0357704.png" />, | + | {{TEX|done}} |
| + | An arithmetic predicate is called enumerable relative to a given [[Formal system|formal system]] S of arithmetic if it has the following property: There is a formula F(x_1,\dots,x_n) in the language of formal arithmetic (cf. [[Arithmetic, formal|Arithmetic, formal]]) such that for any natural numbers k_1,\dots,k_n, |
| | | |
− | 1) if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035770/e0357705.png" /> is true, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035770/e0357706.png" />; | + | 1) if P(k_1,\dots,k_n) is true, then \vdash_SF(k_1,\dots,k_n); |
| | | |
− | 2) if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035770/e0357707.png" /> is false, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035770/e0357708.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035770/e0357709.png" /> means derivability in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035770/e03577010.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035770/e03577011.png" /> is the result of substituting in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035770/e03577012.png" /> for the variables <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035770/e03577013.png" /> terms representing the numbers <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035770/e03577014.png" />. In this case one says that the formula <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035770/e03577015.png" /> is an enumerability predicate for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035770/e03577016.png" />. For a formal system <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035770/e03577017.png" /> of arithmetic the following proposition holds: All recursive predicates, and only they, are enumerability predicates in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035770/e03577018.png" />. | + | 2) if P(k_1,\dots,k_n) is false, then \vdash_S\neg F(k_1,\dots,k_n), where \vdash_S means derivability in S and F(k_1,\dots,k_n) is the result of substituting in F(x_1,\dots,x_n) for the variables x_1,\dots,x_n terms representing the numbers k_1,\dots,k_n. In this case one says that the formula F(x_1,\dots,x_n) is an enumerability predicate for P(x_1,\dots,x_n). For a formal system S of arithmetic the following proposition holds: All recursive predicates, and only they, are enumerability predicates in S. |
| | | |
− | An <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035770/e03577019.png" />-place arithmetic function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035770/e03577020.png" /> is called enumerable if there is an arithmetic formula <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035770/e03577021.png" /> such that for any natural numbers <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035770/e03577022.png" />, | + | An n-place arithmetic function f is called enumerable if there is an arithmetic formula F(x_1,\dots,x_n,y) such that for any natural numbers k_1,\dots,k_n,l, |
| | | |
− | 1) if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035770/e03577023.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035770/e03577024.png" />; | + | 1) if $f(k_1,\dots,k_n)=l$, then \vdash_SF(k_1,\dots,k_n,l); |
| | | |
− | 2) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035770/e03577025.png" /> <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035770/e03577026.png" /> <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035770/e03577027.png" />. | + | 2) $\vdash_S\exists yF(k_1,\dots,k_n,y)\land\forall x\forall y(F(k_1,\dots,k_n,x)\land F(k_1,\dots,k_n,y)\supset x=y)$. |
| | | |
| In the ordinary formal system of arithmetic all general recursive functions, and only they, are enumerable (cf. [[General recursive function|General recursive function]]). | | In the ordinary formal system of arithmetic all general recursive functions, and only they, are enumerable (cf. [[General recursive function|General recursive function]]). |
Line 19: |
Line 20: |
| | | |
| ====Comments==== | | ====Comments==== |
− | Predicates <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035770/e03577028.png" /> (functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035770/e03577029.png" />) satisfying 1), 2) are more commonly called definable in the system <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035770/e03577030.png" />. | + | Predicates P (functions f) satisfying 1), 2) are more commonly called definable in the system S. |
Revision as of 16:44, 5 October 2014
An arithmetic predicate P(x_1,\dots,x_n) is called enumerable relative to a given formal system S of arithmetic if it has the following property: There is a formula F(x_1,\dots,x_n) in the language of formal arithmetic (cf. Arithmetic, formal) such that for any natural numbers k_1,\dots,k_n,
1) if P(k_1,\dots,k_n) is true, then \vdash_SF(k_1,\dots,k_n);
2) if P(k_1,\dots,k_n) is false, then \vdash_S\neg F(k_1,\dots,k_n), where \vdash_S means derivability in S and F(k_1,\dots,k_n) is the result of substituting in F(x_1,\dots,x_n) for the variables x_1,\dots,x_n terms representing the numbers k_1,\dots,k_n. In this case one says that the formula F(x_1,\dots,x_n) is an enumerability predicate for P(x_1,\dots,x_n). For a formal system S of arithmetic the following proposition holds: All recursive predicates, and only they, are enumerability predicates in S.
An n-place arithmetic function f is called enumerable if there is an arithmetic formula F(x_1,\dots,x_n,y) such that for any natural numbers k_1,\dots,k_n,l,
1) if f(k_1,\dots,k_n)=l, then \vdash_SF(k_1,\dots,k_n,l);
2) \vdash_S\exists yF(k_1,\dots,k_n,y)\land\forall x\forall y(F(k_1,\dots,k_n,x)\land F(k_1,\dots,k_n,y)\supset x=y).
In the ordinary formal system of arithmetic all general recursive functions, and only they, are enumerable (cf. General recursive function).
References
[1] | S.C. Kleene, "Introduction to metamathematics" , North-Holland (1951) |
Predicates P (functions f) satisfying 1), 2) are more commonly called definable in the system S.
How to Cite This Entry:
Enumerable predicate. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Enumerable_predicate&oldid=33501
This article was adapted from an original article by V.E. Plisko (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098.
See original article