Namespaces
Variants
Actions

Difference between revisions of "Enumerable predicate"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
(TeX)
Line 1: Line 1:
An arithmetic predicate <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035770/e0357701.png" /> is called enumerable relative to a given [[Formal system|formal system]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035770/e0357702.png" /> of arithmetic if it has the following property: There is a formula <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035770/e0357703.png" /> in the language of formal arithmetic (cf. [[Arithmetic, formal|Arithmetic, formal]]) such that for any natural numbers <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035770/e0357704.png" />,
+
{{TEX|done}}
 +
An arithmetic predicate is called enumerable relative to a given [[Formal system|formal system]] S of arithmetic if it has the following property: There is a formula F(x_1,\dots,x_n) in the language of formal arithmetic (cf. [[Arithmetic, formal|Arithmetic, formal]]) such that for any natural numbers k_1,\dots,k_n,
  
1) if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035770/e0357705.png" /> is true, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035770/e0357706.png" />;
+
1) if P(k_1,\dots,k_n) is true, then \vdash_SF(k_1,\dots,k_n);
  
2) if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035770/e0357707.png" /> is false, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035770/e0357708.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035770/e0357709.png" /> means derivability in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035770/e03577010.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035770/e03577011.png" /> is the result of substituting in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035770/e03577012.png" /> for the variables <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035770/e03577013.png" /> terms representing the numbers <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035770/e03577014.png" />. In this case one says that the formula <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035770/e03577015.png" /> is an enumerability predicate for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035770/e03577016.png" />. For a formal system <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035770/e03577017.png" /> of arithmetic the following proposition holds: All recursive predicates, and only they, are enumerability predicates in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035770/e03577018.png" />.
+
2) if P(k_1,\dots,k_n) is false, then \vdash_S\neg F(k_1,\dots,k_n), where \vdash_S means derivability in S and F(k_1,\dots,k_n) is the result of substituting in F(x_1,\dots,x_n) for the variables x_1,\dots,x_n terms representing the numbers k_1,\dots,k_n. In this case one says that the formula F(x_1,\dots,x_n) is an enumerability predicate for P(x_1,\dots,x_n). For a formal system S of arithmetic the following proposition holds: All recursive predicates, and only they, are enumerability predicates in S.
  
An <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035770/e03577019.png" />-place arithmetic function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035770/e03577020.png" /> is called enumerable if there is an arithmetic formula <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035770/e03577021.png" /> such that for any natural numbers <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035770/e03577022.png" />,
+
An n-place arithmetic function f is called enumerable if there is an arithmetic formula F(x_1,\dots,x_n,y) such that for any natural numbers k_1,\dots,k_n,l,
  
1) if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035770/e03577023.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035770/e03577024.png" />;
+
1) if $f(k_1,\dots,k_n)=l$, then \vdash_SF(k_1,\dots,k_n,l);
  
2) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035770/e03577025.png" /> <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035770/e03577026.png" /> <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035770/e03577027.png" />.
+
2) $\vdash_S\exists yF(k_1,\dots,k_n,y)\land\forall x\forall y(F(k_1,\dots,k_n,x)\land F(k_1,\dots,k_n,y)\supset x=y)$.
  
 
In the ordinary formal system of arithmetic all general recursive functions, and only they, are enumerable (cf. [[General recursive function|General recursive function]]).
 
In the ordinary formal system of arithmetic all general recursive functions, and only they, are enumerable (cf. [[General recursive function|General recursive function]]).
Line 19: Line 20:
  
 
====Comments====
 
====Comments====
Predicates <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035770/e03577028.png" /> (functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035770/e03577029.png" />) satisfying 1), 2) are more commonly called definable in the system <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035770/e03577030.png" />.
+
Predicates P (functions f) satisfying 1), 2) are more commonly called definable in the system S.

Revision as of 16:44, 5 October 2014

An arithmetic predicate P(x_1,\dots,x_n) is called enumerable relative to a given formal system S of arithmetic if it has the following property: There is a formula F(x_1,\dots,x_n) in the language of formal arithmetic (cf. Arithmetic, formal) such that for any natural numbers k_1,\dots,k_n,

1) if P(k_1,\dots,k_n) is true, then \vdash_SF(k_1,\dots,k_n);

2) if P(k_1,\dots,k_n) is false, then \vdash_S\neg F(k_1,\dots,k_n), where \vdash_S means derivability in S and F(k_1,\dots,k_n) is the result of substituting in F(x_1,\dots,x_n) for the variables x_1,\dots,x_n terms representing the numbers k_1,\dots,k_n. In this case one says that the formula F(x_1,\dots,x_n) is an enumerability predicate for P(x_1,\dots,x_n). For a formal system S of arithmetic the following proposition holds: All recursive predicates, and only they, are enumerability predicates in S.

An n-place arithmetic function f is called enumerable if there is an arithmetic formula F(x_1,\dots,x_n,y) such that for any natural numbers k_1,\dots,k_n,l,

1) if f(k_1,\dots,k_n)=l, then \vdash_SF(k_1,\dots,k_n,l);

2) \vdash_S\exists yF(k_1,\dots,k_n,y)\land\forall x\forall y(F(k_1,\dots,k_n,x)\land F(k_1,\dots,k_n,y)\supset x=y).

In the ordinary formal system of arithmetic all general recursive functions, and only they, are enumerable (cf. General recursive function).

References

[1] S.C. Kleene, "Introduction to metamathematics" , North-Holland (1951)


Comments

Predicates P (functions f) satisfying 1), 2) are more commonly called definable in the system S.

How to Cite This Entry:
Enumerable predicate. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Enumerable_predicate&oldid=33501
This article was adapted from an original article by V.E. Plisko (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article