Difference between revisions of "Self-perimeter"
From Encyclopedia of Mathematics
(Importing text file) |
(TeX) |
||
Line 1: | Line 1: | ||
− | The length | + | {{TEX|done}} |
+ | The length $2\pi_S$ of a centrally-symmetric closed convex curve $S$ on a plane, measured in the Minkowski metric for which $S$ plays the role of unit circle. Always $3\leq\pi_S\leq4$ (see [[#References|[1]]]). In the generalization to the non-symmetric case, a self-perimeter is the length of a directed curve $S$, and depends on the choice of the origin inside $S$ (see [[#References|[2]]], [[#References|[3]]]). The case of a star $S$ has been considered (see [[#References|[4]]]). There are various generalizations of a self-perimeter for the unit sphere $S$ in a normed space of dimension greater than two (see [[#References|[5]]], [[#References|[6]]]). | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> Yu.G. Reshetnyak, "An extremal problem in the theory of surfaces" ''Uspekhi Mat. Nauk'' , '''8''' : 6 (1953) pp. 125–126 (In Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> V.A. Sorokin, "Minkowski geometry with asymmetric indicatrix" ''Uchebn. Zap. Moskov. Gos. Ped. Inst.'' , '''243''' (1965) pp. 160–185 (In Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> G.D. Chakerian, W.K. Talley, "Some properties of the self-circumference of convex sets" ''Arch. Math.'' , '''20''' : 4 (1969) pp. 431–443</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> S. Gołab, "Sur la longuer d'indicatrice dans la géometrie plane de Minkowski" ''Colloq. Math.'' , '''15''' : 1 (1966) pp. 141–144</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> J.J. Schäffer, "Spheres with maximum inner diameter" ''Math. Ann.'' , '''190''' : 3 (1971) pp. 242–247</TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top"> C.M. Petty, "Geominimal surface area" ''Geom. Dedic.'' , '''3''' : 1 (1974) pp. 77–97</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> Yu.G. Reshetnyak, "An extremal problem in the theory of surfaces" ''Uspekhi Mat. Nauk'' , '''8''' : 6 (1953) pp. 125–126 (In Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> V.A. Sorokin, "Minkowski geometry with asymmetric indicatrix" ''Uchebn. Zap. Moskov. Gos. Ped. Inst.'' , '''243''' (1965) pp. 160–185 (In Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> G.D. Chakerian, W.K. Talley, "Some properties of the self-circumference of convex sets" ''Arch. Math.'' , '''20''' : 4 (1969) pp. 431–443</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> S. Gołab, "Sur la longuer d'indicatrice dans la géometrie plane de Minkowski" ''Colloq. Math.'' , '''15''' : 1 (1966) pp. 141–144</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> J.J. Schäffer, "Spheres with maximum inner diameter" ''Math. Ann.'' , '''190''' : 3 (1971) pp. 242–247</TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top"> C.M. Petty, "Geominimal surface area" ''Geom. Dedic.'' , '''3''' : 1 (1974) pp. 77–97</TD></TR></table> |
Revision as of 14:01, 1 October 2014
The length $2\pi_S$ of a centrally-symmetric closed convex curve $S$ on a plane, measured in the Minkowski metric for which $S$ plays the role of unit circle. Always $3\leq\pi_S\leq4$ (see [1]). In the generalization to the non-symmetric case, a self-perimeter is the length of a directed curve $S$, and depends on the choice of the origin inside $S$ (see [2], [3]). The case of a star $S$ has been considered (see [4]). There are various generalizations of a self-perimeter for the unit sphere $S$ in a normed space of dimension greater than two (see [5], [6]).
References
[1] | Yu.G. Reshetnyak, "An extremal problem in the theory of surfaces" Uspekhi Mat. Nauk , 8 : 6 (1953) pp. 125–126 (In Russian) |
[2] | V.A. Sorokin, "Minkowski geometry with asymmetric indicatrix" Uchebn. Zap. Moskov. Gos. Ped. Inst. , 243 (1965) pp. 160–185 (In Russian) |
[3] | G.D. Chakerian, W.K. Talley, "Some properties of the self-circumference of convex sets" Arch. Math. , 20 : 4 (1969) pp. 431–443 |
[4] | S. Gołab, "Sur la longuer d'indicatrice dans la géometrie plane de Minkowski" Colloq. Math. , 15 : 1 (1966) pp. 141–144 |
[5] | J.J. Schäffer, "Spheres with maximum inner diameter" Math. Ann. , 190 : 3 (1971) pp. 242–247 |
[6] | C.M. Petty, "Geominimal surface area" Geom. Dedic. , 3 : 1 (1974) pp. 77–97 |
How to Cite This Entry:
Self-perimeter. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Self-perimeter&oldid=33455
Self-perimeter. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Self-perimeter&oldid=33455
This article was adapted from an original article by V.A. Zalgaller (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article